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a b s t r a c t 

In this paper, we focus on the problem of similarity assessment of isometric 3D shapes, which is of great 

relevance in improving the effectiveness of retrieval tasks. We first present an effective shape represen- 

tation technique by proposing a partial aggregation model based on the bag-of-words paradigm. This 

technique can effectively encode our multiscale local features and has a good discriminatory ability. We 

then develop a parameter-free distance mapping approach to re-evaluate the similarity results based on 

intrinsic analysis of a well organized reciprocal k -nearest neighborhood graph. Different from the exist- 

ing methods which determine k manually and globally, the proposed method can automatically adjust 

k to a reliable local domain, which therefore ensures a more accurate similarity measurement. We fully 

study our shape representation technique and evaluate the performance of the proposed distance map- 

ping approach on several popular public shape benchmarks. Experiment results have demonstrated the 

state-of-the-art performance of our approach. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

The research and development of 3D modeling has resulted in

an increasing amount of 3D models in multiple fields including

multimedia, graphics, entertainment, design, manufacturing, and

so on. The content-based similarity assessment of 3D objects from

different classes has been being used in a number of established

and emerging fields. To distinguish inter-class shapes, a common

feature of existing methods is to employ descriptors that capture

the major characteristic of 3D objects. 

The similarity assessment of isometric non-rigid 3D shapes is a

challenging problem and it has attracted extensive attention from

the researchers. This challenge usually becomes much harder when

there exist intra-shape deformations caused by the factors such as

shape scaling and noises [7,24,25] . In the past few years, there has

been considerable research on global and local shape descriptors,

such as the global distance feature [9,12,18,31] , part-based feature

[1,41,44] and the keypoint based feature [2,10,28,38,42] . 
✩ This paper has been recommended for acceptance by Xiang Bai. 
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The keypoint and part based shape descriptors have recently

ttracted more attention due to their flexibility for partial shape

xpression, such as depth image [26,42] , manifold geometry

17,23,40] , and so on. The well-known bags-of-word (BOW) frame-

ork [19,20,22,29,37,48] , built on a collection of keypoint or patch

ased features, is usually employed to represent a shape. In par-

icular, the BOW model with soft assignment strategy is more pre-

erred and has demonstrated its advantages in many 2D and 3D

hape retrieval tasks [4,7,48] . The spatial information is a critical

ssue in improving the effectiveness of local descriptors and many

ersions of the spatial BOW model (e.g. the Hybrid BOW [20] )

ave been proposed based on the standard BOW model. Lately, Li

t al. [23] presented a multiscale shape context (MSC) feature com-

ined with a scale sensitive BOW model for the shape retrieval.

he BOW voting schemes in existing 3D shape retrieval methods

sually weight all vocabulary words undiscriminatingly and evenly

hen encoding each local feature, which would accumulate noises

rom cross-class objects and lead to lower accuracy. 

Recently, many context-sensitive methods have been proposed

o re-evaluate the similarity ranking [15,45–47] . This is because the

nitial similarity measurement usually suffers from noise due to in-

ppropriate features or distances (e.g. L 1 or L 2 ), which would leads

o inaccurate ranking results. Kontschieder et al. [16] proposed to

se a modified mutual-KNN (mKNN) graph for shape retrieval and

http://dx.doi.org/10.1016/j.patrec.2016.05.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.05.026&domain=pdf
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Fig. 1. The pipeline of this proposed approach. Our contribution mainly consist of two parts: (1) a shape representation framework built on improved partial aggregation 

model and MSC+ELDF feature, and (2) a distance mapping based similarity re-ranking algorithm. 
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lustering. Yang and Bai et al. studied a flow of algorithms for

imilarity learning [5,49,50] , including locally constraint diffusion

rocess (LCDP), graph transduction (GT), and tensor product graph

TPG). Among these algorithms, TPG [50] integrates the relations

f higher order than pairwise affinities into the diffusion process

nd obtain a good retrieval performance. However, it requires high

omputation and storage cost. In [13] , the authors carried out a

etailed comparison of the diffusion related similarity re-ranking

ethods and, on this basis, they proposed a new diffusion pro-

ess (DP) to propagate affinity on a k -nearest neighborhood (KNN)

raph. In [34] and [30] , the authors developed a new re-ranking

ethod (RLSim) by only using the rank list of each query and they

chieved a promising performance in improving retrieval accuracy.

ately, Bai et al. [3] suggested employing the neighbor set simi-

arity (NSS) for similarity re-ranking and Li et al. [23] presented a

etric mapping method for the re-ranking task. Existing similar-

ty re-ranking algorithms benefit from proper modeling and a well

rganized KNN graph. Although prior works have attained some

romising results, they can be further improved since they use a

redefined k in the KNN graph and therefore inevitably introduce

oises into the KNN list which further limits their performance. 

In this paper, we improve the problem of shape similarity as-

essment by two parts: an effective shape representation approach

nd a novel re-ranking technique. The flowchart of this paper is

llustrated in Fig. 1 . On the part of shape representation, we de-

elop a partial aggregation (PA) model on the works of Li et al.

23] and Bronstein et al. [7] . Unlike previous encoding methods

or 3D shape representation, our model aggregates local multiscale

eatures by considering both the scale and position information,

hich has shown a great performance improvement in experiment.

he novelty and advantage of PA is that it alleviates noise and en-

ances the spatial-sensitivity of local features. Moreover, we also

xtend MSC [23] and propose a new local descriptor that better

ts the problem of shape similarity assessment. 

On the part of re-ranking technique, we design a parameter-free

istance mapping method to discover the intra-class shapes based

n a reciprocal KNN graph. Specifically, our algorithm automati-

ally decides a local graph parameter k and therefore reduces the

ffect from the noises, which has not been addressed by previous

ork. We have fully evaluated our methods on different bench-

arks. The results show that our approach has achieved state-of-

he-art performance. 

The rest of this paper is organized as follows. Section 2 presents

ur feature extraction and partial aggregation model for shape rep-

esentation. Section 3 describes our distance mapping method for
e-ranking. Section 4 shows the results of our experiments, and

astly Section 5 draws conclusions. 

. Partial aggregation for shape representation 

Following the flowchart in Fig. 1 , we separate the proposed

hape representation method into two components: local feature

xtraction and feature encoding. For the first component, we

enerate keypoints and multiscale shape context (MSC) domain

ollowing [23] and create a more effective local feature. For the

econd component, we present a distinguished partial aggregation

odel for feature encoding. 

.1. Local feature extraction 

The multiscale property of MSC has enabled it to grasp different

o-occurrence information in each keypoint domain, which makes

he feature spatial sensitive and informative. Given shape X , a key-

oint set P ⊆ X is detected and a MSC feature is defined for each

eypoint x ∈ P

SC (x ) = (v l (x ) , r l ) τl=1 (1)

here τ denotes the number of scales and a domain is assigned

o scale l centered at x with radius r l . v l (x ) represents the feature

ector at scale l , which is defined as the histogram frequency of

he distances between x and the vertices in the ball domain. Then,

he resulting local features are used to represent shape X 

 (X ) = { MSC (x ) , x ∈ P} . (2)

Although some promising results were presented in [23] , the

etrieval accuracy of MSC is still unsatisfactory due to the limited

erformance of the adopted local distribution feature (LDF). As an

mprovement, we propose an extended LDF (ELDF) feature to de-

cribe the information at each scale 

¯
 

l (x ) = (v l (x ) , ξ l (x )) (3)

here ξ l ( x ) is defined as the distribution histogram of the heat

iffusion function δ( x , ·) to compensate for the information loss

f v l (x ) . We use B 1 , B 2 and B = B 1 + B 2 to represent the length of

 

l (x ) , ξ l ( x ) and v̄ l (x ) , respectively. 

In the recent years, heat diffusion exhibits promising results for

hape deformation analysis [7,38,40] and the heat kernel [21] is

uite popular used to define shape features 

 (x, y, t) = 

∑ 

i 

e −λi t φi (x ) φi (y ) , x, y ∈ X. (4)
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Fig. 2. Retrieval precision of partial aggregation towards varying m values (the horizontal axis) on two different measures: (a) FT, (b) mAP. 
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However, it is a difficult task to determine the uniform and ideal

scale parameter t for h ( x , y , t ) automatically for different keypoints

and shapes. To deal with this issue, we propose to integrate it to

achieve a balance among different time scales 

δ(x, y ) = 

∫ 
t 

h (x, y, t) dt = 

∑ 

i 

φi (x ) φi (y ) 

λi 

(5)

where φi and λi are the eigenfunction and eigenvalue of Laplace–

Beltrami operator (LBO) which satisfies heat equation �X u (x, t) =
− ∂ 

∂t 
u (x, t) on shape X [21,40] . As with many previous works built

on diffusion manifold, it is easy to prove that our ELDF feature is

equipped with the property of translation, rotation and scaling in-

variance [9,38,40] . 

2.2. Partial aggregation (PA) 

For a 3D model, the descriptor of a single vertex could not pro-

vide sufficient information, but we are able to tell different shapes

apart by combining various local descriptors. To aggregate the mul-

tiscale local features of each 3D shape, we extend the BOW scheme

by considering how to (1) effectively encode the non-aligned mul-

tiscale features without supervision, (2) encode the scale informa-

tion among local descriptors, and (3) strengthen the discriminative

ability. 

To avoid mismatching, we do not encode the multiscale feature

of each shape directly because there exist unknown scale-offsets

for multiscale features extracted from different shapes and it is dif-

ficult to perform scale alignment. Instead, we solve the problem by

separating MSC (x ) into several scale-based vectors and the feature

set of shape X is redefined as 

M (X ) = 

{
v̄ l (x ) | 1 ≤ l ≤ τ, x ∈ P 

}
, (6)

v̄ l (x ) = ( ̄v l 1 (x ) , ̄v l 2 (x ) , . . . , ̄v l k (x ) , . . . , ̄v l B (x )) , (7)

where 1 ≤ k ≤ B . On shape dataset D , we obtain a feature col-

lection M | D |×B = { ̄v l (x ) ∈ M (X ) |∀ X ∈ D } . A scale-based visual word

codebook C = { C 1 , . . . , C j , . . . , C V } is generated to encode local fea-

tures across multiple scales by the k-means clustering on M | D |×B ,

where each of the visual word C j encodes local features of similar

scales implicitly. To improve the clustering stability, we initialize

the centers by three steps: (a) Find a column M | D |×B (·, k ) that has

the largest variance; (b) Sort M | D |×B in descending order accord-

ing to its k th column; (c) Choose V equally-spaced vectors from

M | D |×B as the initial centers. The Manhattan metric is used for fea-

ture comparison. 

For feature encoding, the effectiveness of soft assignment has

been evaluated in many previous works [4,7,23] . But, they still

performs poor in spatial-sensitive representation, computational
fficiency and noise resistance. To overcome the defects, we design

 partial aggregation scheme to encode the proposed multiscale

eature with both implicit and explicit constrains on scale and

osition. Given feature point x ∈ P ⊆ X, we redefine its feature

istribution at the l th scale (i.e. v̄ l (·) → χ l (·) ) as 

l (x ) = (χ l 
1 (x ) , χ l 

2 (x ) , . . . , χ l 
j (x ) , . . . , χ l 

V (x )) (8)

l 
j (x ) = ηl 

j (x ) ∗ s (l) (9)

here 

l 
j (x ) = 

{
e (ϑ(m +1) −ϑ(κ)) ∗ g(κ) κ < = m 

0 κ > m 

(10)

epresents the scale-based visual word score and 

 (l) = log(1 + l/τ ) (11)

s the explicit scale importance factor. The function ϑ =
 ϑ (1) , . . . , ϑ (V ) } , ϑ ( j) ≤ ϑ( j + 1) ranks θ = { θ (1) , . . . , θ (V ) }
 θ ( j) = ‖ v l (x ) − C j ‖ L 1 ) in ascending order, κ indicates the position

f C j in ϑ. Actually, only part of the scale-based visual words

re correlated with v l (x ) due to 1-dimensional scale similarity

nd visual word reliability, and it would lead to overfitting if all

isual words are considered. Thus, we only weight the top m most

imilar items (see Eq. (10) ), which could improve the precision

nd reduce noise as well (see the influential curves in Fig. 2 and

 = 5 is adopted). To highlight the importance of visual words

t different positions, we design a ranking position ( κ) based

eighting scheme with a gaussian falloff function 

(κ) = e ε
κ−1 

, 1 ≤ κ ≤ V. (12)

here ε(= 0 . 5) is a decay parameter. Then, we represent shape X

s a 1 × V vector by aggregating its local features 

 (X ) = (F 1 (X ) , F 2 (X ) , . . . , F j (X ) , . . . , F V (X )) (13)

here 

 j (X ) = 

∑ 

x ∈P 

τ∑ 

l=1 

χ l 
j (x ) . (14)

To further improve the discriminative ability, we highlight the

isual words that just belong to a specific shape class but are rare

n the other classes by using a soft tf-idf frequency score 

 ̄(X ) = ( ̄F 1 (X ) , F̄ 2 (X ) , . . . , F̄ V (X )) (15)

here 

 ̄j (X ) = 

F j (X ) ∑ V 
j=1 F j (X ) 

log 

(∑ 

X 

∑ V 
j=1 F j (X ) ∑ 

X F j (X ) 

)
. (16)
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hen, the similarity score between two shapes X and Y are con-

erted to comparison of their features F̄ (X ) and F̄ (Y ) 

(X, Y ) = ‖ ̄F (X ) − F̄ (Y ) ‖ L 1 . (17)

Compared with the traditional methods for 3D shape re-

rieval [7,19,20,23,42,44] , our method incorporates more spatial

nd weighting constrains for multiscale feature encoding, which

ould improve the effectiveness of shape representation. The lo-

al encoding schemes in image retrieval and classification problem

uch as [27] and [35] simply used the top m visual words to en-

ode the flat features, while PA considers a different topic on en-

oding the non-aligned multiscale features of 3D shapes by using

istinct encoding steps. Besides, PA has some other considerations

n the scale and position information which are not discussed

n [27,35] or other works on the deformable 3D shape retrieval

roblem. 

. Similarity re-ranking 

For shape retrieval, ranking lists are usually employed to find

he most similar results, but there always exist lots of noise (i.e.

nter-class objects). Thus, a similarity re-ranking process is desired

or denoising. The work of Donoser and Bischof [13] , Bai et al.

3] and Li et al. [23] focus on recovering the latent similarity rela-

ionships without supervision and they give us lots of inspiration.

ifferent from these works, we propose a parameter-free distance

apping (PDM) method based on reciprocal KNN (RKNN) graph. 

Suppose the dataset objects O = (O i ) 
n 
i =1 

have good clustering

roperties, most of the query results fall into a same cluster and

he distances between the query and the intra-cluster objects are

uch smaller than the other objects. Numerically, the problem be-

omes the discovery of the optimal paths on the KNN graph, which

eads to updating of the distance between the dataset objects and

he query. In the following subsections, we introduce our offline

rocess to discover new similarity measures 

(O i , O j ) → D (O i , O j ) . (18)

.1. Distance mapping based on RKNN graph 

Our method consists of three steps: (a) build a local constrained

NN graph, (b) obtain new coordinates of the dataset objects by

pectral embedding and (c) compute new distance measures for

airwise objects. 

Given a graph G = (O, E) and the edge set E , we define the

eight of each edge by 

 (O i , O j ) = 

{
e −(d(O i ,O j ) /σi j ) 

2 
if O j ∈ R (O i ) 

0 otherwise 
(19)

here R (O i ) is the KNN ranking list of O i , the length of R (O i ) is

enoted as k (which is determined automatically in Section 3.2 ),

ij is a parameter used for normalization. For convenience, we use

 ( i , j ) to represent W ( O i , O j ) in the following sections. 

To decrease the noise in G , we convert it to a RKNN graph based

n a reciprocal restrain which requires to satisfy the symmetry

anking criteria: O j ∈ R (O i ) and O i ∈ R (O j ) , where W ( i , j ) is set to

ero if it violates the criteria. 

It is important to note that the RKNN graph contains lots of

urved paths for intra-class shapes and can be seen as a specific

hape. Therefore it is interesting to model the distance mapping

roblem as the understanding of geometry [21] . The numerous in-

estigations of the intrinsic analysis [11,36,38] show that one can

escribe the complicated structure of a graph in intrinsic space or

pectral space. We start by defining the following Laplacian matrix

 = A 

−1 (D − W ) (20)
here A = D/ �D is a diagonal matrix for normalization and 

 (i, i ) = 

∑ 

O j ∈ O 
W (i, j) . (21)

hen, we embed the above RKNN graph G into the spectral space

 = (�, �) based on the generalized eigensystem 

 � = �� (22) 

= diag(μi ) 
θ
i =1 , � = [ ψ i ] 

θ
i =1 (23)

here μi and ψ i are eigenvalue and eigenfunctions of L , and the

mallest θ eigenpairs are used to resist noise. To get a real solution,

e recover the symmetry property of W by setting 

 (i, j) = (W (i, j) 2 + W ( j, i ) 2 ) / 2 , W ( j, i ) = W (i, j) (24)

inally, we design a normalized distance function 

 (O i , O j ) = 

ˆ d (p i , p j ) /δ (25)

s the new similarity measures between O i and O j , where δ =
ax ( ̂  d (·, ·)) and ˆ d (p i , p j ) = ‖ p i − p j ‖ L 2 is the L 2 distance between

 i and p j which are the new coordinates of O i and O j , respectively,

n spectral space [23] . 

Compared with previous work [3,13,23] , our method has several

dvantages: (1) The PDM model is based on intrinsic analysis and

herefore it can naturally capture the latent pairwise similarity;

2) The information in RKNN graph is more compact and effective

ith less noise; (3) Unlike existing works that choose a uniform

 for all the ranking lists, PDM adapts k automatically by the

ethod in Section 3.2 . Although our RKNN graph is similar to the

raph adopted in [16] and [34] , they are applied to quite different

odeling frameworks for similarity re-ranking. Moreover, the PDM

odel has inherited the robustness property of spectral analysis

9,21,38,40] , which indicates that it can still work well even if

here exist some noise in the RKNN graph. 

.2. Automatically determined parameters for RKNN graph 

Although the fixed sized KNN lists work in some cases

3,13,16,34] , they have problems in dealing with the unevenly dis-

ributed datasets. Given a query list R (q ) , it is reasonable to set

ts length k as the number of intra-cluster objects. As shown in

lgorithm 1 , an optimal k is obtained by analyzing the dataset

lgorithm 1: KNN parameter estimation. 

Input: q ∈ O , d(O i , O j ) , O = (O i ) 
n 
i =1 

(1) Pre-Classification: k ← S t , S min , S mean , S max 

(2) Compute belief score: b f (q, O j ) , j = S t → S max 

(3) Estimate reliable candidates: RC 

for j = S t → S max do 

Count intra/inter-class candidate: c(b f = 1 ) , c(b f = 0 ) 

if c(b f = 1 ) > c(b f = 0 ) , b f ( j) = 1 then 

RC ← ( j − S t , v ) , v = c(b f = 1 ) − c(b f = 0 ) 

end if 

end for 

Output: k = k + argmax l { v | ∀ l, (l, v ) ∈ RC } 

anking lists in three steps: 

(1) Pre-classification. We divide the dataset into several groups

y automatic clustering algorithm (e.g. AP clustering, [14] ) and

nitialize k by S t = S mean − 
 S min / 2 � , where S min , S mean and S max 

enote the min, mean and max group size. 
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Fig. 3. Some isometric 3D models and their corresponding feature points (marked in red dot) found by our approach. 
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(2) Compute belief score. We then compute a belief score for

each candidate object in R (q ) by 

b f (q, O i ) = 

{
1 ρ(q, O i ) > α
0 else 

, (26)

where α(= 0 . 9) is a correlation threshold and ρ( q , O i ) represents

the similarity score between the ranking list of q and O i ∈ R (q ) 

ρ(q, O i ) = max 
k ∈ [ S t ,S max ] 

|R (q ) ∩ R (O i ) | 
|R (q ) ∪ R (O i ) | . (27)

(3) Estimate reliable candidates. We adjust k by searching the

most reliable candidate objects in range [ S t , S max ]. By counting

the number of intra-class and inter-class objects, we obtain a set

of reliable candidates RC that could provide positive gains for

cutting-off R (q ) to preserve the information of the ranking list.

By maximizing it, we obtain the final estimation of k . Although

Algorithm 1 cannot always obtain an optimal k due to noise ef-

fect, however, an output near the optimal value can still improve

the result with our distance mapping method. 

4. Experiment 

In this section, we validate our method on several well-known

shape retrieval benchmarks and experimentally evaluate its perfor-

mance against state-of-the-art approaches. 

Dataset. To illustrate the effectiveness and generalization capa-

bility of the propose approach, we perform experiments on four

benchmarks, namely, the non-rigid world dataset (NRW) [8,32] ,

McGill dataset [42] , SHREC Non-Rigid 3D Models 2010 (SHREC10)

dataset [25] and SHREC 2011 Non Rigid 3D Watertight Meshes

(SHREC11) dataset [24] . NRW dataset is a basic non-rigid dataset

for shape recognition, which contains 148 shapes unevenly catego-

rized into 12 classes. McGill dataset contains 255 objects unevenly

divided into 10 classes, while SHREC10 dataset contains 200 shapes

evenly distributed into 10 classes with 20 shapes in each and

SHREC11 dataset consists of 600 watertight triangle mesh shapes

t  
venly classified into 30 categories. All these datasets have been

ublicly admitted for shape recognition because they are charac-

erized by a high degree of non-rigid deformations. Besides, some

eformations of the shapes are artificially generated, which would

ead to misleading recognition. Considering the computation speed,

ll the shapes are down sampled to 20 0 0 faces which still preserve

he main features of each shape. Some typical models are shown

n Fig. 3 . 

Evaluation. Following the work of Osada et al., Lian et al.,

24,25,31] and Tabia et al. [41] , we perform a leave-one-out KNN

etrieval experiment for easy comparison, where each deformed

hape is queried against the remaining models in the dataset and

atches are regarded correct between different deformations of

he same shape (or class). To comprehensively and quantitatively

ssess the retrieval results, the following popular evaluation cri-

eria [39] are employed: Precision-Recall (PR) diagram, Nearest

eighbor (NN), First Tier (FT), Second Tier (ST), Discounted Cumu-

ative Gain (DCG) and mean Average Precision (mAP). 

.1. Brief overview of the keypoints 

We first present the clustering property of the detected key-

oints at different scales in Fig. 3 , where the keypoints on each

eformed shape belong to several classes according to their loca-

ions (e.g. leg). By the 2D embedding results plotted in Fig. 4 (e),

e see that different shape parts are well separated with large

argins. According to Fig. 4 (a), the discriminative ability of sin-

le scale is distinct for different parts and shapes. It is clear that

he different shape parts become more separable by increasing the

umber of the scales. By Fig. 5 , we observe that large scale has

etter discriminative ability. But it is not always true for the key-

oints located in the same or nearby components, such as the ear

nd nose in Fig. 5 (e). By combing multiple scales, we obtain the

oosted result in the first line of Fig. 4 . 

Because we only detect a few salient points on each shape,

he complexity of our method is quite low. This enables us to find
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Fig. 4. The ISOMAP embedding [43] of the keypoints in Fig. 3 , where κ = 5 with interval 0.02 is adopted for each keypoint: (a) S = 0 . 01 ; (b) S = [0 . 01 , 0 . 0 . 09] ; (c) S = 

[0 . 01 , 0 . 19] ; (d) S = [0 . 01 , 0 . 39] ; (e) S = [0 . 01 , 0 . 59] . Note that the fingers of the hand shape are sequentially indexed from the thumb to the little finger. 

Fig. 5. The ISOMAP embedding [43] of the single scale based keypoints for the armadillo shape in Fig. 3 : (a) s = 0 . 01 ; (b) s = 0 . 09 ; (b) s = 0 . 19 ; (b) s = 0 . 39 ; (b) s = 0 . 59 . 
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hape correspondences with a low cost. But, for shape recognition,

e prefer to use the BOW paradigm to summarize the content of

he shape other than the shape correspondences because it is still

 challenging topic to match shapes appropriately due to the noise

nd errors in the low-level feature space. Besides, it is also critical

o note that, the points at different shape parts require distinct

umber of scales to separate them apart (e.g. ‘hand’, ‘foot’ and

nose’ in the first row of Fig. 4 ), which brings more difficulty and

hich also requires to do scale selection. Fortunately, the devised

A model could deal with the problem well. In the next sections,
 s  
e evaluate the detailed shape retrieval performance together with

omparisons against state-of-the-art (Note that the contrast results

re from the original papers or implemented according to them). 

.2. Retrieval on NRW dataset 

For convenience, we denote our method using with MSC, ELDF

nd PA as MSC+ELDF+PA. To demonstrate the performance of

ur method, we first present some retrieval results on this basic

hape benchmark and the following five methods are employed
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Table 1 

Retrieval performances comparison (%) on NRW dataset. 

Feature NN FT ST DCG mAP 

MSC+ELDF+PA 94.6 84.5 96.9 94.8 92.3 

HKS 92.5 72.7 87.8 91.1 82.2 

SIHKS 94.6 66.8 84.1 89.0 78.3 

WKS 93.9 73.7 88.9 91.7 84.0 

POCSVM 75.5 45.0 61.0 – –

MSC+LDF+SA 90.5 72.0 87.3 89.3 84.6 

Table 2 

Retrieval performances comparison (%) on McGill dataset. 

Method NN FT ST DCG mAP 

MSC+ELDF+PA 99.2 82.9 90.9 95.9 87.7 

SIHKS 57.3 43.9 71.6 74.3 51.9 

Hybrid 2D/3D 92.5 55.7 69.8 85.0 –

Hybrid BoW 95.7 63.5 79.0 88.6 –

BOW 94.5 62.9 77.6 88.1 –

Graph-based 97.6 74.1 91.1 93.3 –

PCA-based VLAT 96.9 65.8 78.1 89.4 –

Covariance method 97.7 73.2 81.8 93.7 –

MSC+LDF+SA 98.0 81.6 91.0 95.3 87.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Retrieval performances comparison (%) on SHREC10 dataset. 

Method NN FT ST DCG mAP 

MSC+ELDF+PA 99.5 85.8 93.4 96.5 90.9 

SIHKS 66.0 49.8 69.6 77.4 57.8 

WKS 83.5 49.6 66.6 79.4 58.5 

BF-DSIFT-E 98.0 76.6 89.2 94.1 86.3 

SD-GDM 99.5 78.8 94.4 96.1 90.0 

DMEVD_run3 96.0 71.9 85.1 92.0 82.7 

CF 92.0 63.5 78.0 87.8 75.2 

POCSVM 97.0 62.0 71.5 – –

HIST 95.0 69.9 81.5 91.1 78.5 

MSC+LDF+SA 99.5 83.4 93.7 96.3 90.0 

Table 4 

Retrieval performances comparison (%) on the SHREC11 dataset. 

Method NN FT ST DCG mAP 

MSC+ELDF+PA 99.8 98.4 99.4 99.7 99.1 

SIHKS 97.2 76.4 86.1 92.5 82.7 

WKS 95.7 75.7 83.1 91.3 80.9 

SD-GDM 100 96.2 98.4 99.4 98.0 

MDS-CM-BOF 99.5 91.3 96.9 98.2 95.0 

meshSIFT 99.5 88.4 96.2 98.0 93.8 

BOGH 99.3 81.1 88.4 94.9 86.8 

KERG 100 88.6 95.2 97.5 –

POCSVM 95.5 61.5 71.5 – –

Hybrid 99.8 93.5 98.5 98.9 96.7 

HIST 99.5 94.3 97.7 98.7 96.7 

MSC+LDF+SA 99.5 92.4 97.3 98.4 95.7 
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for comparison: HKS [7,40] , SIHKS [10] , WKS [2] , Panorama-OCSVM

(POCSVM) [32] and MSC+LDF+SA [23] . 

In Table 1 , we see that our method apparently outperforms all

of the compared classical methods HKS, SIHKS and WKS on all the

evaluation criteria. MSC+ELDF+PA has improved MSC+LDF+SA a lot

by 4.1% in NN, 12.5% in FT, 9.6% in ST, 5.5% in DCG and 7.7% in mAP.

It is also interesting to see that MSC+ELDF+PA performs much bet-

ter than POCSVM with significant performance gains: NN(19.1%),

FT(39.5%) and ST(36.9%). The results on this dataset show that our

method is promising in lifting shape retrieval accuracy. 

4.3. Retrieval on McGill dataset 

For contrast, we compare with several state-of-the-art methods,

including SIHKS [7,10] , Hybrid 2D/3D [33] , Hybrid BoW [20] , BOW

[19] , the graph-based approach [1] , PCA-based VLAT [42] , Covari-

ance method [41] and MSC+LDF+SA [23] . For the details of these

methods, we refer the reader to their original papers. 

Based on the results shown in Table 2 , we find that our method

outperforms both the classical methods (e.g. SIHKS and BOW)

and the recent published works (e.g. PCA-based VLAT, Covariance

method and MSC+LDF+SA). MSC+ELDF+PA leads to significant im-

provement of 1.2% in NN, 1.3% in FT, 0.6% in DCG and 0.6% in mAP

compared with MSC+LDF+SA, and exceeds Covariance method by

1.5% in NN, 9.7% in FT, 9.1 in ST and 2.2% in DCG. 

4.4. Retrieval on SHREC10 dataset 

On the SHREC10 dataset, the retrieval scores resulting from

other state-of-the-art approaches and our method are reported

in Table 3 . Besides SIHKS [10] , POCSVM [32] and MSC+LDF+SA

[23] , five methods from SHREC 2010 contest [25] (BF-DSIFT-E,

DMEVD_run1, SD-GDM [12] or DMEVD_run2, DMEVD_run3 and CF)

and HIST [9] are employed for contrast. 

Although MSC+ELDF+PA method performs slightly worse (0.3%)

than MSC+LDF+SA in ST, it outperforms MSC+LDF+SA by 2.4% in FT,

0.2% in DCG and 0.9% in mAP. And our method has produced sig-

nificant improvement compared with the classical distance related

features SD-GDM (e.g. 7% in FT) and HIST (e.g. 15.9% in FT). For NN,

FT, DCG and mAP, our method has achieved the best performance. 
.5. Retrieval on SHREC11 dataset 

In Table 4 , retrieval results of several state-of-the-art methods

re provided: SIHK S [10] , WK S [2] , four methods from SHREC 2011

ontest [24] (SD-GDM, MDS-CM-BOF, meshSIFT, BOGH), KERG [6] ,

OCSVM [32] , Hybrid [22] , HIST [9] and MSC+LDF+SA [23] . 

We first note that our method has lifted the performance of

SC+LDF+SA greatly by 0.3% in NN, 6.0% in FT, 2.1% in ST, 1.3% in

CG and 3.4% in mAP. Compared with the best performed SD-GDM

n the work of [24] , our method has slight accuracy decrease (0.2%)

n NN, but works superior in FT, ST, DCG and mAP. In accordance

ith the performances on the other datasets, these results again

alidate the effectiveness of our approach. 

.6. Precision recall curves 

In addition to the listed quantitative results, we plot the

R curves further to intuitively show the performance of the

roposed method. According to the curves plotted in Fig. 6 ,

SC+ELDF+PA outperforms the classical SIHKS method signifi-

antly on all datasets and, compared to MSC+LDF+SA, our method

resents much higher performance on NRW and SHREC11 datasets.

n all, the PR curves of MSC+ELDF+PA almost stay above all the

ontrast methods at the same recall rate, which suggests the supe-

ior performance of our approach. 

.7. Performance of similarity re-ranking 

In this part, we explore the performance of the proposed PDM

lgorithm and we use MSC+ELDF+PA+PDM to denote that PDM is

mployed to improve the retrieval accuracy of MSC+ELDF+PA. Dif-

erent kinds of well performed re-ranking methods are adopted

or comparison: NSS [3] , DP [13] , RLSim [30,34] , TPG [50] , GT [5] ,

KNN [16] , and LCDP [49] . 

In Table 5 , we compare PDM with the other methods for sim-

larity re-ranking on the test benchmarks. In comparison with the

esults of MSC+ELDF+PA shown in Table 1 –4 , MSC+ELDF+PA+PDM
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Fig. 6. PR curves of all the comparison methods on the four test benchmarks: (a) NRW dataset, (b) McGill dataset, (c) SHREC10 dataset and (d) SHREC11 dataset. 
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as resulted in remarkable performance gains (e.g. on McGill

ataset: 12.8% in FT, 7.0% in ST, 2.6% in DCG and 9.0% in

AP). On the evenly distributed datasets SHREC10 and SHREC11,

ll the compared methods works positively well, especially that

SC+ELDF+PA+PDM outperforms all the other methods. However,

n the unevenly distributed dataset McGill and NRW, not all these

ethods produce good results (e.g. mKNN 92.0% v.s. 92.3% base-

ine), but MSC+ELDF+PA+PDM still obtains quite positive results.

hile NSS, DP, RLSim and TPG generate good results on some

atasets (e.g. DP on SHREC11), they failed to work equally well

n all these datasets as with our PDM method did. Similar to

D shape retrieval, we also present the bullseye score [13] in

able 6 . Although our PDM method ranks after the TPG approach

n SHREC10 dataset, it has achieved the best accuracy on the other

our datasets (e.g. 100% for SHREC11). In Fig. 7 , we plot the cate-

ory based mAP scores of MSC+ELDF+PA and MSC+ELDF+PA+PDM.

t is easy to observe that our method has upgraded the retrieval

erformance of each shape class greatly. 

Further, we discuss the scalability of our PDM approach and

resent more results in Table 7 , where two representative distance

atrices MPEG7 [13] and MDS-CM-BOF [26] are used (Note that

ome of the MPEG7 results are shown in Table 6 and Fig. 7 ). On

PEG7 dataset, our method has reached the highest accuracy on
ll five measures with significant improvement: 8.4% in NN, 11.8%

n FT, 7.0% in ST, 4.5% in DCG and 10.2% in mAP. By using MDS-

M-BOF on SHREC11 dataset, PDM has lifted the precision of FT in

.3%, ST in 1.8% and mAP in 1.9% with a decrease of 1.7% in NN. By

omparing with the other methods, PDM obtain comparable results

ith RLSim and mKNN. The demonstrated results again display the

ffectiveness of the proposed method. 

.8. Discussion and analysis 

According to the above experiments on various datasets, we

iscuss the results. First, the multiscale features under the frame-

ork of MSC+ELDF has helped to summarize different levels of the

o-occurrence information, which favors shape recognition a lot.

y using PA model, we are able to organize these information ef-

ectively. Despite of the fact that MSC+ELDF+PA produces salient

mprovements towards state-of-the-art results, MSC+ELDF+PA+PDM 

ifts the retrieval performance further. Besides, our PDM algorithm

an flexibly determine the length of ranking lists, which is quite

ifferent from existing works. Additionally, we need to note that

he NRW and McGill datasets are unevenly distributed, which is

ore difficult for shape recognition compared with the SHREC10

nd SHREC11 datasets. But, MSC+ELDF+PA and MSC+ELDF+PA+PDM
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Fig. 7. mAP precision (the vertical axis) of our PDM method on various shape categories of test benchmarks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Similarity re-ranking performance of comparison methods on test benchmarks. 

MSC+ELDF+PA+PDM NN FT ST DCG mAP 

NRW 93.2 86.4 97.5 94.2 92.7 

McGill 98.4 95.4 98.2 98.6 96.8 

SHREC10 98.5 95.5 98.4 98.6 97.4 

SHREC11 100 99.8 99.8 100 99.9 

MSC+ELDF+PA+NSS NN FT ST DCG mAP 

NRW 94.6 85.8 96.2 94.4 91.4 

McGill 98.0 87.7 97.4 97.1 92.7 

SHREC10 98.5 90.4 97.5 97.7 94.8 

SHREC11 99.8 99.4 99.9 99.8 99.6 

MSC+ELDF+PA+DP NN FT ST DCG mAP 

NRW 87.8 74.5 88.3 90.9 88.3 

McGill 91.4 90.0 98.2 95.7 93.1 

SHREC10 89.5 88.6 97.3 94.7 92.8 

SHREC11 99.8 99.8 99.8 99.9 99.9 

MSC+ELDF+PA+RLSim NN FT ST DCG mAP 

NRW 93.9 86.3 96.8 95.0 92.7 

McGill 98.8 90.5 97.0 97.5 93.8 

SHREC10 99.0 93.4 97.5 98.2 95.8 

SHREC11 99.7 99.1 99.8 99.7 99.4 

MSC+ELDF+PA+TPG NN FT ST DCG mAP 

NRW 83.1 81.5 93.3 90.1 87.8 

McGill 98.8 91.1 98.8 98.2 94.7 

SHREC10 99.5 93.5 98.6 98.3 96.2 

SHREC11 99.8 99.8 99.8 99.9 99.9 

MSC+ELDF+PA+GT NN FT ST DCG mAP 

NRW 92.6 83.1 94.4 92.8 89.5 

McGill 97.6 87.6 95.7 96.0 90.6 

SHREC10 98.5 92.5 97.3 97.4 94.5 

SHREC11 99.2 99.1 99.6 99.6 99.2 

MSC+ELDF+PA+mkNN NN FT ST DCG mAP 

NRW 95.9 83.1 97.1 94.5 92.0 

McGill 99.2 83.7 95.9 96.4 89.8 

SHREC10 99.0 90.6 98.0 97.7 94.5 

SHREC11 99.8 99.0 99.6 99.7 99.4 
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still achieve good results on all of them. By summarizing all the ex-

periment results, we are able to confirm that the proposed method

has achieved state-of-the-art performance for isometric 3D shape

recognition. 

Similar to most of previous work, the proposed descriptor fo-

cuses on statistical information. Thus, it confronts more errors

when dealing with the inter-class shapes that are different only

in local parts (e.g. different human classes), especially when noise

occur. And one solution is to do further justification after the first

round of recognition, which is left for the future work. 

Finally, we analyze the major time consumption of the pro-

posed approach: the overall complexity of feature extraction

(MSC+ELDF) for shape X with N vertices is O ( N 

2 ); the complexity of

PA encoding for each shape is O( V 2 |P| ); the complexity of the of-

fline distance mapping with n nodes is O( n 2 ). Then, on an Intel(R)

Xeon(R) Dual CPU W3530@3GHz with 3GB memory, we report the

average online processing time of each shape by using the MATLAB

software in Table 8 . 

5. Conclusion 

In this paper, we propose a novel approach for shape simi-

larity assessment. Based on the framework of MSC, the proposed

ELDF feature could summarize different levels of shape information

in detail. By the experiment data, we find that the developed PA

model has helped to extract the discriminative information with

less noise. Further, our similarity re-ranking method has worked

effectively in measuring the pairwise similarity relationships. Fi-

nally, we have quantitatively and qualitatively evaluated the effec-

tiveness of our approach by experiment. Our method has achieved

the best performance over all the compared methods for shape re-

trieval on multiple popular shape benchmarks. The code is avail-

able for free download at https://github.com/kuangzz/MSC . 
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Table 6 

Comparison of the bullseye score (i.e. top 40 accuracy) on the test datasets, where the data in brackets represent the gains against the 

baseline. 

baseline PDM NSS DP RLSim TPG GT mkNN LCDP 

NRW 99.2 99.9(0.7) 99.9(0.7) 90.2( −9.0) 99.8(0.6) 99.4(0.2) 98.2( −1.0) 99.0( −0.2) –

McGill 89.9 98.2(8.3) 95.4(5.5) 96.8(6.9) 96.5(6.6) 97.2(7.3) 94.5(4.6) 93.9(4.0) –

SHREC10 93.9 98.5(4.6) 97.8(3.9) 97.8(3.9) 97.7(3.8) 98.8(4.9) 97.6(3.7) 98.2(4.3) –

SHREC11 99.5 100(0.5) 100(0.5) 99.8(0.3) 99.8(0.3) 99.8(0.3) 99.6(0.1) 99.7(0.2) –

MPEG7 93.6 100(6.4) 100(6.4) 100(6.4) 99.9(6.3) 99.9(6.3) 99.9(6.3) 99.7(6.1) 96.0(2.4) 

Table 7 

Experiment results of similarity re-ranking on MPEG7 dataset and SHREC11 dataset. 

NN FT ST DCG mAP 

MPEG7(AIR+PDM) 99.5 99.3 100 99.7 99.6 

MPEG7(AIR+NSS) 97.6 94.7 99.9 98.8 98.2 

MPEG7(AIR+DP) 97.6 94.8 99.9 98.8 98.2 

MPEG7(AIR+RLSim) 96.1 93.2 98.9 97.8 96.2 

MPEG7(AIR+TPG) 96.5 94.0 99.8 98.4 97.4 

MPEG7(AIR+GT) 95.6 93.4 99.8 97.5 95.8 

MPEG7(AIR+mKNN) 95.4 89.0 99.6 96.9 93.8 

Baseline 91.1 87.5 93.0 95.2 89.4 

MDS-CM-BOF+PDM 97.8 95.6 98.7 98.3 96.9 

MDS-CM-BOF+NSS 99.3 94.0 98.2 98.6 96.4 

MDS-CM-BOF+DP 97.8 94.6 97.9 98.2 96.4 

MDS-CM-BOF+RLSim 99.2 96.3 97.7 98.9 97.3 

MDS-CM-BOF+TPG 98.5 93.1 98.0 98.0 95.8 

MDS-CM-BOF+GT 99.8 94.9 98.5 98.8 96.9 

MDS-CM-BOF+mKNN 99.7 95.1 99.2 98.9 97.2 

Baseline 99.5 91.3 96.9 98.2 95.0 

Table 8 

Average time consumption of the proposed ap- 

proach (in seconds). 

MSC+ELDF PA voting Sum 

NRW 0.851 0.568 1.419 

McGill 0.736 0.479 1.215 

SHREC10 0.774 0.454 1.228 

SHREC11 0.792 0.421 1.213 
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