Chen-Hsuan Lin

Senior Research Scientist @ NVIDIA Research

Address: 2788 San Tomas Expressway, Santa Clara, CA 95051, USA E-mail: chenhsuanl@nvidia.com • Website: https://chenhsuanlin.bitbucket.io/

Research Interests

Computer vision & graphics – 3D reconstruction, view synthesis, neural rendering **Deep learning** – generative modeling, self-supervised learning, generative AI applications

Education

Carnegie Mellon University

Ph.D. in Robotics (School of Computer Science)

- Advisor: Simon Lucey
- Recipient of NVIDIA Graduate Fellowship (2019)
- Thesis: Learning 3D Registration and Reconstruction from the Visual World
- Thesis committee: Simon Lucey (chair), Deva Ramanan, Abhinav Gupta, Andrea Vedaldi

Carnegie Mellon University

M.S. in Robotics (School of Computer Science)

- Advisor: Simon Lucey
- Thesis: The Conditional Lucas & Kanade Algorithm

National Taiwan University

- **B.S. in Electrical Engineering**
 - Advisor: Homer H. Chen

Experiences

NVIDIA Research

Senior Research Scientist

Research Scientist

- Manager: Ming-Yu Liu
- Research in 3D reconstruction, 3D generation, and neural rendering [2][3][4]
- Recognized with Best Inventions of 2023 by TIME Magazine [3]
- Technical co-lead of NVIDIA Edify 3D (productized AI model for 3D asset generation) [1]

Carnegie Mellon University

Graduate Research Assistant

- Advisor: Simon Lucey
- Learning registration and reconstruction of neural 3D scene representations [5]
- Self-supervised 3D shape reconstruction via differentiable and neural rendering [6] [11]
- Non-rigid 3D structure recovery from 2D keypoints of single objects [7][14]
- Structured optimization of image registration for visual tracking and recognition [10] [13] [15]
- Dense 3D reconstruction of faces from 2D self-captured monocular videos

Facebook AI Research (Meta AI)

Research Intern

- Mentors: Kaiming He, Georgia Gkioxari, Justin Johnson
- Learning 3D representations for improving 2D object detection systems

Pittsburgh, PA, USA Aug. 2017 – Jun. 2021

Pittsburgh, PA, USA Aug. 2014 – Aug. 2016

Taipei, Taiwan Sep. 2009 – Jun. 2013

Santa Clara, CA, USA Jun. 2023 – present Aug. 2021 – May 2023

Pittsburgh, PA, USA Sep. 2014 – Jun. 2021

Menlo Park, CA, USA May 2019 – Aug. 2019

Adobe Research Seattle, WA, USA **Research Intern** May 2018 - Nov. 2018 Mentors: Oliver Wang, Bryan Russell, Eli Shechtman, Vladimir Kim, Matthew Fisher Photometric optimization for 3D mesh reconstruction from RGB videos [8] Adobe Research Seattle, WA, USA **Research Intern** Apr. 2017 – Aug. 2017 Mentors: Eli Shechtman, Oliver Wang, Ersin Yumer • Learning realistic geometric corrections of objects for image compositing [9] National Taiwan University Taipei, Taiwan **Undergraduate Research Assistant** Sep. 2011 - Aug. 2013 • Advisor: Homer H. Chen Perceptual qualitative rate-distortion optimization for video compression MediaTek Inc. Hsinchu, Taiwan Software Engineering Intern (computer vision) Jul. 2012 - Sep. 2012

Publications

Technical Reports

 NVIDIA: <u>Chen-Hsuan Lin</u> (core contributor) Edify 3D: Scalable High-Quality 3D Asset Generation arXiv preprint (2411.07135), 2024

Distributed algorithms for parallelized face detection on mobile devices

Conference Papers

- [2] Jonathan Lorraine, Kevin Xie, Xiaohui Zeng, <u>Chen-Hsuan Lin</u>, Towaki Takikawa, Nicholas Sharp, Tsung-Yi Lin, Ming-Yu Liu, Sanja Fidler, and James Lucas <u>ATT3D: Amortized Text-to-3D Object Synthesis</u> In *IEEE International Conference on Computer Vision* (ICCV), 2023
- [3] Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H. Taylor, Mathias Unberath, Ming-Yu Liu, and <u>Chen-Hsuan Lin</u> Neuralangelo: High-Fidelity Neural Surface Reconstruction In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023 TIME Magazine's Best Inventions of 2023
- [4] <u>Chen-Hsuan Lin</u> *, Jun Gao*, Luming Tang*, Towaki Takikawa*, Xiaohui Zeng*, Xun Huang, Karsten Kreis, Sanja Fidler[†], Ming-Yu Liu[†], and Tsung-Yi Lin <u>Magic3D: High-Resolution Text-to-3D Content Creation</u> In *IEEE Conference on Computer Vision and Pattern Recognition* (CVPR), 2023 (highlight)
- [5] <u>Chen-Hsuan Lin</u>, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey BARF: Bundle-Adjusting Neural Radiance Fields In IEEE International Conference on Computer Vision (ICCV), 2021 (oral presentation)
- [6] <u>Chen-Hsuan Lin</u>, Chaoyang Wang, and Simon Lucey SDF-SRN: Learning Signed Distance 3D Object Reconstruction from Static Images In Conference on Neural Information Processing Systems (NeurIPS), 2020
- [7] Chaoyang Wang, <u>Chen-Hsuan Lin</u>, and Simon Lucey
 <u>Deep NRSfM++: Towards Unsupervised 2D-3D Lifting in the Wild</u> In *IEEE International Conference on 3D Vision* (3DV), 2020 (oral presentation)

- [8] <u>Chen-Hsuan Lin</u>, Oliver Wang, Bryan C. Russell, Eli Shechtman, Vladimir G. Kim, Matthew Fisher, and Simon Lucey Photometric Mesh Optimization for Video-Aligned 3D Object Reconstruction In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019
- [9] <u>Chen-Hsuan Lin</u>, Ersin Yumer, Oliver Wang, Eli Shechtman, and Simon Lucey ST-GAN: Spatial Transformer Generative Adversarial Networks for Image Compositing In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018
- [10] Chaoyang Wang, Hamed Kiani Galoogahi, <u>Chen-Hsuan Lin</u>, and Simon Lucey Deep-LK for Efficient Adaptive Object Tracking In IEEE International Conference on Robotics and Automation (ICRA), 2018
- [11] <u>Chen-Hsuan Lin</u>, Chen Kong, and Simon Lucey Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction In AAAI Conference on Artificial Intelligence (AAAI), 2018 (oral presentation)
- [12] Rui Zhu, Chaoyang Wang, <u>Chen-Hsuan Lin</u>, Ziyan Wang, and Simon Lucey Object-Centric Photometric Bundle Adjustment with Deep Shape Prior In IEEE Winter Conference on Applications of Computer Vision (WACV), 2018
- [13] <u>Chen-Hsuan Lin</u> and Simon Lucey Inverse Compositional Spatial Transformer Networks In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017 (oral presentation)
- [14] Chen Kong, <u>Chen-Hsuan Lin</u>, and Simon Lucey Using Locally Corresponding CAD Models for Dense 3D Reconstructions from a Single Image In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017
- [15] <u>Chen-Hsuan Lin</u>, Rui Zhu, and Simon Lucey <u>The Conditional Lucas & Kanade Algorithm</u> In European Conference on Computer Vision (ECCV), 2016

Patents

Neural Networks to Generate Pixels U.S. Patent Application No. 17/990614	Aug. 2024
High Resolution Text-to-3D Content Creation U.S. Patent Application No. 18/232279	May 2024
3D Object Reconstruction using Photometric Mesh Representation U.S. Patent No. 10769848	Sep. 2020
Image Composites using a Generative Adversarial Neural Network U.S. Patent No. 10719742	Jul. 2020

Honors & Awards

Awards & Prizes

 Best Inventions of 2023, TIME Magazine Top Poster Award finalist, NVIDIA GPU Technology Conference (GTC), 2020 Outstanding Achievement Award, 2012 Altera InnovateAsia FPGA Design Competition 	Oct. 2023 Mar. 2020 Sep. 2012
Fellowships & Scholarships	
 NVIDIA Graduate Fellowship Amazon Go Ph.D. Fellowship (declined) Study Abroad Scholarship, Ministry of Education, Taiwan 	Dec. 2018 Dec. 2018 Jun. 2018

Paper Reviewing Recognition

- Highlighted Reviewer, International Conference on Learning Representations (ICLR), 2022 Apr. 2022
- Outstanding Reviewer, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021 May 2021

Press Coverage

Forbes: NVIDIA Breaks Ground With Edify 3D	Nov. 2024
NVIDIA Blog: NVIDIA Researchers Harness Real-Time Gen AI to Build Immersive Desert World	Jul. 2024
NVIDIA Blog: For Your Edification: Shutterstock Releases Generative 3D, Getty Images Upgrades Service	
Powered by NVIDIA	Jul. 2024
VentureBeat: Shutterstock releases generative 3D, Getty Images upgrades service powered by NVIDIA	Aug. 2024
VentureBeat: NVIDIA partners with Shutterstock, Getty Images on AI-generated 3D content	Mar. 2024
NVIDIA Blog: NVIDIA Brings Generative AI to World's Enterprises With Cloud Services for Creating Large	
Language and Visual Models	Oct. 2023
TIME: NVIDIA Neuralangelo: The 200 Best Inventions of 2023	Oct. 2023
VentureBeat: NVIDIA researchers use AI to turn 2D video clips into detailed 3D graphics	Jun. 2023
The Verge: NVIDIA's new Neuralangelo AI model creates 3D models from 2D video clips.	Jun. 2023
Engadget: NVIDIA's Neuralangelo is an AI model that can generate 3D objects from 2D videos	Jun. 2023
Yahoo! News: NVIDIA's Neuralangelo is an AI model that can generate 3D objects from 2D videos	Jun. 2023
WIRED: NVIDIA Research's Neuralangelo can build 3D structures from 2D videos	Jun. 2023
BBC Science Focus: Breakthrough AI could soon generate whole 3D worlds from 2D videos	Jun. 2023
PetaPixel: NVIDIA's Neuralangelo AI Turns iPhone Video into Detailed 3D Structures	Jun. 2023
Computerworld: NVIDIA Neuralangelo: A faster path to the industrial metaverse	Jun. 2023
NVIDIA Blog: Digital Renaissance: NVIDIA Neuralangelo Research Reconstructs 3D Scenes	Jun. 2023
Forbes: What NVIDIA's New Text-To-3D Means For Engineering & Product Design	Nov. 2022
Ars Technica: 3D for everyone? NVIDIA's Magic3D can generate 3D models from text	Nov. 2022
Gigazine: NVIDIA announces AI "Magic3D" that generates high-resolution 3D models from text	Nov. 2022

Invited Talks

 High-Resolution Neural 3D Content Creation Cornell University Open Data Science Conference (ODSC), 2023 Massachusetts Institute of Technology 	Ithaca, NY, USA • Oct. 2024 San Francisco, CA, USA • Oct. 2023 Cambridge, MA, USA • Sep. 2023
 Diffusion Models for 3D Asset Generation WACV 2024 Workshop on Rich Media with Generative AI SIGGRAPH 2023 Course on Diffusion Models 	Waikoloa, HI, USA • Jan. 2024 Los Angeles, CA, USA • Aug. 2023
 Neuralangelo: High-Fidelity Neural Surface Reconstruction Taiwan Semiconductor Manufacturing Company Ltd. 	Hsinchu, Taiwan • Jul. 2023
 Magic3D: High-Resolution Text-to-3D Content Creation Sea AI Labs & National University of Singapore ByteDance Ltd. 	Singapore • Dec. 2022 Singapore • Dec. 2022
 Learning 3D Registration and Reconstruction from the Visual World National Taiwan University Massachusetts Institute of Technology Carnegie Mellon University MediaTek Inc. Facebook (Meta) Reality Labs Apple ML Research Amazon Science 	Taipei, Taiwan • Jan. 2022 Cambridge, MA, USA • Sep. 2021 Pittsburgh, PA, USA • Apr. 2021 Hsinchu, Taiwan • Apr. 2021 Redmond, WA, USA • Mar. 2021 Seattle, WA, USA • Mar. 2021 Seattle, WA, USA • Mar. 2021

 Magic Leap Inc. NVIDIA Research Google Research 	Sunnyvale, CA, USA • Mar. 202 Santa Clara, CA, USA • Mar. 202 Seattle, WA, USA • Mar. 202
 BARF: Bundle-Adjusting Neural Radiance Fields IEEE International Conference on Computer Vision (ICCV), 2021 	Montreal, Canada • Oct. 202
 SDF-SRN: Learning Signed Distance 3D Object Reconstruction from Static Images Massachusetts Institute of Technology Beijing Academy of Artificial Intelligence 	Cambridge, MA, USA • Jan. 202 Beijing, China • Nov. 202
 Learning Dense 3D Object Reconstruction without Geometric Supervision NVIDIA GPU Technology Conference (GTC), 2020 Carnegie Mellon University 	San Jose, CA, USA • Mar. 202 Pittsburgh, PA, USA • Jan. 202
 Learning to Align without Geometric Supervision Carnegie Mellon University 	Pittsburgh, PA, USA • Apr. 201
 Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction AAAI Conference on Artificial Intelligence (AAAI), 2018 	New Orleans, LA, USA • Feb. 201
 Inverse Compositional Spatial Transformer Networks IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017 Oculus Research (Meta Reality Labs) 	Honolulu, HI, USA • Jul. 201 Pittsburgh, PA, USA • Dec. 201
 The Conditional Lucas & Kanade Algorithm Carnegie Mellon University MathWorks Inc. Oculus VR (Meta Platforms Inc.) 	Pittsburgh, PA, USA • Jun. 201 Natick, MA, USA • Apr. 201 Menlo Park, CA, USA • Feb. 201
 Professional Services Area Chair / Senior Program Committee International Conference on Learning Representations (ICLR) Conference of the European Association for Computer Graphics (Eurographics) 	2024, 202 202
Journal Paper Reviewer	
 IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) IEEE Transactions on Visualization and Computer Graphics (TVCG) International Journal of Computer Vision (IJCV) Transactions on Machine Learning Research (TMLR) IEEE Transactions on Image Processing (TIP) IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) Journal of Machine Vision and Applications (MVAP) IEEE Transactions on Affective Computing (TAFFC) 	2021 – 202 202 2019, 2020, 202 202 202 201 201 201
Conference Paper Reviewer	
 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Conference on Neural Information Processing Systems (NeurIPS) ACM Conference on Computer Graphics and Interactive Techniques in Asia (SIG ACM International Conference on Computer Graphics and Interactive Technique International Conference on Learning Representations (ICLR) IEEE International Conference on Computer Vision (ICCV) 	
 International Conference on Robotics and Automation (ICRA) IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) European Conference on Computer Vision (ECCV) 	2012 202 202 2018 – 202

5

 International Conference on Machine Learning (ICML) IEEE International Conference on 3D Vision (3DV) IEEE International Symposium on Circuits and Systems (ISCAS) 	2022 2021 2014
CMU Institutional Services	
 Ph.D. in Robotics Research Qualifier Committee Examinee: Nathaniel Chodosh, Wei Dong, Ming-Fang Chang, Chaoyang Wang 	2019, 2020
M.S. in Robotics Thesis Committee Examinee: Chaoyang Wang	2018
M.S. in Robotics Admission Committee	2019

Teaching Experiences

Carnegie Mellon University	Pittsburgh, PA, USA
 Graduate Student Instructor / Teaching Assistant Course: Visual Learning and Recognition (CMU 16-824) Instructor: Abhinav Gupta Full lectures: 3D Vision & 3D Reasoning, Semantic Segmentation & Pixel Labeling 	Spring 2019
• Head Teaching Assistant Course: Computer Vision (CMU 16-720) Instructors: Srinivasa Narasimhan, Simon Lucey, Yaser Sheikh	Fall 2017
• Teaching Assistant Course: Designing Computer Vision Apps (CMU 16-423) Instructor: Simon Lucey	Fall 2015