

It was right under your nose

2017.09.26

SICADA(Side Channel Analysis Design Academy)

Dept. of Information Security, Cryptology, and Mathematics, Kookmin University

Bo-Yeon Sim and Dong-Guk Han

***** the patterns of data-dependent conditional branches

Algorithm. Left to Right Binary Method			I
INPUT	$M, N, k = (k_{n-1}, k_{n-2}, \cdots, k_0)_2$	_	1996 Timing Attacks
OUTPUT	M ^k mod N		1009 Simple Dowon Analysia
Step 1. $R = 1$			1998 Simple Power Analysis
Step 2. For $i = n - 1$ down to 0 do			
2.1. $R = R \times R \mod N$			
2.2. IF $k_i = 1$ then $R = R \times M \mod N$			
Step3. Return R			

Countermeasure → make it regular

Mathematical proof

statistical characteristic according to intermediate values

the interrelationship between data, and etc.

various countermeasures

have been proposed

Algorithm. Left to Right Square and Multiply Always				
INPUT	$M, N, d = (d_{n-1}, d_{n-2}, \cdots, d_0)_2$			
OUTPUT	M ^d mod N			
Step 1. $R_0 = 1$				
Step 2. For $i = n - 1$ down to 0 do				
Countermeasure				
Step4. Return R_0				

Do you think is it secure?

Attack on Protected PKC using a Single Trace

The attack does not require sophisticated pre-processing

such as decapsulation, localization, multi-probe, and principle component analysis

I The power consumption is related to the k_i value

Algorithm. Left to Right Square and Multiply Always				
INPUT	$M, N, k = (k_{n-1}, k_{n-2}, \cdots, k_0)_2$			
OUTPUT	M ^k mod N			
Step 1. $R_0 = 1$				
Step 2. For $i = n - 1$ down to 0 do				
2.1. $R_0 = R_0 \times R_0 \mod N$				
2.2. $R_{1-k_i} = R_0 \times M \mod N$				
Step4. Return	R_0 + data / exponent blinding			

$$k = (k_{n-1}k_{n-2}\cdots k_0)_2$$
$$k_i \uparrow k_i \uparrow \cdots \uparrow$$

Private key bits are directly loaded during the check phase,

but no countermeasures have been considered to protect this phase

ISPEC 2017

13th International Conference on Information Security Practice and Experience Melbourne, Australia | 13-15 Dec 2017

I am going to present our paper at ISPEC 2017. If you have any questions, let's see you there.