
A Generic Strategy for Dynamic Load Balancing of Distributed

Memory Parallel Computational Mechanics using Unstructured

Meshes

A. Arulananthan, S.P. Johnson, K. McManus, C. Walshaw, M. Cross

a.arulananthan@gre.ac.uk

Centre for Numerical Modelling and Process Analysis

University of Greenwich, London, SE18 6PF, UK

Abstract: A large class of computational problems are characterised by frequent synchro-

nisation, and computational requirements which change as a function of time. When such

a problem is solved on a message passing multiprocessor machine [5], the combination of

these characteristics leads to system performance which deteriorate in time. As the com-

munication performance of parallel hardware steadily improves so load balance becomes a

dominant factor in obtaining high parallel e�ciency. Performance can be improved with

periodic redistribution of computational load; however, redistribution can sometimes be

very costly. We study the issue of deciding when to invoke a global load re-balancing

mechanism. Such a decision policy must e�ectively weigh the costs of remapping against

the performance bene�ts, and should be general enough to apply automatically to a wide

range of computations. This paper discusses a generic strategy for Dynamic Load Bal-

ancing (DLB) in unstructured mesh computational mechanics applications. The strategy

is intended to handle varying levels of load changes throughout the run. The major is-

sues involved in a generic dynamic load balancing scheme will be investigated together

with techniques to automate the implementation of a dynamic load balancing mechanism

within the Computer Aided Parallelisation Tools (CAPTools) environment, which is a

semi-automatic tool for parallelisation of mesh based FORTRAN codes [2].

1. Introduction

Many computational problems assume a discrete model of a physical system, and calculate

a set of values for every domain point in the model. These values are often functions of

time, so that it is intuitive to think of the computation as marching through time. When

such a problem is mapped onto message passing multiprocessor machine or shared mem-

ory machine with fast local memories, regions of the model domain are assigned to each

processor. The running behaviour of such a system is often characterised as a sequence

of steps, or iterations. During a step, a processor computes the appropriate values for its

domain points. At the step's end, it communicates any newly computed results required

by other processors. Finally, it waits for other processors to complete their computation

step and send the data required for the computation of the next step [1,5].



A static mesh partition is unlikely to provide a good load balance when solving dynamic

non-linear problems in parallel using an unstructured mesh. Prediction of the load asso-

ciated with each mesh entity (grid point, face, element, etc.) is not simple. Even if we do

predict the work load accurately, the computational work associated with each portion of

a problem's subdomain may change over the course of solving the problem. This can oc-

cur when the behaviour of the modeled physical system changes with time. For example,

during the course of solving a problem, more work may be required to resolve features of

the emerging solution. Load variations due to di�erences, for example, in element shape

or perhaps grid point degree may be anticipated but some e�ects such as changes in the

discretisation or the physics associated with each entity may not be known until the code

has run for some time. Cache e�ects and inhomogeneous architectures further complicate

prediction. Adaptive meshing involving re�nement and de-re�nement will inevitably suf-

fer from signi�cant load imbalance. Even with a �xed mesh, multi physical simulations

such as the modelling of phase changes such as melting or solidi�cation [1], can lead to

signi�cant imbalance. Here the application of 
ow calculations are required only for the

liquid portion of the problem and similarly the stress calculations are only required for

the solid portion. Such load imbalance may only be determined at run time.

Because of the synchronisation between steps, the system execution time during a step is

e�ectively determined by the execution time of the slowest, or most heavily loaded pro-

cessor. We can then expect system performance to deteriorate in time, as the changing

resource demand causes some processor to become proportionally overloaded. One way

of dealing with this problem is to periodically redistribute, or remap load among proces-

sors. There are two fundamentally di�erent approaches to remapping. The decentralised

load balancing approach is usually studied in the context of a queuing network [9]. De-

centralised balancing is the natural approach when jobs are independent, and a global

view of balancing would not yield substancially better load distributions. A large class of

computations are not well characterised by job arrival model, and it may be advantageous

to take a global, or centralised perspective when balancing [8,7]. A centralised mapping

mechanism can exploit full knowledge of the computation and its behaviour. Furthermore,

dependencies between di�erent parts of a computation can be complex, making it di�cult

to dynamically move small pieces of the computation from processor in a decentralised

way. Global mapping is natural in a computational environment where other decisions are

already made globally, e.g., convergence checking in an iterative numerical method. The

presented algorithm monitors the work load at run time in order to predict the transfer

of load between processors that will minimise the overall runtime of the computation.

2. Constraints of Dynamic Load Balancing

The load balancing algorithm and consequent data movement must be very fast in com-

parison to the overall run-time. Dynamic load balancing is not merely a pre-processing

step such as static partitioning since the algorithm and the consequent load migration

may be performed frequently during the run time. Load rebalancing will only provide a

performance gain if the time to rebalance is less than the decrease in run time consequent

from rebalancing the code, so it is important to relate the overhead cost of remapping



with the expected performance gain. In addition, computational mechanics codes are very

demanding of memory and so the memory requirement for DLB must be small in com-

parison to the memory used by the application. Implementation of DLB algorithms can

be highly application speci�c, decisions on granularity of monitoring and mesh migration

are di�cult to determine both statically and generically. The details of load evolution,

of the remapping mechanism, and of various overhead costs are system and computation

dependent, complicating the devising of a generic DLB algorithm.

3. Issues of Dynamic Load Balancing

A migration policy determines "which" (identi�cation), "when" (decision) and "where"

(location) processes should be migrated. In order to study general properties of remapping

decision policies, it is necessary to model the behaviour of interest, and evaluate the

performance of decision policies on those models. A number of major issues have been

identi�ed in the implementation of a dynamic load balancing scheme [8,7]:

3.1. Timing

The appropriate part(s) of the application code to time can vary widely between di�erent

codes. For example, one code may necessitate the timing of the top loop level such as

the time step loop (Level 1 in Figure 1), but another code may require timing of the

lower loop levels such as a loop within a conjugate gradient solver (Level 3 in Figure 1).

For the DLB algorithm to be generic it will be more appropriate for the algorithm to

automatically determine which levels of loop to time. Since the intention is to automati-

cally generate DLB calls as a phase in the automatic parallelisation of unstructured mesh

codes within the Computer Aided Parallelisation Tools (CAPTools) environment [4,3],

the identi�cation of all sensible loop levels and related code generation can resonnably be

performed with dynamic loop level selection.

The presented model must not initiate the rebalancing mechanism too frequently, this

will waste the time on moving the data around rather than the actual run. But, the load

between the processors of the parallel machine can become badly balanced if the rebal-

ancing mechanism is initiated too infrequently and hence the performance will deteriorate

in time. So, it is important to correctly determine the criteria that will be appropriate

to re-distribute the data. Three inter-linking factors are involved: the level of imbalance

in each section of the code; the run time for each code section; and the time required

for calculating and performing a redistribution. These factors must be measured dynam-

ically from the code and used to predict if the reduction in imbalance (idle time) will

compensate for the cost of the DLB algorithm.

3.2. Load migration

The key aspects of load migration are to determine how much of each subdomain to

move, which entities to move and where to move them. These issues are addressed in

the related work on the JOSTLE mesh partitioning tool [10,6] which describes how an

existing mesh partition can be modi�ed by a completely parallel algorithm. The load

imbalance information is indicated by a weighted graph that is passed to JOSTLE, which

will attempt to balance these weights in the resultant partition.



Converge?

Time Step

End

Time-Step

Loop

Start

Momentum

Pressure

Heat

Solidification

Converge?

Displacement

Stress

Mechanics
Loop
Fluid

Solid Mechanics
Loop

Level 3
(Solvers)

Level 2
(Inner loops:
Stress & Flow)

Level 1
(Outer loop)

Figure 1. Di�erent levels of loops that can be found in a typical CFD code.

4. Model to predict when to re-partition

We propose a simple rebalancing decision heuristic which assumes that the rate of change

of imbalance between processors is always linear, that the rebalancing time is constant

(rebalancing time includes JOSTLE time, renumbering time [5] and the re-distribution

time), and that JOSTLE removes all imbalance. Response to large changes in load have

the potential to over compensate and lead to instability in the algorithm. Stability of the

algorithm also becomes an issue when the communication latency is high compared to the

speed of variation of the load, unnecessary migrations should be avoided. It is imperative

to avoid oscillation or cycling of the load across the processors and so a damping coe�-

cient is incorporated into the algorithm to relax the movement of entities. The damping

coe�cient is calculated in response to the rate of change of work and consequently limits

the speed of response to load changes.

The presented algorithm forms a cost function, t

cost

, that models the time for re-distribution

and the predicted application code run time in relation to the rate of increase of imbalance

(see equation 1). The model is based on an instance in time and predicts what would

happen under the model assumptions. It uses the number of iterations (n) between DLB

redistributions to predict runtime. t

cost

explicitly embodies two of the costs a remapping

policy must manage: delay cost of rebalancing and idle time costs of not rebalancing.

t

cost

=

Z

t

0

�

n:i� B

2

+

J

n:i

�

dt =

Bn:i:t

2

+

J:t

n:i

(1)

Where i is the time taken for each iteration, B is the rate of increase of imbalance across



Time

T
im

e 
ta

ke
n

 b
y 

th
e

sl
o

w
es

t 
p

ro
ce

ss
o

r

n.i
Application of JOSTLE

B

Figure 2. Model to predict when to re-partition

the processors and J is the JOSTLE time. We then minimise the re-balancing time with

respect to n (see equation 2). The model (equation 3) predicts an optimal value for n that

minimises the runtime prediction function. Redistribution will be performed n iteration

after the previous redistribution.

dt

dn

=

Bit

2

�

Jt

n

2

i

= 0 (2)

n =

s

2J

Bi

2

(3)

5. Load Migration Algorithm

When it is predicted that it is worth performing a re-balancing operation, the following

algorithm is used to move and update the data:

� Time code section on each processor. We can either time CPU-time or idle-time.

� Calculate weight on each processor using monitored time, e.g. high CPU-time implies

high weight or high idle-time implies low weight.

� Call JOSTLE with 'weighted' graph (or mesh). JOSTLE then balances these weights

in the resultant partition, returning a new processor ownership (primary partition) array.

� Update secondary partition (e.g. nodal) using the primary partition (e.g. element).

� Identify and update moved entities data (i.e. an elements temperature, U-velocity,

V-velocity etc). The entities are locally numbered, which reduce the memory size by

removing the need for any globally sized arrays to be stored, this maximises scalability

of memory. The communication is implemented using two routines, one to construct a

movement (within a processor) and communication (between processors) set listing where

entities are to be sent/received to/from which processor, and the other to perform the

communication using that communication set for a particular variable:



CALL COMMSET takes JOSTLE send-sets as input and calculates movement

and communication sets, listing entity numbers and the

processor numbers to where they are moved to.

CALL SWAPCORE uses a movement and communication set calculated in

COMMSET and moves/communicates input array data.

� Recalculate the new overlaps (or halo elements) and update communication set.

So a set of subroutine calls in PHYSICA looks like this:

C Call the dynamic JOSTLE with the weighted element graph.

CALL DJOSTLE(graph,numELEM,ELEMset)

C Update the node partition using the element partition.

CALL SUBSIDUARY(ELEMset,NODEset)

C Calculate the movement and communication sets for elements and nodes.

CALL COMMSET(ELEMset,commELEM)

CALL COMMSET(NODEset,commNODE)

C Communicate and update elements data using the elements comm set.

CALL SWAPCORE(UELE,commELEM)

CALL SWAPCORE(VELE,commELEM)

CALL SWAPCORE(WELE,commELEM)

C Communicate and update nodes data using the nodes comm set.

CALL SWAPCORE(XNODE,commNODE)

CALL SWAPCORE(YNODE,commNODE)

CALL SWAPCORE(ZNODE,commNODE)

6. Results

The DLB algorithm has been implemented in a simple test code which simulates dy-

namically changing workloads using an unstructured mesh. The implementation involved

the development of a set of utilities to migrate mesh entities in parallel while only ever

requiring access to local data. Results from the test code in Figure 3 show that the

DLB overhead is su�ciently small to provide a worthwhile performance improvement. It

signi�cantly improves the performance achieved by static balancing. The algorithm was

tested on a network of 5 SUN workstations each of which have di�ering performance.

Initially, all 5 processors were given the same number of elements, but as Figure 4 shows,

the DLB algorithm migrated the elements from the slow workstations to the fast ones to

balance the load across the processors as the code ran. As you can see from Figure 4, the

DLB model decides to do the �rst remapping after 2 iterations because the work-load is

very badly balanced. But as the balance improves across the processors, the re-balancing

interval (n) increases.

The DLB algorithm is currently being incorporated into the multi-physics modelling envi-

ronment PHYSICA [1] where all aspects of the algorithm will be investigated in a realistic

test cases. In particular, the criteria for the selection of optimal granularity (i.e. the loop

level that maximises performance) will be identi�ed.



0 50 100 150 200 250 300
Iterations

0

500

1000

1500

2000

2500

3000

3500

R
un

 ti
m

e 
(s

)
Static
Dynamic

Figure 3. Run time of solidi�cation case on 4 processors on a Transtech Paramid.

0 2 7 33
Iterations

0

10

20

30

40

T
im

es
 (

se
c)

IPX
Classic
Sparc 5
Sparc 10
Sparc 20

0 2 7 33
0

500

1000

1500

2000

E
le

m
en

ts

Figure 4. Workstation times and their loads.



7. Conclusions and Related Work

The presented dynamic load balancing scheme has been developed and tested on small

test cases that successfully addresses the important issues relating to the maximisation

of speedup through the minimisation of load imbalance. The algorithm uses information

extracted at runtime to continuously monitor and adjust the work load. The scalability of

the algorithm can be questioned as the processors on a parallel machine increase. In this

algorithm processors only communicate with their neighbours, this allows the algorithm to

be scalable. Ideal policies should be general enough to apply automatically, and be good

enough to signi�cantly improve performance. The application of this scheme to complex

application codes such as PHYSICA [1] is expected to provide further improvements and

justify inclusion of the DLB scheme as an automated phase of the parallelisation process

in CAPTools [3]. David M. Nicol and Joel H. Saltz model in [7] look at a similar model

to the one presented here to predict how often to do the remapping, but other issues such

as how much of the data to migrate when re-balancing, which entities to move and where

about in the code to move are not considered.

REFERENCES

1. M. Cross, P. Chow, C. Bailey, N. Croft, J. Ewer, P. Leggett, K. McManus, and K. A.

Pericleous. PHYSICA - a software environment for the modelling of multi-physics

phenomena. In Proc ICIAM 1995, 1996.

2. C. Ierotheou, S. P. Johnson, M. Cross, and P. F. Leggett. Computer aided parallelisa-

tion tools (CAPTools) - conceptual overview and performance on the parallelisation

of structured mesh codes. Parallel Computing, 22:163{195, March 1996.

3. C. Ierotheou, S. P. Johnson, K. McManus, P. F. Leggett, and M. Cross. Semi-

automatic parallelisation of unstructured mesh codes. May 1997. In this volume.

4. S. P. Johnson, C. Ierotheou, and M. Cross. Computer aided parallelisation of un-

structured mesh codes. In Proc PDPTA 1997, volume 1, pages 344{353, July 1997.

5. K. McManus. A strategy for mapping unstructured mesh computational mechanics

programs onto distributed mesh parallel architectures. PhD thesis, Computing and

Mathematical Science, University of Greenwich, 1996.

6. K. McManus, C. Walshaw, M. Cross, P. Leggett, and S. Johnson. Evaluation of the

JOSTLE mesh partitioning code for practical multiphysica applications. In Parallel

Computational Fluid Dynamics, implementations and results using parallel computers,

pages 673{680, 1996. Proc Parallel CFD 1995.

7. D.M. Nicol and J.H. Saltz. Dynamic remapping of parallel computations with varying

resource demands. IEEE Trans. Computers, 37(4):1073{1087, Sept 1988.

8. Thierry Le Sergent and Bernard Berthomieu. Balancing load under large and fast

load changes in distributed computing systems - a case study. In Parallel Processing:

CONPAR 94 - VPP VI, pages 854{865. Springer Verlag, 1994.

9. J.A. Stankovic. An application of bayesian decision theory to decentralised control of

job scheduling. IEEE Trans. Computers, C-34:117{130, Feb. 1985.

10. C. Walshaw, M. Cross, and M. Everett. Mesh partitioning and load-balancing for

distributed memory parallel systems. In Proc. Parallel and Distributed Computing

for Computational Mechanics, Lochinver, Scotland, 1997, 1997.


