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a b s t r a c t 

This paper presents a multi-modal feature fusion based framework to improve the geographic image an- 

notation. To achieve effective representations of geographic images, the method leverages a low-to-high 

learning flow for both the deep and shallow modality features. It first extracts low-level features for 

each input image pixel, such as shallow modality features (SIFT, Color, and LBP) and deep modality fea- 

tures (CNNs). It then constructs mid-level features for each superpixel from low-level features. Finally 

it harvests high-level features from mid-level features by using deep belief networks (DBN). It uses a 

restricted Boltzmann machine (RBM) to mine deep correlations between high-level features from both 

shallow and deep modalities to achieve a final representation for geographic images. Comprehensive ex- 

periments show that this feature fusion based method achieves much better performances compared to 

traditional methods. 

© 2017 Published by Elsevier Ltd. 
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. Introduction 

Remote sensing technological development have led to an ex-

losive growth in geographic images. These images are rich in the

isual information that describes the Earth’s surface scene contain-

ng geospatial objects such as buildings, roads, farms, forest and

ivers. The automatic analysis and understanding of geographic im-

ges can enhance many applications in fields varying from environ-

ent studies to socioeconomic issues. It has attracted increasing

ttention, an insightful survey can be seen in [1] . 

Image annotation is an important component of a higher-level

mage understanding and semantic information extraction. Re-

ently a number of works have shown that image representation

s the key factor affecting image annotation. Image representation

an be classified into two modalities. The first is shallow modal-

ty features representing the extrinsic visual properties of the im-

ge, such as scale invariant feature transform (SIFT) [2] , Gabor [3] ,

r histogram oriented gradients (HOG) [4] . The second is the deep

odality feature which can represent the image’s intrinsic seman-

ic and structural representations of image. One example of this

ould be CNNs features [5–7] . 
∗ Corresponding author. 

E-mail address: aaronzou1125@gmail.com (C. Zou). 

g  

T  

m  

a  

ttp://dx.doi.org/10.1016/j.patcog.2017.06.036 

031-3203/© 2017 Published by Elsevier Ltd. 
Conventional algorithms [8–10] use only single shallow modal-

ty features to annotate images. In these algorithms, shallow fea-

ure vectors are usually extracted from the input image by us-

ng human-design descriptors such as local binary patterns (LBP)

11] and SIFT, to characterize a particular kind of information (e.g.,

exture, color, and shape). Generally, engineered shallow features

ave some advantages in classifying simple geospatial objects such

s the sea, or airports [12,13] . They often have data dependency

roblems and have limited performances in classifying some com-

lex geospatial objects. Seeing the two result images on the right

f Fig. 1 . Some shallow feature fusion based algorithms [14–17] ,

ay improve image annotation accuracy. But combinations of shal-

ow modality features do not result in a good intrinsic semantic

epresentation of geographic images. It is difficult to effectively im-

rove the performance of geographic image annotation. 

Recently deep-modality feature based algorithms such as Deep

onvolutional Neural Networks (DCNNs) dominate the top accu-

acy benchmarks of various application [5,7,18,19] . These algo-

ithms are able to generate robust generic and hierarchical deep

eatures, and have advantages in classifying complex geographic

mages. However, they are not well-suited for all kinds of geo-

raphic images (see the evidence shown in the first row of Fig. 1 ).

his may due to: 1) an invariance with regard to spatial transfor-

ation inherently limits the spatial accuracy [20] , leading to a rel-

tively weak abilities to capture the fine details required by ge-

http://dx.doi.org/10.1016/j.patcog.2017.06.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.06.036&domain=pdf
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Fig. 1. Geographic images (left), their feature maps of shallow and deep modality (middle), and the corresponding annotation results (right); annotation errors are marked 

in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Flowchart of our multi-modal feature based image representation. See the text in Section 3 for details. 
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ographic image annotation; and 2) most existing approaches use

only single-modality features to generate image representations,

which is unsuitable for geographic image data as single modal-

ity features are unable to reflect all the various characteristics of

a spatial object. 

The annotation task examined in this paper is to automatically

label superpixels segmented from geographic input images into

semantic labels, such as building, road, or river. A novel, multi-

modal feature fusion based framework is prosed to obtain an effec-

tive representation for each superpixel annotation. The framework

consists of four sequential modules ( Fig. 2 ): 1) a double-channel

(including both shallow and deep modality) based, low-level fea-

ture extraction; 2) a mid-level feature construction within a su-

perpixel; 3) a deep belief network (DBN) based high-level feature

learning; and, 4) a restricted Boltzmann machine based (RBM) fea-

ture fusion. The four modules form a multi-modal feature evolu-

tion flow in a bottom-up structure, which combines the strengths

of shallow and deep modality features. The experimental results in

Section 4 show that the framework mines deep, nonlinear, correla-

 

 

ions between deep and shallow modalities and provide a comple-

entary enhancement for each individual modality feature. 

To summarize, by analyzing the strengths and weaknesses of

eep and shallow modality features, our work offers an effective

olution for the problem of geographic image annotation by taking

 multi-modal feature fusion. Our contributions mainly include: 

(1) Multi-modal feature construction : as for the shallow

modality features, we propose a mixed shallow feature

model which combines Color, LBP, and SIFT features to rep-

resent the extrinsic visual properties of geographic images;

as for the deep modality features, we design a specialized

DCNN to extract the intrinsic semantic information for geo-

graphic images. 

(2) Multi-modal feature fusion : we propose a multi-modal fea-

ture fusion model based on DBNs and RBM to build a pow-

erful joint representation for geographic images. The model

has been shown to be effective to capture both the intrinsic

and extrinsic semantic information. 

(3) Open geographic image annotation benchmark dataset :

we have built a geographic image annotation benchmark
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dataset named as GeographicImages60CM300, which con-

tains 300 images (600 × 600) in six typical areas such as

urban, rural, and mountain. We will make this benchmark

dataset, as well as our implementation, public available to

support the researches in related field. 

. Related work 

A wide variety of methods have been used to investigate im-

ge annotation in recent years. Appropriate representation of ge-

graphic images is the most crucial factor for this problem. This

ection revisits works related to geographic image annotation. They

re grouped according to the manner in which geographic images

re represented. 

.1. Shallow modality feature based algorithms 

Several shallow-modality feature based algorithms solutions

ave been proposed for the geographic image annotation problem.

or instance, Luo et al. [21] performed geographic image annotation

sing Color and HOG. Sirmacek et al. [22] presented urban areas

nd buildings using the SIFT feature. Grabner et al. [23] proposed

o detect vehicles from geographic images using HOG and LBP fea-

ures. Wang et al. [24] employed the Gabor feature and stacked

pectral features to perform hyperspectral image classification. The

ommon feature of these methods is that they directly use one, or

wo, kinds of extrinsic visual properties to represent the geospa-

ial objects, without involving a training process. These methods

ay obtain a good result on some kinds of simple geospatial ob-

ects. For example, Luo et al. [21] achieve a very good annotation

ccuracy of the “sea” in geographic images. They are usually not

owerful for a broad range of geospatial objects. 

.2. Deep modality feature based algorithms 

Algorithms utilizing DCNNs to represent geographic images

ave been used for annotation. Farabet et al. [25] propose using

 multi-scale convolutional network combined with a conditional

andom fields (CRF) model to parse the images. Yue et al. [26] used

he algorithm to preform hyperspectral image classification by us-

ng a logistic regression classifier on spectral and spatial feature

aps. It obtains the feature maps using a classic CNN. The meth-

ds in [27,28] are to detect vehicles from high-resolution images

y using hybrid CNNs frameworks which are capable of extract-

ng multi-scale features. Generally, deep-modality feature based al-

orithms have better annotation accuracy compared to shallow-

eature based ones on a larger range of geospatial objects. This is

articularly true for complex geographic scenes, or objects, such as

uildings. Their performances on some simple geographic scenes,

n the other hand, are less than ideal (See the Fig. 12 (c)). 

.3. Feature fusion based algorithms 

There are also some other frameworks which combine/fuse sev-

ral features to improve the performance of geographic image an-

otation. For example, Zhang et al. [16] and Tuia et al. [17] concate-

ated multiple features by employing a vector-stacking (VS) strat-

gy to provide the data required by the classifier for geospatial

bjects. VS is simple to execute and has a potential to enhance

he discrimination between similar geospatial objects [29] . It does

ot mine deep correlations of various features very well. To over-

ome this limitation, research in [30,31] proposed using a frame-

ork based on a combination of deep Boltzmann machines (DBM)

nd RBM to learn an image representation over multiple modal-

ty features. It first employs DBM to learn multi-modal features

rom unlabeled data and then uses RBM to find a common space
epresentation for different input modalities. In addition to the

BM+RBM framework, joint spare coding [32,33] and auto-encoder

34] are also popular tools for multi-modal feature fusion. 

Multi-view learning methods [35,36] are used to fuse different

inds of features in application scenarios including image classi-

cation and face recognition. The key idea of multi-view learn-

ng methods and multi-modal fusion methods is to embed inputs

rom different domains into a new latent common space, which

an then better mine non-linear correlations of different represen-

ations. 

.4. Geographic image annotation based algorithms 

Geographic image annotation is usually carried out in feature

pace. Effective f eature representation is very important to con-

truct high-performance image annotation systems. Recently con-

iderable effort s have been made to develop various feature rep-

esentations to annotate different types of objects in satellite and

erial images such as color, Haar, SIFT, LBP, or HOG. Porway et al.

37] combined color and edge features with object-level features

n a hierarchical contextual model for geospatial image annota-

ion. Markususe et al. [38] applied AdaBoost classifications based

n Haar, and Textons features for semantic labelling on the IS-

RS benchmark. Cheriyadat et al. [39] used SIFT feature and graph

parse coding algorithm to annotate geospatial objects in aerial

mages. Kembhavi et al. [40] used multi-scale HOG features com-

uted to annotate vehicles in San Francisco images from Google

arth, and showed HOG to outperform SIFT in complex city envi-

onments. Grabner et al. [23] used boosting methods based on LBP

nd HOG to detect vehicles. 

When only a small training set is available, using engineered

hallow features and traditional classifiers is a reasonable ap-

roach. But if there are large numbers of samples for each class,

earning the deep features from the training samples is more ad-

isable. Deep Learning is currently fashionable for automatically

earning robust features from the raw data. Chen et al. [41] relied

n stacked autoencoders, trained to reconstruct PCA-compressed

yperspectral signals. The network is then fine-tuned by backprop-

gating errors from a softmax loss on top of the stacked autoen-

oders. Both Castelluccio et al. [42] and Marmanis et al. [43] fine-

uned pre-trained CNNs to annotate geospatial images. Paisitkri-

ngkrai et al. [44] proposed a system based on CNNs trained on

he Vaihingen challenge data set to perform semantic labeling.

NN potential is clearly shown by combining the features extracted

rom the CNN with random forest classifiers, standard appearance

escriptors, and conditional random fields, performing structured

rediction on the probabilities given by the classifier. Sherrah et al.

45] using a deep FCN with no downsampling to annotate high-

esolution aerial imagery on a Vaihingen challenge data set, elimi-

ating the need for either deconvolution, or interpolation. 

Although many techniques have performed well in geographic

mage annotation, there is yet room for improvement. That is: 1)

ost prior algorithms only leverage partial information about geo-

raphic images, either shallow features or deep features, for anno-

ation; and 2) most existing multi-modal fusion models are ineffec-

ive in discovering highly nonlinear relationships between features

cross different modalities due to their relatively simple model

tructures. 

The proposed framework is different from present methods as

t utilizes both shallow and deep modality features to annotate.

his framework has the advantages of both the shallow and deep

odality based algorithms. Specifically, the shallow modality fea-

ure channel in our framework combines SIFT, Color and LBP fea-

ures which encode a complete extrinsic semantic information (in-

luding local invariant, color, and texture information) of an im-

ge; the deep modality feature channel use a powerful DCNNs to
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capture abundant intrinsic semantic information. The two-channel

(extrinsic and intrinsic) semantic information provides sufficient

discrimination power for ensuring good annotation results. Com-

pared to previous fusion model, feature fusion is addressed by

combining RBM and DBNs to deeply fuse the dual-channel se-

mantic information. RBM which learns feature representation in

an unsupervised manner and has demonstrated to be promising

in building high-level feature descriptors is used to discovers the

nonlinear correlations between the deep, and shallow, modality

features. More importantly, noise interference such as weather, il-

lumination intensity, and building shadows usually result in many

missing values in geospatial images. Probabilistic model based RBM

can handle the problem of missing values and generate samples in

a natural way [36] . 

3. Multi-modal feature based image representation and image 

annotation 

As illustrated in Fig. 2 , for an input image I , we first use the lin-

ear iterative clustering (SLIC) algorithm [46] to segment I into a

set of superpixels S . For each superpixel S i ∈ S, we utilize a shal-

low modality channel and a deep modality channel to respectively

extract shallow features V S and deep features V D . We then employ

a RBM model to generate the final representation of S i by fusing V S 

and V D . In our framework both shallow features and deep features

are achieved by a feature evolution process which is formed by

three sequential modules for low-level, mid-level, and high-level

feature extraction, respectively. The shallow features V S encode the

extrinsic visual properties of a geographic image, whereas the deep

features V D encode the intrinsic semantic information. The two

mutually complementary sets of features are fused together as the

final representation V J of S i . We next describe individual modules

of the proposed framework. 

3.1. Shallow modality feature 

The generation of V S contains three sequential steps. We first

extract multiple types of low-level features including the LBP, SIFT,

and Color features for each pixel of the input image I ; and then we

generate a mid-level feature vector V 

m 

S for each super-pixel S i by

integrating the low-level features of all the pixels within S i ; lastly

we use DBNs model to further construct a high level feature vector

V S from V 

m 

S for each super-pixel S i . 

3.1.1. Low-level shallow feature 

SIFT Feature : SIFT is an image descriptor for image-based

matching and recognition developed by Lowe [2] , which is widely

used for various purposes in computer vision related to point

matching between different views of a 3-D scene and view-based

object recognition. The original formulation of SIFT comprised a

method for detecting interest points from a grey-level image at

which statistics of local gradient directions of image intensities

were accumulated to give a summarizing description of the lo-

cal image structures in a local neighborhood around each interest

point. The extended dense SIFT is a descriptor applied at dense

grids rather than detected interest points. Dense SIFT has been

shown to lead to better performance for various tasks such as

object categorization, texture classification, image alignment and

biometrics. In this paper, we use the dense SIFT implemented in

[47] to extract the SIFT feature of each pixel, i.e., the SIFT feature

of a pixel p is extracted using p as the key-point. In our implemen-

tation, the width in pixels of a spatial bin is set to 2 and we obtain

a 128 dimensional feature vector f 
s 
p for a given pixel p . 

LBP Feature : The LBP operator [48] has been widely used in

various applications. It has been proven to be highly discriminative

and has the advantages of invariance w.r.t. monotonic gray-level
hanges and computational efficiency. LBP has been found improv-

ng the detection performance considerably when it is combined

ith some other local image gradient based descriptors [49] . This

otivated us to combine LBP with the SIFT descriptor to construct

he low-level local feature around points of interests. Similar with

48] , we compare each pixel of the input image to each of its 8

eighbors along a clockwise circle and generate a 8-digit binary

umber, and then use this 8-digit binary number (corresponding to

 decimal number within 0–255) as the low-level feature of each

ixel. 

Color Feature : Color feature is an important feature in geo-

raphic images. Both SIFT and LBP features are extracted from gray

mages and do not encode any color information. Color features

an be a strong supplement to represent some typical objects re-

ated to some special colors in geographic images, e.g., blue sea or

reen forest. In our method, we obtain the low-level color feature

n each pixel p as the following steps: 1) convert the RGB space of

he input image I to the l αβ space; 2) normalize the color value of

 in each channel of l αβ between [0, 1]; and 3) use the normal-

zed color values as the three demesnial low-level color feature of

he pixel. 

.1.2. Mid-level shallow feature 

All the above three types of low-level features are defined at

ixel-level, which describe either a single pixel or a relatively small

eighborhood surrounding a center pixel. They often cannot pro-

ide sufficient semantic characteristics required by the annota-

ion task. Therefore, it is necessary to construct higher level fea-

ures from the low-level features of individual pixels to represent

he segmented superpixels. Our mid-level feature descriptor is de-

igned to fulfill this objective, which characterizes the local image

ontent within each super-pixel. For a super-pixel S i in the input

mage I , we generate its mid-level feature vector V 

m 

S by concatenat-

ng three feature vectors F s S i 
, F l S i 

, and F c S i 
, i.e., the mid-level shallow

eature vector of S i has the following form: 

 

m 

S = [ F s S i , F 
l 
S i 
, F c S i ] , (1)

here F s S i 
, F l S i 

, and F c S i 
are respectively extracted from the low-level

IFT, LBP, and color features of all the pixels within S i . 

In Eq. (1) , F s S i 
is computed by the L 2 normalization of the aver-

ge of the SIFT feature vectors of all the N S i 
pixels within S i , having

he following formulation: 

 

s 
S i 

= ‖ 

∑ 

p∈ S i 
f 

s 
p / N S i ‖ 2 . (2)

 

s 
S i 

has the same number of dimensions as the low-level SIFT vec-

or f 
s 
p of pixel p (128D). The second feature component F l S i 

is ob-

ained by computing the histogram, over the super-pixel S i , of the

requency of each number (8-digit binary number) in the low-level

BP features occurring. The initial vector of F l S i 
created from the

tatistic histogram has 256 dimensions since there are 256 types of

-digit binary numbers in total in the LBP features. In our imple-

entation, after obtaining the 256 dimensional initial vector, we

dopt the principal components analysis algorithm (PCA) [50] to

educe the initial 256 dimensional-vector to a more compact 80-

imensional feature vector. The final vector F l S i 
is the L 2 normal-

zation of the 80 dimensional feature vector. The last feature com-

onent F c S i 
is related to the statistic histogram, in terms of color

hannel, of the low-level color features of all the pixels within S i .

pecifically, for each channel of all the color features, we quan-

ize the normalized values into 25 bins. We generate a 75 bin his-

ogram by concatenating the histograms from three channels. The

 2 normalization of this 75-dimensional vector forms the vector

 

c 
S . 
i 
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Fig. 3. DBNs architecture for the high-level shallow features. 
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Algorithm 1 Pre-train RBM model. 

Input: Sample a minibatch of M examples from the training set 

v (1) , ..., v (M) ; 

Output: model parameters � = { θ1 , θ2 , . . . , θK } ; 
Parameters: learning rate η, momentum α; 

initialize � (see text for details); 

for t = 1 , . . . , T do 

for v + = v (1) , ..., v (M) do 

compute hidden unit h + = sigmoid( W v + + a ) ;
compute visible unit v _ = sigmoid( W 

� h + + b ) ;
compute hidden unit h _ = sigmoid( W v _ + a ) ;
compute CD-1 gradients �θ(t) : 

�W = CD ( v � h ) , �a = CD ( h ) , �b = CD ( v ) ;

add momentum � ˆ θ (t) 
k 

= �θ(t) 
k 

+ α�θ(t−1) 
k 

adjust model θk = θk + η/Size batch � ˆ θ (t) 
k 

, k = 1 . . . K 

end for 

end for 
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.1.3. High-level shallow feature 

Many works on DBNs [51,52] have shown that it is possible to

apture high-level non-linear features via multiple-layer network

ithout labeled data. In order to express extrinsic visual informa-

ion of geospatial image sufficiently, we therefore employ the DBNs

odel to further construct high-level shallow features from the

id-level shallow features. 

Our DBNs is a deep belief network of three layers with archi-

ecture shown in Fig. 3 . The bottom layer is the input layer with

aussian visible units and connects to the second layer of Sigmoid

idden units. These two layers are composed of Gaussian restricted

oltzmann machines (GRBMs) and restricted Boltzmann machines

RBMs). The two models [53,54] are defined as: 

RBM( v , h ; θ ) = 

D ∑ 

i =1 

(v i − a i ) 
2 

2 σ 2 
i 

−
D ∑ 

i =1 

F ∑ 

j=1 

v i 
σi 

w i j h j −
F ∑ 

j=1 

b j h j . (3) 

BM( v , h ; θ ) = −
D ∑ 

i =1 

F ∑ 

j=1 

v i w i j h j −
D ∑ 

i =1 

a i v i −
D ∑ 

i =1 

b j h i (4) 

here v is visible units ( v ∈ R 

D in GRBM and v ∈ { 0 , 1 } D in RBM),

i is adopted to model the variation of visible unit i , which is ob-

ained through analyzing the distribution of the input data, and

 ∈ { 0 , 1 } F is stochastic hidden units, with each visible unit con-

ected to each hidden unit. θ = { a , b , W } are the model parame-

ers. w i j represents the symmetric interaction between visible unit

 i and hidden unit h j , b i and a j are the biases, and D and F are the

umbers of visible and hidden units. 

We propose to train a separate GRBM for each of the three

ypes of middle-level features (i.e., F c S i 
, F l S i 

, and F s S i 
). This enables

s to reduce not only the number of free parameters but also the

omputational cost for training. The output of the GRBMs are con-

atenated to form the input to the next layer, which is a single

BM with Sigmoid units in both layers (210 inputs and 150 out-

uts for the case in Fig 3 ). The output of the last layer is used as

he high-level shallow feature V S . 

We pre-train the DBNs model greedily in a layer-by-layer man-

er. In our work, GRBM or RBM is trained by contrastive diver-

ence (CD) [55] , the detailed algorithm process is described in

lgorithm 1 . The core part is to compute the gradient of likeli-

ood by 1-step contrastive divergence (CD-1), which uses Gibbs

ampling to approximate the intractable true gradient. Specifically,

hen given a number of samples for the input layer v + , we sim-

late the model for 1.5 cycles and collect activation of visible and

idden units h + , h _ , and v _ for the first and last upward half-cycle.

In our implementation, we set the bias on the hidden units to

ero, and the batch size Size batch is 100. To accelerate learning, we

dd momentum to the gradient with α = 0 . 5 . The global learning

ate η is 0.1 for Gaussian-RBMs and a much smaller rate of η =
 . 05 for the top-level RBM. The training generally converges in T =
0 0 0 epochs. 
.2. Deep modality feature 

The generation of the deep modality feature V D contains three

equential phrases similar to the shallow modality feature V S . Fig. 4

ives a detailed illustration on the construction of the deep modal-

ty feature. That is, the process starts from a classic convolutional

eural network where low-level hierarchies of deep feature (maps)

re extracted across various layers of the network. In the succeed-

ng phase, sets of selected deep feature maps, after up scaled to

he same size as the input image I , are accumulated and statistics

re further made to generate a middle-level summary of the deep

eatures within the spatial ranges corresponding to each super-

ixel S i . In the last phase, DBNs is employed to extract more

oncentrated and representative high-level deep features from the

iddle-level deep features. 

.2.1. Low-level hierarchical deep feature 

Good deep modality features can represent intrinsic hierarchical

nformation of image [25] . To achieve a rich hierarchical semantic

epresentation of a geographic image, we employ the CNNs to per-

orm the low-level deep modality feature extraction. In a typical

eep CNN network for image presentation, the network is usually

rained with multiple stages. The input and output of each stage

re sets of arrays called feature maps. The output feature map is

reated as a further abstraction of the input feature map. As shown

n Fig. 4 (a), each stage often contains four parts: convolutional op-

ration ( ∗ operator), non-linearity transformation such as sigmoid

unction or ReLU function, local response normalization ( LRN oper-

tor) and feature pooling ( pool operator). 

In order to balance the quality of the features and the effi-

iency, we only select the outputs from partial layers to produce

he geospatial image descriptors. In our work, the low-level hier-

rchical deep feature consists of the feature maps of Pool2, Conv4,

nd Pool5 layers. Let F i , P j be the feature maps of convolutional

nd pool layers, separately, where i ∈ { 1 , . . . , 5 } and j ∈ {1, 2, 5}, so

he feature maps of Pool2, Conv4, and Pool5 layers can be obtained

y: 

 2 = pool(LRN(ReLU(W 2 ∗ P 1 + b 2 ))) (5) 

 4 = ReLU(W 4 ∗ F 3 + b 4 ) (6) 

 5 = pool(ReLU(W 5 ∗ F 4 + b 5 )) (7) 
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Fig. 4. Our CNN architecture for deep modality feature learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

V  

w  

f

3

 

D  

d  

w  

G  

f  

s  

j  

t  

w  

d  

p  

S  

p

3

 

w  

T  

c  

T  

s  

p

 

i  

i  

p  

t

where b l is the bias parameter, W l is the convolutional kernel,

l ∈ {2, 4, 5}. 

We pre-train the CNNs on our geospatial image dataset using

image-level annotations only. Our CNNs architecture is similar to

the Alex network [19] , However, to adapt our CNNs to the geospa-

tial object annotation, we adjust the parameters of CNNs. The de-

tails of architecture are introduced as follows: 

The input geospatial image size is 300 × 300, and we continue

stochastic gradient descent (SGD) training of the CNN parameters.

The mini-batch size is 30, and the initial learning rate is 0.0 0 06.

We train 45K iterations and replace the ImageNet specific 10 0 0-

way classification layer with a randomly initialized 7-way classifi-

cation layer (where 6 is the number of geospatial object classes,

plus 1 for background). 

As shown in Fig. 4 , there are five convolutional layers, the

parameter configuration of each convolutional layer can be de-

scribed concisely by layer notations with layer sizes: Conv1 (patch

size/stride: 5 × 5/4; Feature Map: 75 × 75 × 96); Conv2 (patch

size/stride: 5 × 5/1; Feature Map: 37 × 37 × 256); Conv3 (patch

size/stride: 3 × 3/1; Feature Map: 18 × 18 × 384); Conv4 (patch

size/stride: 3 × 3/1; Feature Map: 18 × 18 × 384); Conv5 (patch

size/stride: 3 × 3/1; Feature Map: 18 × 18 × 256). The max-pooling

layers [19,56] follow the first, second and fifth convolutional layers,

which summarize the activities of local patches of neurons in con-

volutional layers. All the pooling layers summarize a 3 × 3 neigh-

borhood and use a stride of 2. 

3.2.2. Mid-level hierarchical deep feature construction 

We utilize two steps to generate a superpixel-level hierarchi-

cal deep feature descriptor from the middle level shallow features,

which is shown in Fig. 4 (b). First, after all the feature maps of all

layers in the low level deep feature extractor CNNs are generated,

we upscale the feature maps of Pool2, Conv4, and Pool5 layers to

the same size as input image and then concatenate them to pro-

duce a three dimensional arrays O ∈ R 

H×W ×N , where the three di-

mensions are respectively the height of images H , the width of im-

ages W , and the number of feature maps N . 

Therefore, for a pixel p in the input image, we obtain a repre-

sentative feature vector denoted as O p ∈ R 

N ( N = 896 in our work).

In the second step, for a super-pixel S i in the input image I , we

compute the mid-level feature vector V 

m 

D by the L 2 normalization

of the average of the feature vectors O p of all the N S i 
pixels within
P  
 i , having the following formulation: 

 

m 

D = 

∥∥∥∥∥
∑ 

p∈ S i 
O p / N S i 

∥∥∥∥∥
2 

(8)

here V 

m 

D has the same dimension length as the hierarchical deep

eature vector O p of pixel p . 

.2.3. High-level hierarchical deep feature construction 

Similar as the shallow modality channel, we still employ the

BNs to construct high-level deep features from the middle-level

eep features. The architecture of our DBNs is illustrated as Fig. 5 ,

hich is a six-layer model. The bottom most two layers compose a

aussian RBM which encodes the three kinds of middle-level deep

eatures with the hidden layer activities. The output of these Gaus-

ian RBMs are concatenated as the input to the next layer, which is

ust a single RBM with Sigmoid units in both layers. The output of

his single RBM is further used as the input of three stacked RBMs

hich are used to boost the discrimination ability as well as re-

uce the redundant information of hierarchical deep features. We

re-train the parameters of the DBNs using the similar steps as

ection 3.1.3 . The final extracted higher-level features V D are out-

utted from the last layer and have 400 dimensions. 

.3. Multi-modal feature fusion and annotation 

We fuse the two modality high level features by a RBM model

ith a single layer network with architecture shown in Fig. 2 (d).

he input of RBM model is a 550-dimensional feature vector con-

entrating V S and V D , the joint layer contains 420 hidden units.

he parameters of the model are also pre-trained using the similar

teps as Algorithm 1 . Our multi-modal feature fusion model finally

roduces a 420-dimensional feature V J . 

After obtaining V J , we perform one-versus-all annotation by us-

ng softmax regression. For any superpixel S i , let ˆ P S i be the normal-

zed prediction vector, and then we compute normalized predicted

robability distributions ˆ P S i ,a of class a by using the softmax func-

ion. More specifically, 

ˆ 
 S i ,a = 

e W 

T 
a V J 

∑ 

i ∈ classes e 
W 

T 
i , V J 

(9)
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Fig. 5. DBNs architecture for the high-level deep features. 

Fig. 6. Examples of the geographic images in our dataset. There are six typical labels (areas) in total for the pixels of the geographic images in the dataset. 
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here W is a temporary weight matrix used to learn the features.

or each superpixel S i , the final annotation label l S i is given by 

 S i = arg max 
a ∈ classes 

ˆ P S i ,a . (10) 

. Experiments 

Two data-sets and several experiments are conducted to eval-

ate the performance of the presented framework in comparison

ith baseline methods, which use different single-modality fea-

ures. The parameters of each method were tuned for best per-

ormances. The evaluation metrics used include Average Precision

AP) for image annotation, Standard Deviation (std), and Wilcoxon

ank Sum test [57] . A deep learning toolbox 1 was implemented in

hich all matrix operations were carried out on a GPU with cud-

mat library. All experiments were conducted on a computer with

6 GB memory and Intel i7 processor. 

.1. Geographic image datasets 

GeographicImages60CM300 . This is a fabricated dataset that

ontains 300 geographic images collected from Google Map with

0-cm resolution. Each image has a resolution of 60 0 × 60 0 pixels.

ach superpixel level geo-spatial object for all the collected geo-

raphic images was labeled. Fig. 7 describes the geographic image

nnotation procedure. Each geographic image was over-segmented

sing a SLIC algorithm [46]. To generate ground truth labeling data,

he outline of each object is traced manually using an in-house de-

eloped interactive tool, based on which the label for each super-

ixel was inferred automatically. As shown in Fig. 6 , six semantic
1 http://www.adv- ci.com/blog/source/deepnet- cuda/ . 

 

s  

a  
abels are used, which are urban residential, rural residential, river-

ne, farm land, waste land, forest, and mountain. 

ISPRS benchmark . The second dataset used ISPRS 2D Semantic

abeling-Vaihingen dataset [58] . The Vaihingen dataset contains 33

ery high-resolution true ortho photo (TOP) tiles, varying in size

rom 1388 × 2555 to 3816 × 2550, and corresponding digital

urface models (DSMs) derived from dense image matching tech-

iques. Pixel-level semantic labels, for the 6 categories: “impervi-

us surface”, “building”, “low vegetation”, “tree”, “car”, and “clut-

er”, are available for 16 images. The labels of the remaining im-

ges serve as private testing set for the contest. To date, April, 2017,

ore than 60 algorithms have reported their results. 

The experiments presented below first use the GeographicIm-

ges60CM300 dataset to tune and evaluate the feature-extraction

rchitecture. The performance comparisons are then conducted on

oth GeographicImages60CM300 and ISPRS 2D Semantic Labeling-

aihingen datasets. 

.2. Architecture evaluation 

.2.1. Shallow feature combination 

This set of experiments were designed to get the best combi-

ation of shallow features. Five feature types containing SIFT, GIST,

olor, LBP, and Gabor from geographic images which express color,

exture, and edge information in images were extracted. Ten sets of

xperiments using different feature combinations of the five shal-

ow features were performed. As shown in Fig. 8 (a), the image rep-

esentation used the architecture named MSMF. It is a substructure

f the framework shown in Fig. 2 . 

The feature combination results are plotted in Fig. 9 , which

how that, among all the two-feature combinations, Color and LBP

nnotation accuracies are the two best which suggests that Color

http://www.adv-ci.com/blog/source/deepnet-cuda/
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Fig. 7. The procedure for ground-truth data generation. 

Fig. 8. Different architectures for image representation. Architectures (a–d) are four different sub-structures of the architecture in Fig. 2 . 

Fig. 9. Annotation accuracies of various combinations of shallow features. 
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Table 1 

Annotation accuracies by different CNN architectures. 

Bold values indicate maximum performance. 

Feature representations Mean acc. Std acc. 

Conv1, 2, 3, 4, 5 74.464% ± 2.28% 

Conv3, 4, 5 74.663% ± 2.77% 

Pooling1, 2, 5 75.519% ± 2.28% 

Conv4, 5; Pooling1, 2, 5 75.237% ± 3.03% 

Conv4, 5; Pooling2, 5 75.099% ± 2.29% 

Conv4; Pooling1, 2, 5 76.102% ± 2.44% 

Conv4; Pooling2, 5 77.257% ± 2.58% 
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Table 2 

Annotation accuracies by different architecture 

for feature extraction. 

Architecture type Mean acc. Std acc. 

MSMF 61.17% ± 2.86% 

HSMF 62.864% ± 2.79% 

MDMF 77.257% ± 2.58% 

HDMF 79.233% ± 2.62% 

MFF 82.019% ± 2.44% 

Table 3 

Annotation accuracies by different high-level modality feature representations. 

HSMF HDMF MFF 

Building 51.7% ± 4.04% 69.2% ± 2.39% 78.8% ± 1.52% 

River 81.5% ± 2.39% 89.6% ± 2.36% 88.3% ± 2.17% 

Road 59.5% ± 1.08% 83.8% ± 2.77% 82.7% ± 2.72% 

Waste Land 56.5% ± 3.19% 82.5% ± 2.34% 82.8% ± 1.91% 

Fram Land 68.7% ± 2.03% 72.0% ± 3.15% 79.1% ± 3.09% 

Forest 59.3% ± 3.98% 78.3% ± 2.65% 80.4% ± 3.26% 

Mean Acc.(Std Acc) 62.9% ± 2.79% 79.2% ± 2.62% 82.0% ± 2.44% 

Table 4 

Wilcoxon test for image annotation experiment. A positive value indicates the 

fusion feature outperforms a single modality feature. Negative values indicate 

that fusion feature does not perform significantly better. 

MFF 

Building River Road Waste Land Farm Land Forest 

HSMF 1 −1 1 1 1 1 

HDMF 1 −1 −1 −1 1 −1 
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nd LBP are complementary. Another interesting finding is that the

ombination of SIFT, LBP, and Color features, rather than the one

ontaining all the four types of features, achieved the best perfor-

ance. Hence, this three-feature combination is used in our algo-

ithm as the architecture low level shallow feature extractor. 

.2.2. Deep feature combination 

This set of experiments were designed to get the best CNN ar-

hitecture for deep features. CNNs models in Fig. 4 (a) using dif-

erent network settings were independently evaluated. Eight-layer

eature maps including Conv1, 2, 3, 4, 5, and Pooling1, 2, 5 layers

or each superpiexl segmentation were extracted. The experiments

sing six types of feature map combinations. The image represen-

ation used the architecture named MDMF Fig 8 (b). 

Four thousand 30 0 × 30 0 image were used to train the CNNN

odels. These training images were generated in two ways. In the

rst method, one part (20 0 0 30 0 × 300) came from Google maps.

n the second method was extracted from the geographic image

ataset (about 10 overlapped sub-images were extracted from each

eographic image). A classifier was built by connecting a softmax

egression to the CNNs models to perform the annotations under

ifferent CNNs architectures. In each evaluation, the classifier was

rained on a random sampling of 85% samples for each category of

he dataset and was tested on the rest of the samples. The results

n Table 1 summarize the mean accuracies for all the evaluations. 

Results in previous subsection ( Fig. 9 ) show that most shallow

eature combination schemes have an accuracy of less than 60%.

n comparison, the accuracy achieved by the deep feature combi-

ations has about 20% improvement; see Table 1 . The accuracies of

arious combinations of deep features are close and around 75%.

he feature combination of Conv4, Pooling2 and 5 layers achieved

he best annotation accuracy of 77.257%. Lower CNN layers such as

onv1, 2 capture low-level features such as oriented edges and col-

rs information. The higher layers such as Conv4 and Conv5 cap-

ure high-level semantic features. Based on these comparison re-

ults ( Table 1 ), a deep feature extractor combining Conv4, Pooling2

nd 5 layers was constructed. 

.2.3. DBNs architecture 

DBNs architecture . DBNs’ perfromances are usually relevant to

ts architecture [53] . Several sets of experiments which tried dif-

erent architectures of the DBNs for both shallow and deep modal-

ty channels were performed to study how the number of RBM

ayers in DBNs affects annotation accuracy. These experiments are

onducted using the framework appearing in Fig. 2 . For the deep

odality channel, we fixed the DBNs for the shallow modality

hannel and tried four architectures: 3, 4, 5 and 6 for the RBM

ayer number, respectively. Fig. 10 (a) shows the annotation results

roduced by these architectures. A small number of RBM layers

enerally leads to lower annotation accuracies. A large number of

BM layers (such as six layers) tend to over-fitting. DBNs was fixed

o a deep modality channel and tried 2, 3, and 4 RBM layers to

une DBNs architecture in the shallow modality channel. Fig. 10 (b)
hows the corresponding results. Based on these experimental re-

ults, deep modality channels were set at 5 RBM layers and the

BNs in the shallow modality channel as 2 RBM layers. After all

he above experiments, optimal parameter/architecture settings for

ll the modules in Fig. 2 were established. For both shallow and

eep modality, as the iteration number increases, annotation pre-

ision increases gradually, and the training generally converges in

0 0 0 epochs. Next the annotation performances of the different

mage representation schemes were compared. 

.2.4. Architecture comparison 

To evaluate the multi-modal feature fusion scheme, five sets of

xperiments were designed. In the first experiment, the annota-

ion with the experimental setting used in the architecture shown

n Fig. 8 (a) was performed but only considered the combination of

IFT, LBP, and Color features (i.e., the experimental setting which

rchives the best annotation accuracy in Section 4.2.1 ). The sec-

nd to fourth experiments respectively used the MDMF, HSMF and

DMF features generated by the architecture in Fig. 8 (b), (c) and

d). The last experiment used the fused multi-modality features

enerated by the architecture shown in Fig 2 (This architecture is

amed as MFF.). 

A high-level, single-modality, features-based scheme achieves

uperior performance to mid-level, single-modality features-based

nes ( Table 2 ). DBNs plays an important role in improving image

epresentation discrimination abilities. The proposed multi-modal 

eature fusion scheme achieves the best performance of all the five

ets of experiments. It may be that the joint feature representation,

hich extracts both intrinsic and extrinsic properties of the objects

n geographic images, discriminates strongly. 

Tables 3 and 4 list the annotation accuracies of three schemes

n a geographic image dataset. The results show that the pro-

osed multi-modality fusion scheme achieved much better anno-

ation performance than that using only single modality features

n most of the six categories. 
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Fig. 10. Comparison of annotation accuracies under different settings of the DBNs ( Fig. 2 (c)). 

Fig. 11. Annotation results produced by shallow feature combination, deep feature combination, and the proposed multi-modal on ISPRS benchmark. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Comparison of annotation accuracies with different methods on GeographicIm- 

ages60CM300 dataset. 

MvDN FCN MFF 

Building 78.9% ± 3.29% 77.3% ± 4.03% 78.8% ± 1.52% 

River 88.8% ± 3.01% 80.3% ± 3.37% 88.3% ± 2.17% 

Road 60.4% ± 2.37% 60.2% ± 2.34% 82.7% ± 2.72% 

Waste Land 80.0% ± 2.59% 82.4% ± 3.83% 82.8% ± 1.91% 

Fram Land 96.1% ± 2.13% 90.9% ± 1.68% 79.1% ± 3.09% 

Forest 77.5% ± 3.28% 84.7% ± 2.33% 80.4% ± 3.26% 

Mean Acc.(Std Acc) 80.3% ± 2.78% 79.3% ± 2.93% 82.0% ± 2.44% 

4

 

f  

C  

m  

o  

P  

b  

a  

t  

c  

m

4.3. Comparison with existing approaches 

With the optimal framework determined, we now compare our

proposed multi-modal feature fusion based approach with existing

state-of-the-art techniques. 

4.3.1. GeographicImages60CM300 Results 

First, we compare the proposed multi-modal feature with two

state-of-the-art methods: MvDN [36] and FCN [59] on the Geo-

graphicImages60CM300 dataset. For MvDN [59] , mid-level shallow

feature (LBP, SIFT, and Color features) and mid-level deep feature

(Conv4; Pooling2, 5) as different views were used. For FCN [59] ,

the AlexNet network as pre-train network and fine-tuning on the

FCN network was used. The performances are measured by mean

average precision (mAP) and standard deviation (std) on the test

dataset. 

Table 5 shows the corresponding results, FCN achieves a mAP

of 79.2%. MvDN result is 80.3%. The proposed method achieves a

mAP of 82.0%, 2.8 points higher than FCN and 1.7 points higher

than MvDN. This may be due to the fusing of both deep and shal-

low features information, and mining correlations between high-

level features from both shallow, and deep, modalities. Using the

joint representation increases the intraclass similarity while reduc-

ing the interclass similarity. 
.3.2. ISPRS benchmark results 

On ISPRS benchmark, the proposed method was compared to

our other published state-of-the-art methods: Boost+CRF [38] ,

NN+CRF [44] , FCN [59] , and MvDN [36] . The annotation perfor-

ances of Boost+CRF, CNN+CRF, and FCN used the results posted

n the ISPRS website. MvDN had not yet been evaluated on IS-

RS benchmark. Its performance was computed by ISPRS organizer

ased on our implementation. It is worth mentioning that most of

nnotation results posted on ISPRS website are produced by using

wo different kinds of dataset consisting of geospatial images and

orresponding digital surface models (DSMs). All the comparison

ethods in this set of experiment only used geospatial images. 
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Fig. 12. Annotation results produced by HSMF, HDMF, and the proposed MFF on seven representative examples. Wrongly annotated pixels are marked in red. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 6 

Performance comparisons of five different methods in term of mAP on ISPRS bench- 

mark. 

Method Impsurf Building Lowveg Tree Car Overall 

MvDN [36] 87.5% 92.3% 71.0% 84.5% 67.3% 84.2% 

Boost + CRF [38] 82.1% 82.8% 71.6% 81.6% 51.9% 79.4% 

CNN + CRF [44] 82.9% 88.1% 67.1% 81.9% 53.5% 80.1% 

FCN [59] 86.8% 90.8% 73.0% 84.6% 42.2% 84.1% 

MFF 90.7% 94.4% 81.3% 88.2% 74.8% 88.7% 
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Table 6 shows the quantitative comparison results of five dif-

ferent methods. The proposed method outperforms all other ap-

proaches in terms of AP. Shallow and deep modality feature fu-

sion boosts annotation performances. Fig. 11 shows ISPRS bench-

mark annotation results. Column 1 contains the original geo-

graphic images. Columns 2–4 show annotation results using the

single-modality shallow features, single-modality deep features,

and the fused features. Clutter is better annotated by the shal-

low features than by deep features, which shows the advantage of

shallow modality features on simple geospatial objects and shal-

low modality features can provide complementary information for

deep modality features, ( Fig. 11 (b) and (c)). 

4.3.3. Qualitative analysis 

In Fig. 12 , the annotation results of 7 representative images in

our experiments are shown. Column 1 contains the original ge-

ographic images. Columns 2–4 show annotation results using re-

spectively HSMF, HDMF, and MFF features. and Column 5 is the

ground-truth. The visual results indicate that, for most superpixels

of examples, the annotations produced by using deep features are

more accurate than those generated by shallow features, and the

fused features achieves the best results. 

Specifically, river annotation results produced by HSMF have

very low accuracies. See Row 2 and Column 2 of Fig. 12 . All the

superpixels of the river were recognized as farm land because the

color of the river is very close to that of the farm land. However,

HSMF exceeds HDMF on the forest in Fig. 12 (f) and the lake (river)

in Fig. 12 (c), showing the advantages of shallow-modality features

on simple geospatial objects. This may result from the fact that

shallow features represent extrinsic visual properties of geographic

images. 

5. Conclusions and future work 

A novel multi-modal feature fusion method is presented in this

paper for learning a discriminative image representation for geo-

graphic image annotation tasks. The method contains two feature

extraction channels: one for shallow feature extraction, whereas

the other for deep feature extraction. Each channel has a low-

to-high level feature learning flow. It first extracts low-level fea-

tures, including shallow-modality features (SIFT, Color, and LBP)

and deep-modality features (CNNs) for each pixel of the input im-

age, then constructs mid-level features from the low-level features

of the individual pixels into superpixels. Finally it learns high-level

features from the mid-level features by using deep belief networks

(DBNs). A restricted boltzmann machine (RBM) is used to mine

correlations between high-level features from both shallow and

deep modalities. It produces the final representation for input ge-

ographic images to fuse high level shallow and deep features. 

By comprehensive experiments on various image representation

methods, the following conclusions are proposed: 

• single-modality deep feature based method can archive better

annotation accuracy than methods based on a single-modality

shallow feature combination for most geospatial objects; 
• methods based on multi-modal feature fusion can achieve bet-

ter performance than single-modality feature based method; 
• shallow features can be complementary to deep features. 

The aim of the proposed method is to fuse multi-modal fea-

ures for improving discriminative capability of extracted features.

patial relationships are not considered, and structural relations of

bjects in the image are not utilized. According to related research

orks [60,61] , through structural learning, the image parsing ac-

uracy can be improved. In the following research, adapting long

hort term memory (LSTM) was considered to learn structural re-

ationship of superpixel. That is, extracted features will be fused

nto high-dimensional features, from which the features for super-

ixels are computed through structural learning using a graphical

STM. 
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