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Figure 1: Fraud Detection : False Positive Rates Pre (Left) and Post (Right) Sanitization.

ABSTRACT
We propose a fairness measure relaxing the equality conditions
in the popular equal odds fairness regime [10] for classification.
We design an iterative, model-agnostic, grid-based heuristic that
calibrates the outcomes per sensitive attribute value to conform to
the measure. The heuristic is designed to handle high arity attribute
values and performs a per attribute sanitization of outcomes across
different protected attribute values. We also extend our heuristic
for multiple attributes. Highlighting our motivating application,
fraud detection, we show that the proposed heuristic is able to
achieve fairness across multiple values of a single protected at-
tribute, multiple protected attributes. When compared to current
fairness techniques, that focus on two groups, we achieve compa-
rable performance across several public data sets.
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1 INTRODUCTION
Machine learning algorithms are increasingly being used to make
decisions in critical areas such as access to credit, employment
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opportunities and education. Recent research has highlighted con-
cerns related to potential bias, where ML techniques produce dis-
criminatory outcomes [3]. For instance, when Apple released its
credit card, there were claims that women were given a lower
credit limit. Similarly, ProPublica analyzed a risk assessment used
by judges in the United States to predict recidivism risk for an
accused and concluded that the predictions are biased against black
defendants . From an industry standpoint, it is critical to sanitize ML
algorithms, ensure fairness and avoid ethical and legal concerns.

Detecting and mitigating bias in ML algorithms has gained trac-
tion in the last few years both in academia and industry. However,
existing approaches have certain limitations, primarily around ac-
counting for ground truth distributions as well as type-1 and type-2
errors. In this paper, we use online transaction fraud detection
as a motivating example to discuss the drawbacks of the current
approach and to illustrate the value of the proposed approach.

Motivating Application : As businesses continue to shift toward
online payments, there is a rising need to have an effective fraud de-
tection solution capable of real-time, actionable alerts and insights.
This increasing need has led to several solutions being offered by in-
dustry leaders [7] such as Amazon [1], Microsoft [11], ThreatMetrix
[12], Forter [5]. These solutions can analyze hundreds of param-
eters of an online transaction such as transaction amount, past
transaction trends, IP location of the transaction, transaction time,
merchant name etc. and output a score in real-time (usually from 0
to 100) indicating the fraudulent nature of the transaction. While
these solutions claim a high predictive performance, biases in the
training data and model inaccuracies can lead to decisions that treat
individuals unfavorably (unfairly) based on characteristics such as
transaction country and currency (sensitive attributes). Ensuring
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that these biases are curtailed before deploying such solutions is
critical for the business.

In this work, we propose a fairness measure for classification
and detail a heuristic based on model calibration to ensure such
fairness in the outcomes. We showcase the efficacy of the proposed
approach on several publicly available data sets and a proprietary
commercial data set that is comprised of online transactions (Figure
1). For baselines, we consider Equalized Odds [10] and Calibrated
Equalized Odds [13].
2 RELATEDWORK
Anti-discrimination laws in the United States regulate two discrim-
inatory behaviors based on protected attributes. These doctrines of
discrimination are disparate treatment and disparate impact. Dis-
parate treatment protects individuals who are affected by algorith-
mic decision making against explicit discrimination. The standard
practice to conform to disparate treatment in Machine learning
techniques used for decision making is to exclude protected at-
tributes from inputs. This is easy to achieve in a fraud detection
model – one would just need to not use any sensitive attribute
while training the model. In contrast, disparate impact addresses
outcome discrimination; it recognizes liability for practices with
uneven impacts on different protected groups. While there is no
single fairness measure that captures absolute impact parity, equal
opportunity, demographic parity, and equalized odds [2, 4, 10, 13]
have received considerable attention. Efforts from scholars revolve
around heuristics to ensure these fairness measures. While these
techniques are catered to ensure fairness for any Machine learn-
ing technique, they are not always practical to implement in an
industry setting. To expound, consider demographic parity, which
requires that the outcome rates across sensitive attributes be the
same. In the context of fraud detection, for a sensitive attribute
“country”, this would mean that acceptance or rejection rates of
online transactions for each country should be the same. This may
not be ideal since we observe that the ground truth fraud rates from
different countries are significantly different (Refer to Figure 2).
This could possibly be explained by the jurisdiction in each of these
countries in handling online fraud (stricter penalties would mean
lower fraud rates and vice versa). If we were to sanitize our fraud
detection model to ensure demographic parity, one would either
end up allowing lots of fraudsters or declining lots of genuine users
both of which are not an ideal outcome for a firm.
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Figure 2: Ground Truth Fraud Rates across Countries.

Another approach, equalized odds, aims to achieve the same false
positive and true positive rates across sensitive attributes. While

this is better than the demographic parity for fraud detection, the
measure enforces equal importance to both false positives and false
negatives. This is again not ideal for a firm given the cost of type-1
and type-2 errors are different for electronic1 vs physical goods.
Lastly, Equalized opportunity, is a relaxed version of Equalized
odds that only requires equal true positive rates across sensitive at-
tributes. This again is insufficient since we would not want to deny
a genuine customer and hence would like to balance false positive
rates as well. Furthermore, while getting to equal rates is possible
in theory, it is less practical with daily fluctuations in traffic and
fraud patterns. Additionally, from an implementation standpoint,
another major critique about the current techniques is that they
require multiple sanitizations of the ML model to achieve fairness.
This largely arises since majority of these techniques assume binary
sensitive attributes. Such constraints are not viable in a fraud detec-
tion system that usually deal with high arity attributes and require
real time inference. Further, to the best of our knowledge, none of
these methods perform sanitization of a machine learning model in
a post-hoc fashion across multiple protected attributes. We tackle
these drawbacks in our work by introducing a relaxed Equalized
odds fairness measure and a one-shot fairness heuristic to achieve
the proposed fairness measure. Further, we design the proposed
heuristic to have the flexibility to pick either or both constraints of
the Equalized Odds definition (similar FPR or similar TPR or both)
[10]. Finally, and importantly, we also extend the proposed fairness
measure and heuristic to handle multiple attributes.
3 METHOD
The classical definition of Equality of Odds posits that true positive
rates and false positive rates across a protected attribute are the
same. It reflects a fundamental idea of fairness, that qualified individ-
uals should be given equal opportunity (true positive rate - TPR) to
access a desirable outcome while also requiring equal false positive
rates (FPR, ensuring no bias to the positive class) regardless of their
demographics or any other sensitive attributes. However, this strict
requirement of equality in most settings requires non-deterministic
thresholds as pointed out in previous research [2, 4, 10, 13] making
it less appealing from a practical standpoint. Further, the current
heuristics to achieve such fairness involves multiple sanitizations –
one per each categorical attribute value (Ex: one for each country)
of a machine learning model to ensure the fairness criterion is met.
We deal with these issues by first, relaxing the notion of the stan-
dard Equalized odds. Specifically, we relax the equality constraint
of FPR, TPR and enforce a weaker, yet practical constraint. Second,
we propose a fairness heuristic that sanitizes the outputs of a clas-
sification model to conform to the relaxed equalized odds measure.
Note: We describe the details assuming a single attribute and later
extend this to multiple attributes in Section 3.3.
3.1 Relaxed Equalized Odds
Say𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝐾 } is a protected attribute with arity𝐾 , we say
that a fraud detector model 𝐹 2 satisfies relaxed equalized odds with
respect to attribute 𝐷 if the false positive and true positive rates
of the respective attribute values 𝑓 𝑝𝑟𝐹 = {𝑓 𝑝𝑟𝐹1 , 𝑓 𝑝𝑟

𝐹
2 , . . . , 𝑓 𝑝𝑟

𝐹
𝐾
},

1The cost of declining a genuine customer is much higher than allowing a fraudster.
2In general, 𝐹 can also be any classification model that needs to be sanitized for bias.
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𝑡𝑝𝑟𝐹 = {𝑡𝑝𝑟𝐹1 , 𝑡𝑝𝑟
𝐹
2 , . . . , 𝑡𝑝𝑟

𝐹
𝐾
} lie within 𝑛 standard deviations of

their means i.e.,
𝜇 (𝑓 𝑝𝑟𝐹 ) − 𝑛𝜎 (𝑓 𝑝𝑟𝐹 ) ≤ 𝑓 𝑝𝑟𝐹𝑖 ≤ 𝜇 (𝑓 𝑝𝑟𝐹 ) + 𝑛𝜎 (𝑓 𝑝𝑟𝐹 ) (1)

𝜇 (𝑡𝑝𝑟𝐹 ) − 𝑛𝜎 (𝑡𝑝𝑟𝐹 ) ≤ 𝑡𝑝𝑟𝐹𝑖 ≤ 𝜇 (𝑡𝑝𝑟𝐹 ) + 𝑛𝜎 (𝑡𝑝𝑟𝐹 ) (2)
where 𝜇 and 𝜎 are the average and standard deviation respec-

tively across the 𝐾 attribute values.
The above definition while weaker, captures the core philos-

ophy of the Equalized odds in a high arity(𝐾)3 setting – similar
opportunity and similar false alarms across a sensitive attribute.
3.2 Fairness Heuristic
Following a similar notation as above, say we would like to sanitize
a fraud detector 𝐹 with respect to the protected attribute 𝐷 , our
fairness heuristic has the following key steps.

3.2.1 Choice of constraints. We provide an end user the capability
to further relax the traditional equalized odds definition to conform
to either similar FPRs or TPRs or both (i.e., Eq 1 or Eq 2 or both). This
would be useful for a business where false positives of a fraud detec-
tor are more costly compared to true positives. Said differently, if it
is costlier for a business to accept a fraudulent customer compared
to declining a genuine customer (false negative), then they might
choose to conform to similar FPRs, while also ensuring that the
overall FPR is low. In a similar way, a business might choose to have
equal opportunity (TPR) across a protected attribute. This choice
decides the 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑚𝑒𝑡𝑟𝑖𝑐 in our heuristic. 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑚𝑒𝑡𝑟𝑖𝑐 = 𝐹1;
if Eq (1) and Eq (2), = 𝐹0.5;, if only Eq (1) and = 𝐹2; if only Eq (2).
The choice of the selection metric is done based on the importance
of the FPR and TPR to the end user. F1 treats false positives and
false negatives (true positives) equally while 𝐹0.5 and 𝐹2 weight
false positives and false negatives higher respectively.

3.2.2 Threshold grid initialization. The core idea of our heuristic
is to calibrate the decision thresholds of the model 𝐹 across the
different attribute values D to conform to Eq (1) and/or Eq (2). To do
this, we initialize a linear grid of possible threshold values denoted
as 𝐺𝑡ℎ𝑟𝑒𝑠ℎ . A choice of 𝐺𝑡ℎ𝑟𝑒𝑠ℎ could be {0.6, 0.61, . . . , 0.9}. Note
that depending on the threshold value, both FPR and TPR of the
model 𝐹 would change.

3.2.3 Performance computation. For all the values in 𝐺𝑡ℎ𝑟𝑒𝑠ℎ , per
attribute value in 𝐷 , we compute model 𝐹 ’s performance metrics.
These comprise of the metric that the end user chooses to conform
to in the fairness measure (say FPR in our running example). At the
end of this step, we would have 𝑓 𝑝𝑟𝐹𝑔 = {𝑓 𝑝𝑟𝐹𝑔1 , 𝑓 𝑝𝑟

𝐹𝑔
2 , . . . , 𝑓 𝑝𝑟

𝐹𝑔

𝐾
}

∀ 𝑔 ∈ 𝐺𝑡ℎ𝑟𝑒𝑠ℎ , where 𝑓 𝑝𝑟𝐹𝑔 is the FPRs of the model 𝐹 at threshold
𝑔 across protected attribute values.

3.2.4 Pruning and Selection. Our next task is to iteratively prune
the set of {𝑓 𝑝𝑟𝐹𝑔 , 𝑔 ∈ 𝐺𝑡ℎ𝑟𝑒𝑠ℎ} to conform to Eq 1. and select cus-
tom thresholds from 𝐺𝑡ℎ𝑟𝑒𝑠ℎ for each attribute in 𝐷 .
Prune : To do this, we compute 𝜇 (𝑓 𝑝𝑟𝐹𝑔 ) and 𝜎 (𝑓 𝑝𝑟𝐹𝑔 ), ∀ 𝑔 ∈
𝐺𝑡ℎ𝑟𝑒𝑠ℎ and prune 𝑓 𝑝𝑟𝐹𝑔

𝑖
that are overly biased compared to the

mean, i.e., violate the constraint 𝑓 𝑝𝑟𝐹𝑔
𝑖

≤ 𝜇 (𝑓 𝑝𝑟𝐹𝑔 ) + 𝑛𝜎 (𝑓 𝑝𝑟𝐹𝑔 ).

3Note that mean and standard deviation across the attributes would only hold a
statistical meaning if the number of attribute values are higher. This is traditionally
the case in fraud detection models where a sensitive attribute, say country or currency
could take over 100 types of values.

This would mean that for a protected attribute value 𝑑𝑖 , 𝐷 =

{𝑑1, 𝑑2, . . . , 𝑑𝐾 }, some of the threshold choices are pruned since
their false positive rates are statistically higher than the average.
Denote such pruned set as {𝑓 𝑝𝑟𝐹𝑔 }𝑝𝑟𝑢𝑛𝑒𝑑 .
Select : From {𝑓 𝑝𝑟𝐹𝑔 }𝑝𝑟𝑢𝑛𝑒𝑑 , we next select the threshold per each
attribute value𝑑𝑖 where the 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑚𝑒𝑡𝑟𝑖𝑐 (F-0.5 in our running ex-
ample) ismaximized. This results in a choice of {(𝑑1, 𝑔1), ..., (𝑑𝐾 , 𝑔𝐾 )}.
Denote this choice of thresholds as the model 𝐹𝑠𝑒𝑙𝑒𝑐𝑡
We check if 𝐹𝑠𝑒𝑙𝑒𝑐𝑡 conforms to the fairness constraints, i.e., Eq (1) in
our running example 𝜇 (𝑓 𝑝𝑟𝐹𝑠𝑒𝑙𝑒𝑐𝑡 ) −𝑛𝜎 (𝑓 𝑝𝑟𝐹𝑠𝑒𝑙𝑒𝑐𝑡 ) ≤ 𝑓 𝑝𝑟

𝐹𝑠𝑒𝑙𝑒𝑐𝑡
𝑖

≤
𝜇 (𝑓 𝑝𝑟𝐹𝑠𝑒𝑙𝑒𝑐𝑡 ) + 𝑛𝜎 (𝐹𝑠𝑒𝑙𝑒𝑐𝑡 ). If not, we repeat the pruning and se-
lection step with the updated {𝑓 𝑝𝑟𝐹𝑔 }𝑝𝑟𝑢𝑛𝑒𝑑 until the constraint
is satisfied. First, we note that the final 𝐹𝑠𝑒𝑙𝑒𝑐𝑡 conforms to the
fairness measure and preserves model fidelity by selecting the best
available model based on the selection metric. Second, from Step 3
and Step 4, we note that our fairness heuristic only requires aggre-
gate information such as FPR, TPR, F-1 score about the protected
attribute 𝐷 and does not require information about the features
(protected or unprotected) or their feature values used to train the
fraud detector model. Hence, one could perform this sanitization in
a differentially private manner by adding appropriate noise to the
aggregate information. Third, the reliance of the output on solely
the outcomes makes the fairness heuristic model agnostic. Fourth,
the proposed heuristic is a one-shot search heuristic that conforms
the model 𝐹 to the protected attribute 𝐷 rather than performing 𝐾
sanitizations for each attribute of 𝐷 . Finally, we note that the grid
heuristic discussed above is guaranteed to converge to a solution if
there is indeed a solution where the FPRs/TPRs are equal for the
sub-groups.
3.3 Multiple Attribute Extension
The fairness heuristic detailed above handles a single protected
attribute and conforms to equalized fairness in that attribute. How-
ever, for most practical applications, we would require a machine
learning model to conform to fairness across multiple attributes.
For instance, in the case of a fraud detection model, one would like
to sanitize the model to not be biased against a country, currency
that they use. The current state of the art fairness heuristics deals
with this issue while training [6] or by processing the features be-
fore learning [14]. Supplementing this line of literature, we extend
the proposed fairness heuristic which performs sanitization post
inference to handle multiple attributes.

A naive way to handle multiple attributes (consider two for ex-
ample) say 𝐷1 = {𝑑11 , 𝑑

1
2 , . . . , 𝑑

1
𝐾1 }, 𝐷2 = {𝑑21 , 𝑑

2
2 , . . . , 𝑑

2
𝐾2 } in our

regime would be to identify {((𝑑11𝑑
2
1), 𝑔1), ..., (𝑑

1
𝐾1𝑑

2
𝐾2 ), 𝑔𝐾1×𝐾2 )}.

Note that such calibration of thresholds would conform to a strict
notion of the Relaxed Equalized Odds ensuring the FPR and TPRs
are equal across every sub-population. While this is certainly an
attractive property to have, the computational complexity is ex-
ponential. A weaker notion would be to ensure that the FPR and
TPR values satisfy the constraints in Eq (1) and (2) per attribute
independently rather than all enumerations.

Expounding the two concepts with an example of two attributes
country and currency with attribute values US, IN and USD, INR
respectively. In the stronger notion, we want FPRs and TPRs across
the eight sub populations {(𝑈𝑆,𝑈𝑆𝐷), (𝑈𝑆, 𝐼𝑁𝑅), (𝐼𝑁 ,𝑈𝑆𝐷),
(𝐼𝑁 , 𝐼𝑁𝑅), (𝑈𝑆), (𝑈𝑆𝐷), (𝐼𝑁 ), (𝐼𝑁𝑅)} to conform to Eq (1) and (2).
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In the weaker notion, we want them to conform to four sub popula-
tions {(𝑈𝑆), (𝐼𝑁 ), (𝑈𝑆𝐷), (𝐼𝑁𝑅)}. While the former is a stronger
fairness notion and scales exponentially with the number of at-
tributes, the latter is weaker and scales linearly. We propose heuris-
tics for both such notions of fairness giving the decision maker
the flexibility to opt to either of those depending on the number
of attributes the model needs to be sanitized on. We recommend
the stronger notion for 10 or a smaller number of attributes and
the univariate, weaker notion for greater than that. In both cases,
we reduce this combinatorial computation by first pruning the at-
tribute space by identifying attributes that encompass similar sub
populations.

3.3.1 Attribute Pruning. If two attributes are dependent i.e., cap-
ture similar sub populations with their attribute values (for instance
country and currency), it is redundant to calibrate the thresholds
for both. We define dependence between attributes as the Chi-
square statistic between pairs of attributes. Based on the statistic,
we compute the 𝑝-value to infer if two attributes are statistically
independent of each other (p-value <= 0.01) and drop the attributes
that are highly dependent. This step prunes the space of protected
attributes while only leaving independent attributes to calibrate.

3.3.2 Strong Multiple Attribute Fairness : Attribute Value Pruning.
In this regime, we want to ensure that the FPRs and TPRs of ev-
ery sub-population conform to Eq (1) and (2). While reducing the
attribute space partly addresses the computation issue discussed
earlier, we are still left with potentially multiple attributes with high
arity. For instance, say we have m protected attributes after pruning
with cardinalities 𝐾1, 𝐾2, . . . , 𝐾𝑚 , we would be looking at possibly
𝐾1𝐾2 . . .𝐾𝑚 subspaces to calibrate the thresholds on. However, we
note that to yield a reliable estimate of the performance metrics
fpr,tpr (Step 3 in the heuristic) or the selection metrics (Step 4.b.),
as a rule of thumb [8], a subspace would at least need to have 100
transactions (data points). Hence, we prune away such subspaces
using a scalable implementation of the Frequent Pattern Tree [9]
data structure. Let 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑃 } be the total number of sub-
spaces left with each at least having 100 transactions. An example of
a 𝑐1 would be {𝑐𝑜𝑢𝑛𝑡𝑟𝑦 = 𝑈𝑆, 𝑠𝑒𝑥 = 𝑀𝑎𝑙𝑒, 𝑟𝑎𝑐𝑒 = 𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐}. The
resulting clusters 𝐶 are then calibrated with the grid of thresholds
to conform to the Relaxed Equalized Odds fairness measure in a
similar fashion to the single attribute case where the performance
table looks like {𝑓 𝑝𝑟𝐹𝑔 }, 𝑔 ∈ 𝐺 .

3.3.3 Weak Multiple Attribute Fairness . In this regime, we want to
ensure that the FPRs and TPRs per attribute conform to Eq (1) and
Eq (2). Operationally, this can be achieved by changing the Step 3) in
the fairness heuristic to compute the performance table across all at-
tributes and their attribute values. That is, for m protected attributes,
construct 𝑓 𝑝𝑟𝐹𝑔 = {𝑓 𝑝𝑟𝐹𝑔1 , 𝑓 𝑝𝑟

𝐹𝑔
2 , . . . , 𝑓 𝑝𝑟

𝐹𝑔

𝐾1
, 𝑓 𝑝𝑟

𝐹𝑔
1 , 𝑓 𝑝𝑟

𝐹𝑔
2 , . . . , 𝑓 𝑝𝑟

𝐹𝑔

𝐾2
, . . .

𝑓 𝑝𝑟
𝐹𝑔

𝐾1+𝐾2+...𝐾𝑚
} 𝑔 ∈ 𝐺𝑡ℎ𝑟𝑒𝑠ℎ , where 𝑓 𝑝𝑟𝐹𝑔 is the FPRs of the model

𝐹 at threshold g across all univariate enumerations of the protected
attribute values. This is followed with the Pruning and Selection
step as discussed earlier to find thresholds per attribute value for
all the m attributes.
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Figure 3: Fraud Detection FPR (Pre = Red, Post = Green)
4 EXPERIMENTS
We showcase the efficacy of the proposed approach on several pub-
licly available data sets - criminal recidivism4, income-prediction
, health prediction5, and a proprietary commercial data set that
is comprised of online transactions. For baselines, we consider
Equalized Odds [10] and Calibrated Equalized Odds [13]. In the
experiments, we set 𝑛 = 2 and investigate single protected attribute
with high arity, multiple protected attributes, and also consider the
case of 2 protected groups as investigated by earlier studies.

Case Study : Fraud Detection We first discuss our motivating
example, online fraud detection6. The aim of the prediction is to
assess whether an online transaction initiated by an individual is
fraudulent. The prediction model omits all protected attributes as
input to conform to the disparate treatment doctrine of fairness
measure. However, as evident from 3 and 4 (red color bars) we ob-
serve that model exhibits a bias towards the demographic attribute
country. A similar trend is observed when we look at the FNRs. As
we motivate earlier, from a business perspective, it is useful to have
flexibility to sanitize these metrics across attributes
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Figure 4: Fraud Detection FNR (Pre = Red, Post = Green)
We employ the proposed heuristic on the predictions made by

the fraud detector by conforming to both the constraints Eq (1)
and Eq (2). From Figures 3, 4 (green color bars), we observe that
the final 𝐹𝑠𝑒𝑙𝑒𝑐𝑡 with custom thresholds per country considerably
reduces the bias towards certain countries. Further, we also note
that the FPRs and FNRs across countries conform to the relaxed
equalized odds fairness measure – mean across the countries lies
withing two standard deviations.
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Figure 5: Fraud Det. (XGBoost, Multiple attributes) FPR (Post)
4Data source : https://github.com/propublica/compas-analysis
5Data source : https://github.com/gpleiss/equalized_odds_and_calibration/
6In all the experiments, positive refers to a fraudulent transaction. Hence true positives
would mean fraudulent transaction being identified as fraud by the detector.



Multiple Attribute Fairness: Application to Fraud Detection KDD 22, August 14–18, 2022, Washington, D.C.

Method
—-

Dataset

Proposed Heuristic Equalized Odds Calibrated Equalized Odds
FPR

(Class 0)
FPR

(Class 1)
FNR

(Class 0)
FNR

(Class 1)
FPR

(Class 0)
FPR

(Class 1)
FNR

(Class 0)
FNR

(Class 1)
FPR

(Class 0)
FPR

(Class 1)
FNR

(Class 0)
FNR

(Class 1)
Online Fraud
(Country = 6) 0.001 0.0009 0.349 0.246 0.01 0.009 0.306 0.282 0.009 0.01 0.449 0.124

Online Fraud
(Country = 22) 0.0007 0.0008 0.202 0.13 0.019 0.021 0.174 0.113 0.012 0.021 0.335 0.104

Income
(AfricanAmerican) 0.42 0.351 0.61 0.77 0.13 0.12 0.463 0.348 0.884 0.345 0.642 0.705

COMPAS
(AfricanAmerican) 0.387 0.401 0.521 0.506 0.435 0.430 0.492 0.491 0.315 0.449 0.561 0.372

Table 1: Comparison to Equalized and Calibrated Equalized Odds.

Next, we consider the exercise on the fraud detector model
trained with XGBoost to sanitize across with two protected at-
tributes country and currency. From Figure 5, we observe that we
can achieve similar FPRs across the attribute values of currency.
From a separate experiment (not presented for brevity), we also
observe that sanitizing the model on currency inherently sanitizes
it against country given their high dependence.

Model benchmarks: Next, we compare the proposed heuris-
tic to Equalized [10] and Calibrated Equalized Odds [13]. These
techniques are aimed at achieving fairness across two groups (E.g.
Country is/not 1), unlike the proposed heuristic which aims to
achieve fairness across all sub groups with custom thresholds per
country. In Table 1, rows 1 and 2, we report FPR and FNR for Coun-
try is/not is Country 67 (Class 0 and Class 1). and Country is/not is
Country 22 and observe that we are able to achieve similar metrics
compared to the benchmarks.

Income-Prediction This dataset from UCI Machine Learning
Repository contains 14 demographic and occupational features
for various people, with the goal of predicting whether a person’s
income is above $50, 000. In this scenario, we seek to achieve predic-
tions with equalized cost across genders (single protected attributes,
two groups - Male and Female). In this dataset, we consider a sce-
nario where the primary concern is ensuring equal generalized false
negative rates across genders, which would help job recruiters pre-
vent gender discrimination in salary estimates. Hence, we choose
our fairness constraint to require relaxed equalized false negative
rates across groups. In row 3, Table 1, we observe that the proposed
heuristic achieves similar FNRs for the two groups – 0.77 (African
American) and 0.61 (not African American). Also, note that we are
able to achieve comparable (similar FNRs) or better performance
(better FPRs) compared to Calibrated Equalized Odds, designed
specifically to enforce equal FNRs across the two groups. Equalized
Odds on the other hand, ensures equal FPRs and FNRs across the
two groups, trading off the FPR for a lower FNR across groups (0.46
and 0.34) compared to the proposed heuristic (0.61 and 0.77).

Criminal Recidivism Finally, we examine the proposed heuris-
tic in t he context of criminal recidivism. As noted by several studies
earlier, in this dataset, African Americans, receive a disproportion-
ate number of false positive predictions as compared with Cau-
casians when automated risk tools were used. Hence, we aim to
equalize the generalized false positive rate. In row 4, Table 1, we
observe that the proposed heuristic achieve a) similar FPRs for the
two groups – 0.4 (African American) and 0.38 (not African Ameri-
can) b) similar FNRs (0.60 and 0.59 respectively). Note that we are

7We pick the highest (Country 6) and lowest frequency (Country 22) country based
on the transactions in our data set. Each country has at least 10,000 transactions each.

able to achieve comparable (similar FNRs) and slightly better better
FPRs compared to Equalized Odds, designed to enforce equal FNRs
and FPRs across the two groups. When compared to the Calibrated
Equalized Odds, where the weighted combination of error rates are
matched (equal FPRs and FNRs as discussed in [13]), we observe
that the proposed heuristic performs comparably in terms of both
FPRs and FNRs across two groups.
5 CONCLUSION
We propose a fairness measure relaxing the FPR and TPR equal-
ity conditions in the popular equal odds fairness regime [10]. To
conform to the proposed fairness, we design an iterative, model-
agnostic, grid-based heuristic that calibrates the outcomes per sensi-
tive attribute value (for e.g., different countries). Through a detailed
case study of our motivating application, fraud detection, we show
that the proposed heuristic is able to achieve fairness acrossmultiple
values of a single protected attribute, multiple protected attributes.
We compare our work to current fairness techniques and show
comparable performance across several public data sets.
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