Speeding up Elliptic Curve Scalar Multiplication without Either Precomputation or Adaptive Coordinates

Mike Hamburg Rambus Cryptography Research

Original paper

- Kim, Choe, Kim, Kim, Hong, submitted to CHES 2017
 - <u>https://eprint.iacr.org/2017/669.pdf</u>

- Speed up Montgomery ladder on short Weierstrass curves
 - Uses complicated "on-the-fly adaptive coordinates"
 - ~ 12M+12.5A/bit, 8-10 registers
 - vs ~14M/bit for previous work

Gist of the idea

- State of Montgomery ladder: (P,Q,R) where P+Q+R = 0
 - P,Q,R are on a line y=mx+b
- Jacobian co-Z representation:

$$z^2 \cdot x_P, z^2 \cdot x_Q, z^2 \cdot x_R, z^3 \cdot y_P, z \cdot m$$

Refinement

12M + 8.5A/bit, 6 registers

Coordinates $X_0 := 3Z^2 \cdot x_0$ $X_1 := Z^2 \cdot (x_1 - x_0)$ $X_2 := Z^2 \cdot (x_2 - x_0)$ $Y_0 := 2Z^3 \cdot y_0$ $M := 2Z \cdot \frac{y_1 - y_0}{2}$ $x_1 - x_0$

Jacobi co-Z setup trick: odd degree on Y,M -> can do x-only!

Ladder step $Y_1 \leftarrow Y_0 + M \cdot X_1$ $k \leftarrow Y_1^2$ $z \leftarrow Y_1 \cdot (X_2 - X_1)$ $X'_0 \leftarrow X_0 \cdot z^2$ $Y_0' \leftarrow Y_0 \cdot z^3$ $l \leftarrow k + M \cdot z$ $M' \leftarrow 2 \cdot X_1 \cdot (X_2 - X_1)^2 - k - l$ $X'_2 \leftarrow k \cdot l$ $X'_1 \leftarrow (M'/2)^2 - X'_0 - X'_2$

Future work

- Submit Curve256224192961 to TLS 1.3
- Simplify DPA countermeasures
- Defuse nuclear crisis