
41

Dynamic Load Balancing for

Multi-Physical Modelling using

Unstructured Meshes

V.Aravinthan

1

, S.P.Johnson, K.McManus, C.Walshaw,

M.Cross

Introduction

As the complexity of parallel applications increase, the performance limitations

resulting from computational load imbalance become dominant. A mapping that

balances the workload of the processors in a parallel machine will typically increase

the overall e�ciency of a computation and so reduce the run-time. For many cases

the computation times associated with a given task cannot be pre-determined even

at run-time and so static load balancing returns poor performance. For many classes

of problems, such as multi-physics problems involving 
uid and solid mechanics with

phase changes, the workload may change over the course of a computation and cannot

be estimated beforehand. For such applications the mapping of loads to processors is

required to change dynamically, at run-time if reasonable e�ciency is to be maintained.

This paper examines the issues of dynamic load balancing in the context of PHYSICA,

a substantial three dimensional unstructured mesh multi-physics continuummechanics

computational modelling code based on �nite volumes methods [CCB

+

96]. PHYSICA

is primarily intended for the modelling of the processes involved in metal casting. It

provides a range of modelling facilities including compressible Navier Stokes 
ow, heat,

1 Parallel Processing Research Group, Centre for Numerical Modelling and Process

Analysis, University of Greenwich, London, UK. email: V.Aravinthan@gre.ac.uk

Eleventh International Conference on Domain Decomposition Methods

Editors Choi-Hong Lai, Petter E. Bj�rstad, Mark Cross and Olof B. Widlund
c

1999 DDM.org



DYNAMIC LOAD BALANCING FOR MULTI-PHYSICAL MODELLING 381

phase change, elastic-visco plastic, solid mechanics, chemical reaction and turbulence.

The proposed generic strategy should be applicable to any unstructured mesh multi-

physics parallel codes regardless of the application.

Parallel Processing

Multi-Physics modelling on a continuum scale brings together established techniques

for structural mechanics and Computational Fluid Dynamics (CFD) to address

problems which involve many physical phenomena. The signi�cant non-linearity of

the di�erential equations involved leads to a high computational demand from even

moderate problem sizes. Parallel computation is required to satisfy this demand. In this

respect, Single Program Multiple Data (SPMD) overlapping Domain Decomposition

(DD) techniques have been used by authors to successfully parallelise unstructured

mesh multi-physics applications e.g. [McM96].

Many computational problems assume a discrete model of a physical system, and

calculate a set of values for every domain point in the model. These values are often

functions of time, so that it is intuitive to think of the computation as marching

through time. DD is used to map such problems onto multiprocessor machines so that

regions of the model domain are assigned to each processor. The operational behaviour

of such a system is often characterised as a sequence of steps, or iterations. During a

step, a processor computes the appropriate values for its domain points. At the end of

the step, it communicates any newly computed results required by other processors.

Finally, it waits for other processors to complete their computation step and send the

data required for the computation of the next step [CCB

+

96, McM96]. As practical

experience is accumulated the focus is directed to the improvement of scalability and

consequently load balancing.

Load Balance

Data distribution in an unstructured mesh DD parallel application is ordinarily

based on a decomposition of the mesh into P subdomains calculated to balance the

computational load on each processor. It is inevitable that the data dependence in a

DD parallel application will require punctuation by frequent synchronisation points. A

static mesh partition is unlikely to provide a good load balance when solving dynamic

non-linear problems in parallel using an unstructured mesh. Prediction of the load

associated with each mesh entity (grid point, face, element, etc.) is not simple. Even

if the work-load is predicted accurately, the computational work associated with each

portion of a problem's subdomain may change over the course of solving the problem.

This can occur when the behaviour of the modelled physical system changes with time.

For example, during the course of solving a problem, more work may be required

to resolve features of the emerging solution. Load variations due to di�erences, for

example, in element shape or perhaps the number of grid point adjacencies may be

anticipated, but some e�ects such as changes in the discretisation or the physics

associated with each entity may not be known until the code has run for some

time. Cache e�ects and inhomogeneous architectures further complicate prediction.

Adaptive meshing involving re�nement and coarsening will inevitably su�er from

signi�cant load imbalance. Even with a �xed mesh, multi physical simulations which



382 ARAVINTHAN, JOHNSON, MCMANUS, WALSHAW, AND CROSS

include the modelling of phase changes such as melting or solidi�cation [CCB

+

96], can

lead to signi�cant imbalance. Here the application of 
ow calculations are required

only for the liquid portion of the problem and similarly the stress calculations are

only required for the solid portion. Such load imbalance may only be determined at

run time.

Because of the synchronisation between steps, the system execution time during a

step is e�ectively determined by the execution time of the slowest, or most heavily

loaded processor. We can then expect system performance to deteriorate in time,

as the changing resource demand causes some processor to become proportionally

overloaded. One way of dealing with this problem is to periodically redistribute, or

remap load among processors. Such Dynamic Load Balancing (DLB) schemes for

moderately dynamic load changes have been addressed by many workers [SB94, Wat95]

but DLB schemes for large and/or rapid load swings and generic DLB schemes remain

a challenge. The presented generic algorithm monitors the work load at run time in

order to predict the transfer of load between processors that will minimise the overall

runtime of the computation.

Methodology

A practical solution of the DLB problem involves [Wat95]:

� Load Evaluation: Some estimators of a processor's load must be required

to �rst determine that a load imbalance exists.

� Pro�tability Determination: Once the loads of the processors have been

measured, the presence of a load imbalance can be detected. If the cost

of the imbalance exceeds the cost of load balancing, then load balancing

should be initiated.

� Load Transfer Calculation: Based on the measurements taken in the �rst

phase, the ideal work transfers necessary to balance the computation are

calculated.

� Load Migration: Workloads are transferred from one processor to

another.

By decomposing the DLB process into distinct phases, experiments can be performed

with di�erent strategies for each of the above steps, allowing the impact of di�ering

techniques to be investigated.

Load Evaluation

The e�ect of any load-balancing scheme is directly dependent on the quality of

load evaluation. Good load measurement is necessary both to determine that a load

imbalance exists and to calculate how much work should be transferred to relieve that

imbalance. One way to easily overcome the performance peculiarities of a particular

architecture is to measure the load of a task directly. Typical machines provide clocks

with millisecond to microsecond level accuracy. These timing facilities can be used to

time each task, providing accurate measurements in the categories of execution time,

idle time and communication overhead. In fact, the user need not manually time the



DYNAMIC LOAD BALANCING FOR MULTI-PHYSICAL MODELLING 383

Converge?

Time Step

End

Time-Step

Loop

Start

Momentum

Pressure

Heat

Solidification

Converge?

Displacement

Stress

Mechanics
Loop
Fluid

Solid Mechanics
Loop

Level 3
(Solvers)

Level 2
(Inner loops:
Stress & Flow)

Level 1
(Outer loop:
Time-Step)

Figure 1 Di�erent levels of loops that can be found in a typical CFD code.

code at all. These timings can be easily taken at the library level. A message-passing

library could certainly be instrumented to accumulate time into various categories.

Any time between communication operations would be labelled as runtime (execution

time or CPU time), any time actually sending or receiving data would be tagged as

communication time and any time waiting to receive a message would be accumulated

as idle time.

Most scienti�c codes have di�erent levels of loops within the code, for example a top

level loop such as the time step loop and lower level loops such as the solver loops (see

Figure 1). Thus the appropriate part(s) of the application code to time can vary widely

between di�erent codes. One code may necessitate the timing of the top loop level,

but another code may require timing of the lower loop levels. These application codes

usually have inherent synchronisation points within the loops. In particular, global

norm calculations and other termination detection mechanisms typically involve a

global sum, checking of convergence or some other reduction operation, the results

of which are checked by each processor involved. These barrier operations provide a

natural, clean point at which to initiate load balancing.



384 ARAVINTHAN, JOHNSON, MCMANUS, WALSHAW, AND CROSS

Pro�tability Determination

The DLB model is a run-time overhead and so must not initiate the rebalancing

mechanism too frequently as this will waste time on moving the data around. On

the other hand, if the rebalancing mechanism is initiated too infrequently, the load

between the processors of the parallel machine can become badly balanced and hence

the performance will deteriorate in time. Thus, it is important to correctly determine

the criteria that will be used to decide when to re-distribute the data. Three inter-

linking factors are involved:

� The level of imbalance in each section of the code

� The run-time for each code section

� The time required for calculating and performing a redistribution

These factors must be measured dynamically from the code and used to predict if the

reduction in imbalance will compensate for the cost of the DLB algorithm.

When a barrier is initiated, the average load of all of the processors is determined. If

the aggregate e�ciency is below some user-speci�ed limit, the workload is considered

to be imbalanced. Even if a load imbalance exists, it may be better not to load balance,

simply because the cost of load balancing would exceed the bene�ts of a better work

distribution. The time required to load balance can be predicted directly by keeping a

record of time taken in previous load balance(s). The expected reduction in run time

due to load balancing can be estimated loosely by assuming e�ciency will be increased

to 100 percent or more precisely by maintaining a history of the improvement in past

load balancing steps. If the expected improvement exceeds the cost of load balancing,

the next stage in the load balancing process should begin.

A re-balancing decision heuristic is proposed here which assumes that the rate of

change of imbalance between processors is always linear, that the re-balancing time

is constant, and that re-balancing removes all imbalances. Response to large changes

in load has the potential to over compensate and lead to instability in the algorithm.

Stability of the algorithm also becomes an issue when the communication latency is

high compared to the speed of variation of the load; unnecessary migrations should be

avoided. It is imperative to avoid oscillation or cycling of the load across the processors

and so a damping coe�cient is incorporated into the algorithm to relax the movement

of entities. The damping coe�cient is calculated in response to the rate of change of

work and consequently limits the speed of response to load changes.

The presented algorithm forms a cost function, t

cost

, that models the time for re-

distribution and the predicted application code run-time in relation to the rate of

increase of imbalance (see equation 1) [AJM

+

98]. The model is based on an instance

in time and predicts what would happen under the model assumptions. It uses the

number of iterations (n) between re-distributions to predict run-time. t

cost

explicitly

embodies two of the costs a re-mapping policy must manage: delay cost of re-balancing,

and idle-time costs incurred by not re-balancing.

t

cost

is given by:

t

cost

=

Z

t

0

�

n:i�B

2

+

J

n:i

�

dt =

Bn:i:t

2

+

J:t

n:i

(1)



DYNAMIC LOAD BALANCING FOR MULTI-PHYSICAL MODELLING 385

where i is the time taken for each iteration, B is the rate of increase of imbalance

across the processors and J is the re-balancing time. The re-balancing time is then

minimised with respect to n (see equation 2). The model (equation 3) predicts an

optimal value for n that minimises the run-time prediction function. Re-distribution

will be performed n iterations after the previous re-distribution.

dt

cost

dn

=

Bit

2

�

Jt

n

2

i

= 0 (2)

n =

r

2J

Bi

2

(3)

Work Transfer Calculation

After determining that it is advantageous to load balance, the amount of work-load

that must be transferred from one processor to another must be calculated. Here, the

JOSTLE mesh-partitioning tool is used [WCE97]. JOSTLE can be used to rebalance

an existing partition in parallel whilst minimising the amount of data migrated. The

load balance information is indicated by a weighted graph of the data (e.g. elements)

that is passed to JOSTLE together with the current processor ownership array of the

data. JOSTLE will then attempt to balance these weights in the resultant partition.

JOSTLE returns the new processor ownership for the local core data, indicating

where the data should move. Using this array, processor ownership arrays for the

secondary data are updated (e.g. faces and nodes based on an element's partition).

Data Migration

A DLB frameworkmust also provide mechanism for actually moving the data from one

processor to another. This includes identifying and updating moved entities data such

as an element's temperature, pressure, U-velocity, V-velocity etc. The load balancing

algorithm and consequent data movement must be very fast in comparison to the

overall run-time. DLB is not merely a pre-processing step such as static partitioning

since the algorithm and the consequent load migration may be performed frequently

during the run time. Load rebalancing will only provide a performance gain if the

time to rebalance is less than the decrease in run time consequent from rebalancing

the code, so it is important to relate the overhead cost of remapping with the expected

performance gain. Distributed memory systems require that all data are distributed

and so data on each processor is locally numbered. Thus the framework must be

able to handle entities that are locally numbered, which reduce the memory size

by removing the need for any globally sized arrays to be stored. This maximises

scalability of memory although locally numbered entities make the moving of data

between processors more di�cult.

The communication is implemented in two phases. The �rst phase constructs a

movement set (within a processor) and a communication set (between processors)

listing the entity numbers to be communicated and the processor to communicate

with. The second phase performs the communication using the communication set

calculated in the �rst phase for a particular variable.



386 ARAVINTHAN, JOHNSON, MCMANUS, WALSHAW, AND CROSS

0 5 10 15 20 25 30
time-step

0

2000

4000

6000

8000

nu
m

be
r 

of
 e

le
m

en
ts

Solid
Liquid

Figure 2 Solidi�cation of a

cooling bar

0 10 20 30
time-step

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

tim
e 

pe
r 

tim
e-

st
ep

 (
se

cs
)

Proc 1

Proc 2

Proc 3

Proc 4

Figure 3 Time-step time without

DLB

Some arrays (particularly geometry pointer arrays themselves) have to be converted

to global numbers before any movement can take place. The data structures required

for the parallel execution and DD consist of the local to global numbering array which

stores the original global number of locally numbered entity. Hence, this local to

global numbering array can be used to convert all the pointer arrays from local to

global numbers. Following the construction of the new partition, the pointer arrays

must be renumbered to the new local numbering scheme.

Results

The dynamic load balancing algorithm has been successfully implemented in

PHYSICA at the time-step loop level (see Figure 1). It has been tested with a

solidi�cation test case which models a cooling metal bar. The bar begins all liquid at a

temperature just above solidi�cation and is cooled from one end so that a solidi�cation

front moves along the bar. After 30 time-steps, the bar is almost completely solid (see

Figure 2).

Figure 3 shows the wall-clock time per time-step for each processor without DLB

and Figure 4 shows the times with DLB. It can be seen in Figure 3 that the overall

run-time is restricted by the load imbalance leading to the execution time of around 80

seconds per time-step for most of the calculation. Figure 4 shows the initial execution

time correspondingly at almost 80 seconds per time-step being steadily reduced to a

�nal �gure of less than 60 seconds. A 20% reduction in the overall run-time produced

by DLB is shown in Figure 5.

Conclusion

For a given problem then as P increases, the importance of load balance in measured

parallel performance becomes increasingly signi�cant. For dynamic inhomogeneous

load imbalances, characteristic of multi-physics problems, it may not be possible

to obtain a good load balance. Nevertheless it is clear that DLB can reduce the



DYNAMIC LOAD BALANCING FOR MULTI-PHYSICAL MODELLING 387

0 10 20 30
time-step

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

tim
e 

pe
r 

tim
e-

st
ep

 (
se

cs
)

Proc 1

Proc 2

Proc 3

Proc 4

Figure 4 Time-step time with

DLB

0 10 20 30
time-step

0.0

500.0

1000.0

1500.0

2000.0

2500.0

ru
n-

tim
e 

(s
ec

s)

static load balancing

dynamic load balancing

Figure 5 Overall run-time

load imbalance in an initial partition and so provide a worthwhile performance

improvement.

The development of parallel JOSTLE has provided an opportunity to advance the

state of the art in practical unstructured mesh parallel application and in particular

DLB. The DLB scheme in this paper has been developed and tested in PHYSICA

using test cases that illustrate the challenging issues in load balancing for dynamic

inhomogeneous problems. Information extracted at runtime is used to continuously

monitor and migrate the workload as the developing solution causes the workload to

move across the problem space. The resulting methodology is not only successful in

reducing run-time but should also be su�ciently generic to be applicable to a diversity

of unstructured mesh based codes.

REFERENCES

[AJM

+

98] Arulananthan A., Johnson S., McManus K., Walshaw C., and Cross.

M. (1998) A generic strategy for dynamic load balancing of distributed memory

parallel computational mechanics using unstructured meshes. In Proc Parallel

CFD 1997, pages 43{50.

[CCB

+

96] Cross M., Chow P., Bailey C., Croft N., Ewer J., Leggett P., McManus

K., and Pericleous K. A. (1996) PHYSICA - a software environment for the

modelling of multi-physics phenomena. In Proc ICIAM 1995.

[McM96] McManus K. (1996) A strategy for mapping unstructured mesh

computational mechanics programs onto distributed mesh parallel architectures.

PhD thesis, Computing and Mathematical Science, University of Greenwich.

[SB94] Sergent T. L. and Berthomieu B. (1994) Balancing load under large and

fast load changes in distributed computing systems - a case study. In Parallel

Processing: CONPAR 94 - VPP VI, pages 854{865. Springer Verlag.

[Wat95] Watts J. (1995) A practical approach to dynamic load balancing.

Master's thesis, Scalable Concurrent Programming Laboratory, California

Institute of Technology.

[WCE97] Walshaw C., Cross M., and Everett M. (1997) Parallel Dynamic Graph

Partitioning for Adaptive Unstructured Meshes. J. Par. Dist. Comput. 47(2):

102{108.


