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ABSTRACT: We present an attention-based Transformer model for automatic retrosynthesis route 

planning. Our approach starts from reactants prediction of single-step organic reactions for given 

products, followed by Monte Carlo tree search-based automatic retrosynthetic pathway prediction. 

Trained on two datasets from the United States patent literature, our models achieved a top-1 

prediction accuracy of over 54.6% and 63.0% with more than 95% and 99.6% validity rate of SMILES, 

respectively, which is the best up to now to our knowledge. We also demonstrate the application 

potential of our model by successfully performing multi-step retrosynthetic route planning for four 

case products, i.e., antiseizure drug Rufinamide, a novel allosteric activator, an inhibitor of human 

acute-myeloid-leukemia cells and a complex intermediate of drug candidate. Further, by using 

heuristics Monte Carlo tree search, we achieved automatic retrosynthetic pathway searching and 

successfully reproduced published synthesis pathways. In summary, our model has achieved the state-

of-the-art performance on single-step retrosynthetic prediction and provides a novel strategy for 

automatic retrosynthetic pathway planning. 

INTRODUCTION  

Organic synthesis, with a history of development over 190 years since the synthesis of urea by 

Friedrich Wöhler in 1828, is still a rate-limiting step for the discovery of novel medicines and new 

materials.1 One of the critical steps for an efficient and environmental-friendly synthesis of valuable 

molecules lies in the well-designed and feasible retrosynthetic routes. Retrosynthetic analysis, first 

used by Robert Robinson in tropinone synthesis,2 then formalized by E. J. Corey,3 is a fundamental 

technique that organic chemists applied for designing their target molecules. However, the synthesis 

route of a molecule is usually diverse, especially for complex compounds like natural products. 

Planning an efficient and environmental-friendly route of target molecule somehow largely relies on 

the knowledge of experienced chemists.  

The earliest retrosynthesis program could date back to Corey’s early work on LHASA (Logic and 

Heuristics Applied to Synthetic Analysis).4 Since the 1960s, computer-aided retrosynthetic analysis 

tools have attracted the interest of many chemists. Computer-aided retrosynthetic design has been 



well-reviewed over the past years.5-10 According to a recent review from Coley et al.,11 the computer-

aided retrosynthetic route planning strategies can be clustered into two main categories: template-

based and template-free methods. Template-based methods have been applied since the philosophy 

of retrosynthetic analysis was put forward by E. J. Corey, including the LHASA software developed by 

Corey and coworkers.4,12 One of the most known expert-encoded retrosynthetic analysis tools recently 

developed is Synthia (formerly Chematica), a commercial program developed by Grzybowski and co-

workers,9,13-15 which uses a manually collected knowledge database containing about 70,000 hand-

encoded reaction transformation rules. Synthia has been validated experimentally as an efficient 

toolkit for complex products.16 Synthia relies on human knowledge of organic synthesis and the 

encoding of organic rules,17 which took their team for more than 15 years. It will not be practical to 

manually collect all the knowledge of organic synthesis considering the exponential growth of the 

number of published reactions.18 Another straightforward strategy of template-based method such as 

the ReactionPredictor from Baldi’s group19-21, is based on mechanistic views. They considered the 

reactions between reactants as electron sinks and sources and ranked the interactions using 

approximate molecular orbitals (MOs). Though this kind of approaches were logical and interpretable 

for chemists, the manual encoding of mechanistic rules cannot be avoided and the mechanisms 

outside the knowledge database cannot be predicted. 

Besides manual rules, automated reaction templates have been extracted by several groups. Based 

on the algorithms described by Law et al.22 and Bogevig et al.,23 Segler and Waller employed a neural 

network to score templates and perform retrosynthesis and reaction prediction.24,25 Coupled with 

Monte Carlo Tree Search (MCTS), they built a novel method for synthetic pathway planning.18 Later, 

Coley et al.26 used the automated extracted templates to perform retrosynthesis analysis based on 

molecular similarity, where they considered both the similarity of products and reactants to score and 

rank the templates. However, there are two unavoidable limitations when using automated extracted 

reaction templates. First, there is an inevitable trade-off between generalization and specificity in 

template-based methods. Second, it does not consider chemical environment of molecules, as current 

template extraction algorithm only considers reaction centers and their neighboring atoms. Moreover, 

mapping the atoms between products and reactants is still an unsolved problem for all template-based 

methods.27 

Recently, template-free route planning emerges as a promising strategy. The first template-free 

model was proposed by Liu and coworkers,27 using a sequence-to-sequence (seq2seq) model to predict 

reactants SMILES28 strings given single products SMILES strings. They used a neural network 

architecture that involves a bidirectional LSTM encoder and a LSTM decoder with an additive 

attention mechanism. However, only comparable predicting accuracy was achieved compared to their 

template-based baseline (65.1% versus 61.7% in top-10 accuracy). Meanwhile, the invalidity rate of the 

top-10 predicted SMILES strings is over 20%, which restricts the application potential in further 

synthetic pathway planning.  

In 2017, Vaswani et al. proposed an attention-based Transformer model on machine translation 

tasks29 and achieved a state-of-the-art performance. Later, two emergent works used this model to 

predict reaction outcome and reactants for single retrosynthetic analysis.30,31 Herein, we present a 

novel template-free strategy using Transformer model to perform automatic retrosynthetic route 

planning. Trained on a common benchmark dataset (50,000 reactions) from the United States Patent 

and Trademark Office (USPTO) with known reaction classification information, we achieve a top-1 

predictive accuracy of 54.6%, which is superior to the previous template-based or RNN-based seq2seq 



models.32 This approach is an end-to-end and data-driven system without considering atom mapping 

and template extractions. Our model has a powerful capability of generating less invalidity error of 

SMILES compared to the previous seq2seq model. When applied recursively, our model successfully 

performed multi-step retrosynthetic route planning in four case examples. More importantly, by using 

Monte Carlo tree search coupled with a heuristic scoring function, our model can automatically 

reproduce the above four published pathways, demonstrating the potential of automatic 

retrosynthetic pathway planning using our novel template-free model.  

 

METHODS AND MATERIALS 

Cadeddu et al.33 had described retrosynthesis as natural language processing and termed chemical 

linguistics. Similarly, retrosynthetic analysis can also be treated as a machine translation problem, 

where the SMILES strings are considered as sentences and each token or character is treated as a word. 

In translation, each sentence has several different ways of representations. Similar to that, each 

product SMILES string can be “translated” to several different reactant SMILES strings, consistent with 

different disconnections in retrosynthetic analysis. Our seq2seq approach is based on the Transformer 

architecture, which represents one of the state-of-the-art techniques in neural machine translation.29 

Different from previous (RNN)-based seq2seq model, this architecture is solely based on self-attention 

mechanisms, which have two main advantages: i) It can significantly improve the efficiency of training 

time using parallelizable computation, ii) It allows the encoder and decoder to peek at different tokens 

simultaneously, enabling effective computing for long-range dependent sequences and contributing 

to producing high-validity SMILES strings. 

Model architecture. The Transformer architecture29, depicted in Figure 1, follows an encoder-

decoder structure using stacked self-attention and point-wise, fully connected layers. The encoder 

maps an input symbol sequence (𝑥1, … , 𝑥𝑛)to a continuous representations 𝑧 = (𝑧1, … , 𝑧𝑛). Given 𝑧, 

the decoder then generates an output symbol sequence (𝑦1, … , 𝑦𝑚). The encoder and decoder are 

composed of a stack of 𝑁 identical layers, each of which contains three sub-modules. The first sub-

module is a multi-head self-attention mechanism, which is made of several scaled dot-product 

attention layers running in parallel. In this attention layer, the input consists of queries 𝑄 and keys  

𝐾 of 𝑑𝑘 dimension, and values 𝑉 of 𝑑𝑣 dimension. The formula of a single attention function is 

  Attention(𝑄, 𝐾, 𝑉) = softmax(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 

This attention function will yield 𝑑𝑣-dimensional output values. These values are concatenated into 

the multi-head attention layer with the formula 

MultiHead(𝑄, 𝐾, 𝑉) = Concat(head1, … , headh)𝑊𝑂 

where headi = Attention(𝑄𝑊𝑖
𝑄

, 𝐾𝑊𝑖
𝐾 , 𝑉𝑊𝑖

𝑉) 

Where, the trainable parameter matrices, 𝑊𝑖
𝑄

∈ ℝ𝑑model×𝑑𝑘, 𝑊𝑖
𝐾 ∈ ℝ𝑑model×𝑑𝑘, 𝑊𝑖

𝑉 ∈

ℝ𝑑model×𝑑𝑣, 𝑊𝑂 ∈ ℝ𝑑model×ℎ𝑑𝑘, are the linear projections. The number of parallel attention layers or 

heads is . For each of these, 𝑑𝑘 = 𝑑𝑣 = 𝑑model/ℎ. 

The second sub-module is a fully connected feed-forward network, which is applied to each position 

separately and identically. The transformation function is 

𝐹𝐹𝑁(𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 

Where W1, 𝑊2, 𝑏1, 𝑏2 are learnable weights and biases. 



The third sub-module in the decoder stack is a modified self-attention layer using masking 

operation to prevent positions from attending to subsequent positions, which ensures that predictions 

at position 𝑖 can be only up to the known outputs at position < 𝑖. 

Similar to other sequence models, the embedding layer is added to convert the input tokens and 

output tokens to 𝑑model -dimension vectors. To preserve the order of the sequence, positional 

encoding operation is combined into the input embeddings, and these encodings have the same 

dimension 𝑑model as the embeddings, so that the two can be summed. The sine and cosine functions 

of different frequencies are used in the positional encoding as follow 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛(𝑝𝑜𝑠/100002𝑖/𝑑model) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠(𝑝𝑜𝑠/100002𝑖/𝑑model) 

Where 𝑝𝑜𝑠 is the position and 𝑖 is the dimension. 

Datasets. In our work, two datasets were used to develop our single-step retrosynthetic prediction 

models. First, a common benchmark dataset with 50,000 reactions (called USPTO_50K) was 

previously applied by Liu et al.27 and Coley et al.26 The reaction classes in the dataset have been 

labelled by Schneider and coworkers as described in Table 1. Following Liu et al., we used a 90%/10% 

training/testing split and the validation set was randomly sampled from training sets (10%). Second, 

in order to develop a more powerful model, we also used a much larger dataset called USPTO_MIT34 

from the USPTO32 with a pre-processed training, validation, and testing sets of 424573, 42457 

(randomly sample from training sets), 38648 reactions, respectively. 

Data preprocessing. Inspired by Schneider et al.35,36, the original USPTO_MIT dataset was 

preprocessed to extract the reactants and products of each reaction. We classified the reactions using 

reaction fingerprints and agent features. The details of the reaction classification algorithm and results 

can be referred to Supporting Information. Moreover, we tried token- and character-based methods 

to tokenize the SMILES strings as model input. The difference between token- and character-based 

preprocessing is described in Supporting Information. 

Monte Carlo Tree Search. To implement automatic search, MCTS37 is used to create a search tree, 

where each node corresponds to a set of molecules (shown in Figure 2). Nodes with the terminal 

molecules (precursor molecules) are called terminal nodes. Starting with the root node (a target 

molecule), the search tree grows gradually by iterating the four steps, including selection, expansion, 

simulation and backpropagation. Each intermediate node has an upper confidence bound (UCB) score 

that is an index indicating how promising it is to explore the subtree. For the rollout in the simulation 

step, when a new node is added, paths from the expanded node to terminal nodes are built by a 

random approach. Instead of a uniformly random rollout, the well-trained retrosynthesis predictive 

models were employed to design the rollout procedure for a better and faster searching. A node at 

𝑡 − 1 has a partial retrosynthesis pathway (s1, . . . , st−1) corresponding to the path from the root to 

this node. Based the node st−1, our model allows us to compute the distribution of the next node st. 

Sampling from the distribution, the pathway is elongated by one step. Elongation by our model is 

repeated until the terminal node occurs. Once elongation is done, the defined reward score of the 

generated pathway is used to propagate backward for updating the UCB scores of traversed nodes 

during the backpropagation process. 

Code implementation. All program scripts were written in Python (version 3.6), and open source 

RDKit (version 2018.09.02)38 was used for reaction preprocessing and SMILES validation. Our seq2seq 



model was built with TensorFlow (version 1.12.0)39 and the details of key hyperparameters settings of 

our models are available in Supporting Information. 

 

RESULTS 

Single-Step Evaluation. As summarized in Table 2, we have achieved best top-1 accuracy of 54.6% 

and 63.0% in USPTO_50K and USPTO_MIT dataset, respectively. With prior reaction classes 

information, the top-1 prediction accuracy of our model is much better than the LSTM-based seq2seq 

model proposed by Liu et al.27 and also higher than the template-based model by Coley et al.26 When 

the reaction classes are not provided, our model still significantly outperforms the template-based 

model of Coley et al. by 5.8%.  

The comparison of the top-10 accuracy across all classes of our model with the previous works on 

USPTO_50K and USPTO_MIT dataset is shown in Table 3. The performance of our model is much 

better than the seq2seq model of Liu et al. across all reaction categories. However, our model just 

performs slightly better or comparable to the template-based model in category 3 (C-C bond 

formation), 7 (reductions) and 9 (functional group interconversion). This might be due to the 

imbalanced data of each category. 

The ratio of invalid SMILES strings produced by our model is much lower than the previous LSTM-

based model, which means that our model has a powerful ability of capturing the grammar of SMILES 

representations. As shown in Table 4, the top-10 invalidity error of our model is 12.7%, even close to 

the top-1 invalidity error of Liu’s model. When we trained our model on the large-volume USPTO_MIT 

dataset, the top-1 accuracy increases to 63.0%, which shows the generality ability of our model by 

increasing chemical knowledge base. Similarly, worse performance also exists due to imbalanced data 

of each class. Meanwhile, the error rate of SMILES strings decreases to 8.5% in top-10 prediction.  

As shown in Figure 3, we used the top 5 retrosynthetic disconnections of a compound in test set as 

an example to analyze the specificity and generality of our model. We chose a compound in class 1 as 

an example, in which the ground truth prediction ranks first, and the other predicted reactions are 

also chemically plausible. It shows that our model is able to give reasonable diverse disconnections. 

Remarkably, the top 5 disconnections comply with the reaction class of heteroatom alkylation. 

Iterative Multi-Step Pathway Generation. As the prediction accuracy of our model is quite high 

(even higher than template-based methods), we also tried the potential of our model in recursive 

generation of candidate reactants. We took four target compounds as examples, including antiseizure 

drug Rufinamide,40 a novel allosteric activator for GPX4, and other two representative compounds 

used by other retrosynthetic programs16,18. By enumerating different reaction classes, our model could 

successfully reproduce the published reaction pathways of the four compounds.  

 For the first example of retrosynthesis pathway planning of Rufinamide (shown in Figure 4), the 

reported first step is the formation of amide bond, ranking first in reaction class 9 (functional group 

interconversion). The subsequent step is also found to rank top-1 in class 4 (heterocycle formation), 

consistent with the mechanistic view. Followed by another functional group interconversion (FGI) 

step, the final step is predicted precisely as class 9 in top-1. It is worth to be mentioned that different 

reaction class may have the same disconnections and thus resulting in the same reactants. For example, 

the third step of the above route also ranks first in class 1 (heteroatom alkylation), which is also 

plausible in chemistry. 



For the second example of retrosynthesis pathway planning of the GPX4 activator compound, as 

depicted in Figure 5. The published first step ranks second in class 5 (acylation and related process). 

The second step could be regarded as functional group interconversion (FGI) and it is predicted 

correctly as top-1 by our model. The ground truth of third step ranks top-2 in class 10, preceded by a 

final alkylation step in top1 class 1.  

As shown in Figure 6, the third example comes from the previous work of Grzybowski et al.,16 which 

is the retrosynthesis pathway planning of an antagonist of the interaction between WD repeat-

containing protein 5 (WDR5) and mixed-lineage leukemia 1 (MLL1)41, our model could recover that 

route suggested by commercial program Synthia. The first step is a function group interconversion 

(FGI) predicted as top-1 by our model, followed by a common amide formation. The final step is a C-

C bond formation and also predicted by our model as top-1 with correct reaction class. 

The fourth example, described in Figure 7, is the retrosynthesis pathway planning of an intermediate 

of drug candidate from the example of Segler and coworkers.12 The reported route cannot be 

completely predicted by our model trained on USPTO_50K dataset due to less coverage of chemical 

space. Remarkably, when trained on USPTO_MIT dataset, our model could completely reproduce the 

six-step route in our top-10 predictions, suggesting the importance of training on enlarging coverage 

of chemical knowledge space. The first third step can be easily reproduced by our model as top-1 with 

right class. The fourth step is a common functional group addition (FGA), followed by an uncommon 

reductions of a carbonyl group. The fifth step is also the toughest step in the total steps of all four 

examples. After the final step of heteroatom alkylation, our model could reproduce the steps predicted 

by the former template-based method. 

Automatic Retrosynthetic Pathway Planning. As shown above, when considering the top 10 

prediction of each of the 10 reaction classes, 100 candidate reactants for a target will be predicted in 

one step. A recursive application in a 4-step pathway will produce 100,000,000 candidate pathways 

assuming all of the output SMILES strings are valid. To make our model applicable for retrosynthetic 

pathway planning, we need to achieve efficient automatic pathway searching and ranking. We used a 

Monte Carlo tree search algorithm combined with a heuristic scoring function to achieve this purpose. 

Our heuristic scoring function is inspired from Synthia’s Chemical Scoring Function (CSF).9 We take 

the Scoremodel，representing the decoding log probability from the beam search, produced by our 

model, the changed SMILES length from target to the reactants and the changed number of rings from 

target to reactants into consideration. To scale the heuristic scoring function in a comparable range, 

we presented the function in a formula of 𝑎 × exp(𝑆𝑐𝑜𝑟𝑒model) − (𝑏 × 𝑅𝐼𝑁𝐺𝑆changed + 𝑆𝑀𝐼𝐿𝐸𝑆changed). 

We define the parameters a, b as 100, 6 in our four examples  .  

We used a dataset containing 84,807 building blocks from chemical suppliers (SigmaAldrich), 

obtained from the ZINC15 database (http://zinc15.docking.org/) and 17,182 molecules from the 

USPTO_MIT database, used as reactants at least five times as terminal nodes (a building blocks 

database of 93,563 molecules after removing redundant ones) for searching. Users can also use any 

specific building block database as terminal reactant database. 

Using our automatic retrosynthetic pathway planning strategy, most of the aforementioned steps 

in the four case examples can be found and ranked in top-10 except for the first step of example 2 

(ranks top-11) and fifth step of example 4 (ranks top-25). The overall pathway ranking results of four 

case examples can be found in Supporting Information. Though our heuristic scoring function is 

simple, these results are impressive, demonstrating the potential ability of our template-free model to 



plan automatic retrosynthetic pathway, a new way other than by using current template-based 

methods. 

 

DISCUSSION 

Advantages and disadvantages of our seq2seq models. As shown above, our models are 

template-free and free of atom mapping. Besides, our models can learn the global chemical 

environments of molecules naturally compared to other template-based methods. However, they still 

have some problems related to dataset and SMILES representations. Apart from less coverage of 

chemical reaction space, the USPTO dataset does not contain reaction yield information for reactions, 

which is useful to discriminate whether the predicted pathways are efficient. Because our models were 

trained on USPTO datasets, their prediction accuracies are currently limited by these problems. A 

commonly known challenge of using SMILES or reaction SMARTS format is the poor performance 

when dealing with stereochemistry and tautomers. Like other template-based methods, our models 

are still difficult to tackle the reactions containing chirality. In fact, our models are able to treat 

reactants or products with simple chirality as long as we include the reactions containing chirality. 

However, as mentioned by Grzybowski et al.9 and Segler et al.12, this problem is related to the grammar 

of SMILES/SMARTS due to the lack of keeping track of the changes in chirality. Furthermore, since 

our models do not contain any information about reaction conditions, it is currently impossible to 

deal with asymmetric synthesis, most of which rely on asymmetric catalysts. Meanwhile, tautomers, 

though chemically equivalent in different molecular structures, are regarded as different inputs and 

outputs in our model because current SMILES grammars are sequence sensitive. This is also a common 

problem in template-based model as described by Segler et al.12 Embedding stereochemistry and 

tautomerization into SMILES representation is a future direction. 

Evaluation of different pathways. There are different pathways predicted by retrosynthetic 

programs. One model can offer thousands of different pathways. However, picking a suitable pathway 

from them is not easy. For medicinal chemists, they may want a pathway expanding structure activities 

relationship exploration. For organic chemists especially those working in total synthesis of natural 

products, they may have preference to the more efficient and greener pathways. For process chemists, 

the cost of starting materials and avoidance of toxic and active molecules may influence their final 

choices. It is difficult to find a pathway that fulfill all these requirements. A heuristic metric proposed 

by Synthia seems to be  a reasonable strategy.9 They considered two scoring functions: Chemical 

Scoring Function (CSF) and Reaction Scoring Function (RSF). Another potential strategy is to use the 

SCScore metric proposed by Coley and coworkers.42 In general, a comprehensive scoring function is 

related to the cost of building blocks, the yield of each step, the avoidance of toxic compounds and 

functional group incompatibility, the length of the pathway, etc. The design of a perfect pathway 

scoring function is still an unsolved problem in the community. 

Evaluation of different models. Evaluation of retrosynthetic analysis approach is difficult by 

using a benchmark metrics. The strategy applied by Segler et al.12 is a reasonable one. They invited 

professional organic chemists to vote the predicted and ground truth pathways. If the chemists do not 

show preference to the ground truth pathway, it means that the predicted one is also reasonable. 

However, this assessment is difficult to be standardized. Certainly, validation in wet lab is the most 

reliable way. As most chemists are interested in the synthesis of novel complex compounds or finding 

efficient alterative pathways for valuable molecules, validation of these kinds of compounds with wet 



experiments should be considered. For example, the cooperation between MilliporeSigma and 

Grzybowski et al. had resulted in the efficient syntheses of eight diverse and medicinally relevant 

targets, making the chemistry community realize the reliability of Synthia.9 

 

CONCLUSION 

In this work, we have demonstrated a novel approach for retrosynthetic analysis using Transformer-

based seq2seq model. By enumerating ten reaction classes and predicting top 10 disconnections of 

each class, our model could reproduce four published retrosynthetic pathways. To further 

demonstrate the potential of our model to perform automatic retrosynthetic route planning, we 

applied Monte Carlo Tree Search combined with a heuristic scoring function to explore the potential 

routes for a given target molecule. The published pathways of above four examples could be recovered 

using our heuristic MCTS method. Unlike other template-based methods, which either relied on 

experts’ laborious work or simple contextless rule-based system, our approach is fully end-to-end and 

incorporates the global molecular context of the reaction species naturally. We have first shown that 

a template-free approach can be used to perform automated retrosynthetic pathway searching and 

could reproduce the published synthesis pathway of valuable compounds. As mentioned by Coley et 

al., a complete retrosynthetic program is made up of five components11: a library containing the 

disconnections rules; a recursive application engine that generates candidate reactants for target 

compounds; a building blocks database containing available compounds acts as terminal nodes; a 

strategy to guide the retrosynthetic search; a scoring function for single-step or pathway. And our 

approach have included all of these components as shown in above.   

Our approach may play an important role in retrosynthetic route planning with larger and more 

diverse chemical knowledge base. After all, the information of reaction conditions like catalysts, 

solvents and reagents are missing in our model due to the lack of a more comprehensive datasets like 

Reaxys database or in-house electronic lab notebook data. Future work is also required to tackle the 

problems like SMILES’ poor representations in stereochemistry and tautomerization. Furthermore, 

we believe that potential application of retrosynthetic program may play an important role in de novo 

molecular design43 and automated synthesis of molecules44. 
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Figure 1. Transformer model architecture and explanation of training process. 

  



 

 

Figure 2. Monte Carlo Tree Search and its application in retrosynthetic analysis. (a) Selection step. The 

search tree is traversed from the root to a leaf by choosing the child with the largest UCB score. (b) 

Expansion step. (c) Simulation step. Paths to terminal nodes are created by the rollout procedure using 

Transformer model. Rewards of the corresponding molecules are computed. (d) Backpropagation step. The 

internal parameters of upstream nodes are updated. 

 

 

  



 

Figure 3. top-5 retrosynthetic predictions of an example reaction in class 1. The model successfully proposes 

the recorded reactants with rank 1, corresponding to a heteroatom alkylation. Other suggestions among the 

top 5 predictions are also grammatically valid while chemically plausible. 

 

 

 

Figure 4. Iterative multi-step pathway generation. Routes are constructed by iteratively applying the single-

step retrosynthetic methodology to Rufinamide. The suggested disconnections are consistent with 

published pathways. 



 

 

Figure 5. Iterative multi-step pathway generation. Routes are constructed by iteratively applying the single-

step retrosynthetic methodology to an allosteric activator for GPX4. The suggested disconnections are 

consistent with published pathways. 

 

 



Figure 6. Iterative multi-step pathway generation. Routes are constructed by iteratively applying the single-

step retrosynthetic methodology to an antagonist of the interaction between WDR5 and MLL1, from the 

examples of Grzybowski et al. The suggested disconnections are consistent with published pathways. 

 

 

Figure 7. Iterative multi-step pathway generation. Routes are constructed by iteratively applying the single-

step retrosynthetic methodology to an intermediate of drug candidate from the examples of Segler et al. 

The suggested disconnections are consistent with published pathways. 

 

Table 1. Descriptions of Each of the 10 Reaction Classes and the Fraction of the USPTO_50K 

and USPTO_MIT 

reaction 

class 

reaction 

name 

fraction of 

USPTO_50K (%) 

fraction of 

USPTO_MIT (%) 

1 heteroatom alkylation and arylation      30.3             29.9        

2 acylation and related processes      23.8             24.9        

3 C-C bond formation      11.3             13.4        

4 heterocycle formation       1.8              0.7        



5 protections       1.3              0.3        

6 deprotections      16.5             14.1        

7 reductions       9.2              9.4        

8 oxidations       1.6              2.0        

9 functional group interconversion (FGI)       3.7              5.0        

10 functional group addition (FGA)       0.5              0.2        

 

Table 2. Model Performance Aggregated Across All Classes 

 top-n accuracy (%), n = 

model 1 3 5 10 

Liu et al. baseline (USPTO_50K ) 35.4 52.3 59.1 65.1 

Liu et al. seq2seq (USPTO_50K ) 37.4 52.4 57.0 61.7 

Similarity+class (USPTO_50K ) 52.9 73.8 81.2 88.1 

Similarity (USPTO_50K ) 37.3 54.7 63.3 74.1 

Transformer+token (USPTO_50K ) 42.0 64.0 71.3 77.6 

Transformer+token+class (USPTO_50K ) 54.3 74.1 79.2 84.4 

Transformer+char (USPTO_50K ) 43.1 64.6 71.8 78.7 

Transformer+char+class (USPTO_50K ) 54.6 74.8 80.2 84.9 

Transformer+char (USPTO_MIT ) 54.1 71.8 76.9 81.8 

Transformer+char+class (USPTO_MIT ) 63.0 79.2 83.4 86.8 

 

Table 3. Model Top-10 Accuracy within Each Class When the Reaction Class Is Known a Priori 

  reaction class, top-10 accuracy (%) 

model 1 2 3 4 5 6 7 8 9 10 

Liu et al. baseline (USPTO_50K) 77.2 84.9 53.4 54.4 6.2 26.9 74.7 68.4 46.7 73.9 

Liu et al. seq2seq (USPTO_50K) 57.5 74.6 46.1 27.8 80.0 62.8 67.8 69.1 47.3 56.5 



Similarity+class (USPTO_50K) 86.7 94.2 74.6 67.0 97.1 95.5 88.3 98.8 71.2 91.3 

Transformer+char+class (USPTO_50K) 83.1 90.4 76.2 60.0 92.3 88.6 88.2 86.4 73.9 82.6 

Transformer+char+class (USPTO_MIT) 88.2 91.2 81.9 67.8 75.4 86.6 87.1 88.5 73.5 66.7 

 

Table 4. Breakdown of the Grammatically Invalid SMILES Error for  

Different Beam Sizes 

  invalid SMILES rate (%) 

model 1 3 5 10 

Liu et al. seq2seq (USPTO_50K ) 12.2  15.3  18.4  22.0  

Transformer+token (USPTO_50K )  2.2   3.7   4.8   7.8  

Transformer+token+class (USPTO_50K )  2.3   4.9   7.0  12.1  

Transformer+char (USPTO_50K )  2.1   3.5   4.7   8.3  

Transformer+char+class (USPTO_50K )  2.4   4.5   6.4  12.7  

Transformer+char+class (USPTO_MIT )  0.4   1.4   2.9   8.5  

 

 

 

 


