NH,

E PARALLEL
e COMPUTING
ELSEVIER Parallel Computing 27 (2001) 869-881

www.elsevier.com/locate/parco

Dynamic multi-partitioning for parallel finite
element applications

A. Basermann **, J. Fingberg ?, G. Lonsdale ?, B. Maerten °,
C. Walshaw ©

& C & C Research Laboratories, NEC Europe Ltd., Rathausallee 10, D-53757 St. Augustin, Germany
® K U. Leuven, Department of Computer Science, Celestijnenlaan 200A, B-3001 Heverlee-Leuven, Belgium
¢ Centre for Numerical Modelling and Process Analysis, University of Greenwich, Park Row,
Greenwich, London SEI0 9LS, UK

Received 30 June 2000; received in revised form 29 September 2000; accepted 12 October 2000

Abstract

The central product of the DRAMA (Dynamic Re-Allocation of Meshes for parallel Finite
Element Applications) project is a library comprising a variety of tools for dynamic re-
partitioning of unstructured Finite Element (FE) applications. The input to the DRAMA
library is the computational mesh, and corresponding costs, partitioned into sub-domains.
The core library functions then perform a parallel computation of a mesh re-allocation that
will re-balance the costs based on the DRAMA cost model. We discuss the basic features of
this cost model, which allows a general approach to load identification, modelling and im-
balance minimisation. Results from crash simulations are presented which show the necessity
for multi-phase/multi-constraint partitioning components. © 2001 Elsevier Science B.V. All
rights reserved.

Keywords: Dynamic load balancing; Cost model; Multi-phase/multi-constraint partitioning; Crash
simulation

1. Introduction

The DRAMA (Dynamic Re-Allocation of Meshes for parallel Finite Element
Applications) project [1] was initiated to support the take-up of large-scale parallel

* Corresponding author.
E-mail address: basermann@ccrl-nece.de (A. Basermann).

0167-8191/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0167-8191(01)00072-2

870 A. Basermann et al. | Parallel Computing 27 (2001) 869-881

simulation in industry by dealing with the main problem which restricted the use of
message passing simulation codes — the inability to perform dynamic load balancing.
The central product of the project is a library comprising a variety of tools for dy-
namic re-partitioning of unstructured Finite Element (FE) applications. The starting
point for the DRAMA library is a (discretisation) mesh distribution into sub-
domains that results in imbalanced costs of the application code. The core library
functions then perform a parallel computation of a mesh re-allocation that will re-
balance the costs based on the DRAMA cost model.

The main goal of the paper is to show the necessity for multi-phase/multi-con-
straint re-partitioning components [9,10,16] for cost re-balancing. These new
partitioning methods allow load balancing for several computational phases — e.g.,
stress—strain analysis and contact treatment in the industrial crash analysis code
PAM-CRASH™ [6] — that are separated by synchronisation points.

In Section 2, we present the basic features of this cost model which allows a
general approach to load identification, modelling and imbalance minimisation.
Section 3 briefly describes the library interface, Section 4 treats the principles of
current mesh partitioning methods. Approaches to dynamic load balancing with the
DRAMA library, in particular for several computational phases, are discussed in
Section 5. In Section 6, different re-partitioning methods are evaluated by means of
test cases from PAM-CRASH™, whereas Section 7 is devoted to concluding re-
marks.

2. DRAMA cost model

The DRAMA cost model [3,12,13] explicitly considers calculation costs w; per
sub-domain / and communication costs ¢;; between sub-domains i and j of the
parallel application code. For the load-balancing re-partitioning algorithms, it re-
sults in an objective cost function F. The model provides a measure of the quality of
the current distribution and is used for the prediction of the effect on the compu-
tation of moving some parts of the mesh to other sub-domains.

The essential feature is that the cost model is mesh-based so that it is able to take
account of the various workload contributions and communication dependencies
that can occur in finite element applications. Being mesh-based, the DRAMA cost
model includes both per element and per node computational costs and element—
element, node-node, and element-node data dependencies for communication. The
DRAMA mesh consists of nodal coordinates and of a list of nodes per element
which is a native data structure (element connectivity) in most finite element appli-
cations.

In addition to data dependencies between neighbouring elements and nodes in the
mesh, dependencies between arbitrary parts of the mesh can occur. For the PAM-
CRASH™ code [6], such data dependencies originate within the contact-impact
algorithms when the penetration of mesh segments by non-connected nodes is de-
tected and corrected. The DRAMA cost model allows the construction of virtual
elements [4,12,13] which represent the occurring costs of such dependencies (see also

A. Basermann et al. | Parallel Computing 27 (2001) 869-881 871

Section 5). A virtual element is included in the DRAMA mesh in the same way as a
real element: as an additional connectivity list of its constituent nodes.

Specific types u identify calculation cost parameters per element or per node that
refer to different kinds of elements, different material properties, or generally dif-
ferent algorithmic parts of the application code requiring different kinds of opera-
tions. Communication cost parameters per element-element, node-node, and
element-node connection depend on the amount of data that potentially have to be
transferred for a link between two objects of types u; and u,.

Different algorithmic parts in parallel application codes that are separated by
explicit synchronisation points are defined as phases within the DRAMA cost model.
DRAMA evaluates the costs per phase iphase. The PAM-CRASH™ code, e.g., can
be considered to consist of essentially two sections; stress—strain computations in-
cluding time integration (FE phase) and contact treatment (contact phase) with a
global synchronisation in between and also at the end of each computing cycle.

The determination of cost parameters requires application code instrumentation.
Number of operations per element/node of type u, nop;(u) can be specified by
counting operations or by time measurements. The sum over all phases of total
calculation times per phase and counting total number of computational operations
allow the determination of calculation speeds 5. For communication, the number
of bytes noc(uj,uy) that has potentially to be transferred for a link between two
objects of types u; and u, and communication speeds s;;™™ have to be specified
(latency is not considered). s;9™™ essentially depends on the specific communication
protocol. A suited commumcatlon model considering the message length has to be
chosen. Moreover, a correspondence between types and phases must be given.

With these parameters, the DRAMA cost model can be written in the following
form:

_ iphase
F = E ml_axF,- ,

iphase

F;iphuse _ lphasc + § :clphtlJL7

tphme z :N nOpl

CdlC

" noc(m Us)
1p ase j :Nz] ul;uZ P ’

comm
ujuy

N;(u) is the number of elements/nodes of type u and nop;(u) /s is the computational
cost of an object of this type. Since only the ratio is relevant both nop;(u) and s
may be specified as relative values if this makes instrumentation easier. N, ;(u;, u2)
is the number of elements/nodes in a sub-domain boundary region, and
noc(uy,uz)/si5™™ is the potential communication cost for a link between two objects
of types u; and u,.

872 A. Basermann et al. | Parallel Computing 27 (2001) 869-881
3. DRAMA library interface

The interface between the application code and the library is designed around the
DRAMA cost model and the instrumentation of the application code to specify
current and predict future computational and communication costs [4]. Thus the
application code has to provide DRAMA, per sub-domain, with the current mesh
description, i.e., the element-node connectivity including the type information. The
elements can be either real or virtual elements. The nodal coordinates are given in
addition.

Moreover, the application code places the calculation and communication cost
parameters per type at DRAMA’s disposal as well as the correspondence between
types and phases.

DRAMA returns the new partition in terms of a new numbering of local elements
and nodes together with the relationships between old and new numbering systems
and the coordinates of the new set of nodes local to a process. The relationships
between old and new numbering systems support the application code in building
send and receive lists.

4. Mesh partitioning

Distributing the mesh across a parallel computer so that the computational load is
evenly balanced and the data locality maximised is known as mesh partitioning. It is
well known that this problem is NP-complete, so in recent years much attention has
been focused on developing heuristic methods, many of which are based on a graph
corresponding to the communication requirements of the mesh, e.g. [7]. A particu-
larly popular and successful class of algorithms which address this partitioning
problem are known as multi-level algorithms. They usually combine a graph con-
traction algorithm which creates a series of progressively smaller and coarser graphs
together with a local optimisation method which, starting with the coarsest graph,
refines the partition at each graph level. Although the refinement usually only ex-
plores a very localised portion of the solution space, it appears that the multi-level
enhancement adds a global quality to the final partition and that very high partition
quality can be achieved, in parallel, independent of the initial partition [14].

Typically in these methods, the load-balance constraint — that the computational
load is evenly balanced — is simply satisfied by ensuring that each processor has an
approximately equal share of the mesh entities (e.g. the mesh elements, such as tri-
angles or tetrahedra, or the mesh nodes). Even in the case where different mesh
entities require different computational solution times (e.g. boundary nodes and
internal nodes) the balancing problem can still be addressed by weighting the cor-
responding graph vertices and distributing the graph weight equally. However, for
applications such as contact-impact, with multiple loops over subsets of the mesh
entities interspersed by global communications, this simple cost model breaks down.

In these cases, two different partitioning approaches have been developed. The
multi-constraint partitioning method of Karypis and Kumar [9] views the mesh as a

A. Basermann et al. | Parallel Computing 27 (2001) 869-881 873

graph partitioning problem with multiple load-balancing constraints. The vertices of
the graph are given a vector of weights (representing the contribution to each bal-
ancing constraint) and the refinement strategy takes each constraint into account
when testing whether or not it is able to migrate vertices from one sub-domain to
another.

In contrast, the multi-phase strategy of Walshaw et al. [16] consists of a graph
manipulation wrapper around an almost unmodified ‘black box’ multi-level graph
partitioner. The partitioner is then used to partition each phase individually al-
though based on partitioning results from previous phases.

5. Dynamic load balancing with DRAMA
5.1. Basic features

The goal of any load balancing method is to improve the performance of appli-
cations which have computational requirements that vary with time. The DRAMA
library is targetted primarily at mesh-based codes with one or more phases. It offers a
multiplicity of algorithms allowing the different needs of a wide range of applications
(Finite Element, Finite Volume, adaptive mesh refinement, contact detection) to be
covered. The DRAMA library contains geometric, e.g., recursive coordinate bisec-
tion, topological (graph) and local improvement (direct mesh migration) methods
[2]. It enables the use of leading graph partitioning algorithms through internal in-
terfaces to ParMetis [8,10,11] and PJostle [15,16].

In comparison with the direct use of graph partitioners, DRAMA has the fol-
lowing advantages:

(1) DRAMA’s interface is mesh-based. Since an element-node connectivity list is

an essential component of mesh-based application codes DRAMA can be easily

integrated. Mesh to abstract graph conversion is performed within DRAMA.

(2) Beside graph partitioners, DRAMA offers local improvement (migration) and

geometric methods. Thus DRAMA is more general.

(3) DRAMA supports cost capturing and cost monitoring.

(4) DRAMA supports the application code in building new mailing lists after the

re-partitioning.

(5) DRAMA allows different element/node type management.

Thus, DRAMA provides pre-defined solutions for most mesh-based application
codes.

Many applications consist of several phases separated by explicit or implicit
global synchronisation points. This is a challenging problem that requires each phase
to be balanced independently. Fig. 1 (left) illustrates the situation for two processors
and two phases. Both phases show distinct load imbalance. If both phases depend on
each other as for the stress—strain and contact phases in PAM-CRASH™ — the
computations refer to the same mesh in both phases — balancing the aggregate costs
of both phases is of no use, the two phases have to be balanced separately.

874 A. Basermann et al. | Parallel Computing 27 (2001) 869-881

Phase | Phase Il

|

|

PE1 _ |
PE2

[Phase | | Phase II T

Fig. 1. Left: Load imbalance in two phases separated by two sychronisation points. Right: Operations in
two phases on different parts of the same mesh.

There are two approaches to this problem, one is to work with a separate division
of objects for each phase [5], the other is to balance each phase on a common
partition. The first strategy is advantageous if all computational sections (phases) of
the code work on the entire model. It requires fast communication between the
different decompositions in each computing cycle. If the code works on different
parts of the model (mesh) in different phases it can be favourable to maintain a single
mesh decomposition and save communication time. The latter situation is displayed
in Fig. 1 (right). The first phase refers to the whole mesh, the second only to the left
part of the mesh. For example, for a frontal impact simulation with PAM-
CRASH™, stress-strain is computed for the whole mesh whereas contact detection
and correction is mainly performed in the front part of the car model.

5.2. Application to crash simulation

For crash simulation, we follow the single mesh decomposition strategy because
it is much easier to implement in the existing application code. In the following, we
show the results for the stress—strain phase and contact phase of PAM-CRASH™
exploiting the new multi-phase/multi-constraint options of Jostle and Metis
[9,10,16].

The graph-partitioning for crash simulation is built upon a combined graph of
elements and nodes [2] because a part of the computation is node-based and a part
element-based. Fig. 2 displays a combined graph for four-node shell elements. An
element is linked with all its four nodes. The connection to other elements is via
common nodes.

The basic objects during contact detection in PAM-CRASH™ are pairs of nodes
and segments of a surface, the segment being defined by four nodes. These objects

@® clements
® nodes

Fig. 2. Combined graph for four-node shell elements.

A. Basermann et al. | Parallel Computing 27 (2001) 869-881 875

Fig. 3. Contact pair: virtual five-node element.

are passed to the DRAMA library as virtual five-node elements in the DRAMA
mesh format [4]. Fig. 3 shows a shell element that is potentially penetrated by a node.
The penetrating node and the four nodes of the shell element form a contact pair, a
virtual five-node element.

6. Evaluation of different partitioning techniques

To demonstrate the viability of the DRAMA approach we present the results
obtained with multi-constraint (mc) Metis and multi-phase Jostle (MJostle) for a
box-beam model with PAM-CRASH™. We start from an initial partition with 44%
imbalance (A = 1.44). This imbalance is caused by contact calculations in the lowest
domain. The cost weights for contact calculations are artificially increased for this
small test case to illustrate the effect of multi-partitioning. For the industrial models
AUDI and BMW below, realistic weights are applied. After 10,000 simulation cycles,
we compute a re-partitioning with single-phase/uni-constraint ParMetis static (stat)
as well as Plostle diffusion and compare the resulting distribution with the multi-
phase/multi-constraint approaches.

The load imbalance factors are defined as

max;_o_,1(w})

M= (for the stress—strain phase only),
w}
2
max;—g. ,—1(W;
2= %U (for the contact phase only),
w;
nphases _ j
B e B
oy = S S (neglecting synchronisation),
nphases M/‘]
> ,-
! .
o 20 maxi—g o1 (W) o _—
hn = S (considering synchronisation),

nphases _ j
>]

876 A. Basermann et al. | Parallel Computing 27 (2001) 869-881

Table 1
Distribution of shell elements and contact pairs (CPs) per sub-domain, different partitioning methods,
box-beam model

PE Initial ParMetis stat PJostle diff Metis mc MJostle

Shell CPs Shell CPs Shell CPs Shell CPs Shell CPs
0 512 118 415 61 330 91 512 30 515 30
1 512 0 599 0 516 27 512 30 515 29
2 512 0 445 57 601 0 512 28 507 30
3 512 0 589 0 601 0 512 30 511 29
Ao 1.00 4.00 1.17 2.07 1.17 3.09 1.00 1.02 1.01 1.02
It 1.442 1.026 1.004 1.002 1.007
PN 1.442 1.302 1.455 1.002 1.007

tot

where X; denotes the mean value of all x;, i = 0..p — 1. Note that the real load im-
balance is given by /...

From Table 1 we see that only multi-partitioning methods can improve the per-
formance of the application; they are the only schemes giving a total imbalance ifot
close to 1. Of course, the other schemes minimised the aggregate cost-function as can
be seen from the values of ., but neglecting the two synchronisation points only
results in an increased idle time.

To evaluate the performance of different partitoning methods for more realistic
cases we compare the results obtained with test meshes of an AUDI and a BMW
car model which originate from PAM-CRASH™ simulations of a frontal impact
with a rigid wall. The mesh data are stored after 10,000 cycles from a total of
around 90,000 cycles. The two models consist of 4-node shell and 2-node beam
elements. The initial total load imbalance of the AUDI model is 12.1% (load im-
balance factors: 1.0002 for stress—strain, 10.642 for contact), the initial total load
imbalance of the BMW model is 3.1% (load imbalance factors: 1.0002 for stress—
strain, 3.524 for contact). For the graph representation of the mesh we use a
combined graph [2] consisting of elements and nodes where the connections are
only between elements and nodes, i.e., node-node and element—element connections
are omitted. For the BMW model we also consider an element graph representa-
tion, the classical extended dual graph [2,4], where elements are connected if they
share one or more nodes.

In the following, the methods listed in Table 2 [8-11,15,16] are tested for re-
partioning.

Method 6 is a single phase partitioner and is added for comparison reasons, all
other methods are multi-phase/multi-constraint algorithms. Methods 1 and 2 are
sequential multi-partitioners, all other methods are parallel. MOC_PARMETIS_SR
(method 8) is a re-partitioner that should minimise load imbalance and the difference
between the current and the new partitions. The latter was not investigated here but
will be checked in detail in future tests.

Tables 3 and 5 show the distribution of shell elements, beam elements, nodes and
contact pairs (CPs) per processor (PE) for the AUDI and the BMW models with 16

A. Basermann et al. | Parallel Computing 27 (2001) 869-881 877

Table 2

Re-partitioning methods
Method Graph representation Partitioner
1 Combined graph METIS_mCPartGraphkway, sequential
2 Combined graph MJostle, sequential
3 Combined graph MOC_PARMETIS_Partkway
4 Combined graph MOC_PARMETIS_SR
5 Combined graph MJostle, parallel
6 Combined graph PARMETIS_RepartGDiffusion, single phase
7 Extended dual graph MOC_PARMETIS_Partkway
8 Extended dual graph MOC_PARMETIS_SR
9 Extended dual graph MJostle, parallel

Table 3

Distribution of shell elements, beam elements, nodes and contact pairs (CPs) per sub-domain, AUDI,

method 1
PE Shell Beam CPs Nodes Phase FE Phase CO
0 1735 6 67 1652 10428 134
1 1738 0 63 1715 10428 126
2 1737 3 67 1744 10431 134
3 1739 0 67 1661 10434 134
4 1739 0 64 1612 10434 128
5 1730 17 63 1622 10431 126
6 1735 6 67 1696 10428 134
7 1735 6 67 1732 10428 134
8 1725 29 67 1567 10437 134
9 1738 3 67 1719 10437 134
10 1739 0 67 1612 10434 134
11 1739 0 67 1702 10434 134
12 1730 17 66 1670 10431 132
13 1739 0 67 1586 10434 134
14 1739 0 67 1644 10434 134
15 1674 129 67 1710 10431 134
Total 27711 216 1060 26644 166914 2120
Mean 10432.125 132.5

sub-domains. Multi-partitioner 1 is applied. phase FE and phase CO are the costs for
the total stress—strain phase and the contact phase. The cost for a beam element is
about half the cost for a shell element whereas the cost for a contact pair is about one
third of the cost for a shell element. These ratios are realistic for PAM-CRASH™
and were confirmed by timings within the application code. Therefore, the number of
shell elements is multiplied by 6, the number of beams by 3, and the number of
contact pairs by 2 to obtain the total costs per processor for the stress—strain phase

and the contact phase.

878 A. Basermann et al. | Parallel Computing 27 (2001) 869-881

In Tables 4 and 6, minimum, maximum, and mean total computational weights of
all 16 sub-domains are shown per phase for all partitioning methods considered. Cut
edges as well as load imbalance factors per phase (4' and 4?) and total load im-
balance factors (/;,,) are given in addition.

The results in Tables 3—6 demonstrate that all multi-partitioning methods are able
to achieve nearly perfect load balance. The multi-partitioners reach a load imbalance
of around 1% and less for both models whereas the single phase partitioner ends up
with a load imbalance of about 15% for the AUDI and of about 9% for the BMW.
Table 6 does not show significant load imbalance differences for using the combined

Table 4

Total computational weight per phase, cut edges, and imbalance, AUDI
Method FE [min max] CO [min max] Edge cut Imbalance [FE CO] total
1 [10428 10437] [126 134] 2193 [1.000 1.011] 1.001
2 [9354 10 536] [132 134] 3116 [1.001 1.011] 1.010
3 [10095 10 548] [128 136] 2308 [1.011 1.026] 1.011
4 [10158 10632] [126 136] 2682 [1.019 1.026] 1.019
5 [10380 10518] [130 136] 2641 [1.008 1.026] 1.008
6 [9075 11 070] [0 1128] 4154 [1.061 8.513] 1.155

Mean: 10432.1 Mean: 132.5
Table 5

Distribution of shell elements, beam elements, nodes and contact pairs (CPs) per sub-domain, BMW
model, method 1

PE Shell Beam CPs Nodes Phase FE Phase CO
0 3267 16 122 2933 19650 244
1 3266 18 116 2937 19 650 232
2 3275 0 123 3005 19 650 246
3 3269 12 122 2783 19 650 244
4 3275 0 123 2950 19650 246
5 3259 32 122 2910 19 650 244
6 3259 31 123 2812 19 647 246
7 3257 36 123 2850 19 650 246
8 3271 8 123 2784 19 650 246
9 3266 19 123 2738 19653 246

10 3246 58 123 3108 19650 246

11 3271 8 123 2841 19 650 246

12 3275 0 122 2807 19 650 244

13 3272 6 123 2875 19 650 246

14 3230 90 123 3123 19650 246

15 3258 34 123 2920 19 650 246

Total 52216 368 1957 46376 314400 3914

Mean 19650 244.625

A. Basermann et al. | Parallel Computing 27 (2001) 869-881 879

Table 6

Total computational weight per phase, cut edges, and imbalance, BMW
Method FE [min max] CO [min max] Edge cut Imbalance [FE CO] total
1 [19647 19 653] [232 246] 4018 [1.000 1.006] 1.000
2 [17238 19992] [238 246] 8472 [1.017 1.006] 1.017
3 [19281 19857] [220 248] 4096 [1.010 1.014] 1.011
4 [19245 19 848] [234 250] 4017 [1.010 1.022] 1.010
5 [19422 19953] [238 252] 5029 [1.015 1.030] 1.016
6 [18 525 20 706] [0 982] 6863 [1.054 4.014] 1.090
7 [19470 19758] [238 248] 15447 [1.006 1.014] 1.006
8 [19422 19 809] [234 246] 17301 [1.008 1.006] 1.008
9 [19566 19 818] [242 248] 18629 [1.009 1.014] 1.009

Mean: 19 650 Mean: 244.6

Fig. 4. Multi-constraint Metis (method 3) for a BMW PAM-CRASH™ model: whole partition and
partition of the contact area.

or the extended dual graph, but the number of cut edges is markedly higher for the
extended dual graph.

A graphical representation of the handling of the contact phase is given in Fig. 4
for the BMW PAM-CRASH™ model. Multi-constraint Metis (method 3) was ap-
plied to partition the BMW into § sub-domains. On the left, the whole partition is
displayed, whereas the part of the partition where contact occurs is shown on the
right. For a frontal crash, contact-impact mainly takes place in the front part of the
car. Note that, due to multi-partitioning, all 8 subdomains share the contact area.

Fig. 5 shows the dynamic contact cost comparisons for a PAM-CRASH™ sim-
ulation with the BMW model using re-partitioning after every 10,000 steps, on 8
processors of an NEC Cenju-4 system (R10000 processors, 400 Mflops, 200 MB/s
maximum network transfer rate). The elapsed times for dynamic contact calculations

880 A. Basermann et al. | Parallel Computing 27 (2001) 869-881

0018

00186 |

0014 |- 4 %
P N———

—~
3
=]

Q
S
s
2]

~—

L e 3, Time history
o on Swith default
1) i ...

% .l partition

g 0.008 |- RN,

; Time history
g o™ % with Metis
g“ o002 [- ‘_.E repartitioning

— ine®
53]

0 - L ' n L L L "
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Time steps

Fig. 5. Multi-constraint Metis (method 3) for a BMW PAM-CRASH™ model: dynamic contact cost
comparisons for re-partitioning after every 10,000 steps (8 processors, Cenju-4).

per step on each of the 8 processors are displayed. Costs in the stress—strain phase are
balanced with and without re-partitioning. With DRAMA multi-partitioning, load
imbalance in the contact phase is markedly decreased (lower bracket).

7. Conclusions

As demonstrated by test cases from a real industrial simulation code, all multi-
partitioning methods achieve nearly perfect load balance whereas single phase par-
titioners fail to improve the initial imbalance. The new mesh distribution balances
both computational phases simultaneously with small remaining imbalance.

For this simple instrumentation with all the computational costs carried by el-
ements the two graph types considered give similar partitions. The main difference
is a higher edge cut for the extended dual graph. The reason is the large number of
neighbours each element has in this graph. We expect that the actual communi-
cation volume that occurs in the application is modelled more accurately by the
combined graph because communication is node-based in most of the finite element
applications.

Acknowledgements

The authors would like to thank all our colleagues from the DRAMA project for
their support and for the many lengthy and fruitful discussions without which this
work would not have been possible. Particular thanks go to ESI for providing access
to the PAM-CRASH™ code. The support of the European Commission through
ESPRIT IV (Long-Term Research) Programme is gratefully acknowledged.

A. Basermann et al. | Parallel Computing 27 (2001) 869-881 881

References

[1] The DRAMA Consortium, Homepage: http://www.ccrl-nece.technopark.gmd.de/DRAMA.

[2] The DRAMA Consortium, Report on re-partitioning algorithms and the DRAMA library, DRAMA
Project Deliverable D1.3a, in [1], 1998.

[3] The DRAMA Consortium, Final DRAMA cost model, DRAMA Project Deliverable D1.1b, in [1],
1999.

[4] The DRAMA Consortium, Updated library interface definition, DRAMA Project Deliverable D1.2c,
in [1], 1999.

[5] S.A. Attaway, E.J. Barragy, K.H. Brown, D.R. Gardner, B.A. Hendrickson, S.J. Plimpton, Transient
solid dynamics simulations on the Sandia/Intel Teraflop Computer, in: Proceedings Supercomput-
ing’97, Technical Paper, 1997.

[6] J. Clinckemaillie, B. Elsner, G. Lonsdale, S. Meliciani, S. Vlachoutsis, F. de Bruyne, M. Holzner,
Performance issues of the parallel PAM-CRASH code, Int. J. Supercomputer Applications and High
Performance Computing 11 (1997) 3-11.

[7]1 B. Hendrickson, R. Leland, A multilevel algorithm for partitioning graphs, in: S. Karin (Ed.),
Proceedings Supercomputing’95, ACM Press, New York, 1995.

[8] G. Karypis, V. Kumar, ParMetis: Parallel graph partitioning and sparse matrix ordering library,
Technical Report # 97-060, 1997, University of Minnesota, Minneapolis.

[9] G. Karypis, V. Kumar, Multilevel algorithms for multi-constraint graph partitioning, in: Proceedings
of the 10th Supercomputing Conference, 1998.

[10] K. Schloegel, G. Karypis, V. Kumar, Parallel multilevel algorithms for multi-constraint graph
partitioning, Technical Report # 99-031, 1999, University of Minnesota, Minneapolis.

[11] G. Karypis, V. Kumar, Parallel multilevel k-way partition scheme for irregular graphs, SIAM Rev. 41
(1999) 278-300.

[12] B. Maerten, A. Basermann, J. Fingberg, G. Lonsdale, D. Roose, Parallel dynamic mesh re-
partitioning in FEM codes, in: B.H.V. Topping (Ed.), Advances in Computational Mechanics with
High Performance Computing, Proceedings of the Second Euro-Conference on Parallel and
Distributed Computing for Computational Mechanics, Saxe-Coburg, 1998, pp. 163-167.

[13] B. Maerten, D. Roose, A. Basermann, J. Fingberg, G. Lonsdale, DRAMA: a library for parallel
dynamic load balancing of finite element applications, in: Proceedings of the Ninth SIAM Conference
on Parallel Processing for Scientific Computing, SIAM, Philadelphia, 1999.

[14] C. Walshaw, M. Cross, Parallel optimisation algorithms for multilevel mesh partitioning, Parallel
Computing 26 (2000) 1635-1660.

[15] C. Walshaw, M. Cross, M. Everett, Parallel dynamic graph partitioning for adaptive unstructured
meshes, J. Par. Distrib. Comput. 47 (1997) 102-108.

[16] C. Walshaw, M. Cross, K. McManus, Multiphase mesh partitioning, Appl. Math. Modelling 25
(2000) 123-140 (originally published as Univ. Greenwich Tech. Rep. 99/IM/51).

