
DYNAMIC MULTI-PARTITIONING FOR PARALLEL FINITE

ELEMENT APPLICATIONS

A. BASERMANN, J. FINGBERG AND G. LONSDALE

C&C Res. Lab., NEC Europe Ltd., Rathausallee 10, 53757 St. Augustin, Germany

B. MAERTEN

K. U. Leuven, Dept. Comp. Science, Celestijmemlaan 200A, B-3001

Heverlee-Leuven, Belgium

C. WALSHAW

U. Greenwich, Centre for Num. Modelling and Proc. Analysis, Wellington St.,

Woolwich, London SE18 6PF, UK

1 Introduction

The DRAMA project

1

has been initiated to support the take-up of large

scale parallel simulation in industry by dealing with the main problem which

restricts the use of message passing simulation codes | the inability to per-

form dynamic load balancing. The central product of the project is a library

comprising a variety of tools for dynamic repartitioning of unstructured Fi-

nite Element (FE) applications. The starting point for the DRAMA library

is a discretisation mesh distribution into sub-domains that results in imbal-

anced costs of the application code. The core library functions then perform

a parallel computation of a mesh re-allocation that will re-balance the costs

based on the DRAMA cost model. We discuss the basic features of this cost

model which allows a general approach to load identi�cation, modelling and

imbalance minimisation. First results are presented which show the necessity

for multi-phase/multi-constraint partitioning components.

2 DRAMA Cost Model

The DRAMA cost model

7

explicitly considers calculation costs w

i

per sub-

domain i and communication costs c

i;j

between sub-domains i and j of the

parallel application code. For the load-balancing re-partitioning algorithms, it

results in an objective cost function F . The model provides a measure of the

quality of the current distribution and is used for the prediction of the e�ect

on the computation of moving some parts of the mesh to other sub-domains.

The essential feature is that the cost model is mesh-based, so that it

1

is able to take account of the various workload contributions and commu-

nication dependencies that can occur in �nite element applications. Being

mesh-based, the DRAMA cost model includes both per element and per node

computational costs and element-element, node-node, and element-node data

dependencies for communication. The DRAMA mesh consists of nodal co-

ordinates and of a list of nodes per element which is a native data structure

(element connectivity) in most �nite element applications.

In addition to data dependencies between neighbouring elements and

nodes in the mesh, dependencies between arbitrary parts of the mesh can

occur. For the PAM-CRASH code,

4

such data dependencies originate within

the contact-impact algorithms when the penetration of mesh segments by non-

connected nodes is detected and corrected. The DRAMA cost model allows

the construction of virtual elements

2;7

which represent the occurring costs of

such dependencies (see also 4). A virtual element is included in the DRAMA

mesh in the same way as a real element: as an additional connectivity list of

its constituent nodes.

Types u identify calculation cost parameters per element or per node that

refer to di�erent kinds of elements, di�erent material properties, or generally

di�erent algorithmic parts of the application code requiring di�erent kinds of

operations. Communication cost parameters per element-element, node-node,

and element-node connection depend on the amount of data that potentially

have to be transferred for a link between two objects of type u

1

and u

2

.

Di�erent algorithmic parts in parallel application codes that are separated

by explicit synchronisation points are de�ned as phases within the DRAMA

cost model. DRAMA evaluates the costs per phase iphase. The PAM-CRASH

code, e.g., can be considered to consist of essentially two sections; stress-strain

computations including time integration (FE phase) and contact treatment

(contact phase) with a global synchronisation in between and also at the end

of each computing cycle.

Cost parameter determination requires application code instrumentation.

Numbers of operations per element/node of type u, nop

i

(u), can be speci�ed

by counting operations or by time measurements. The sum over all phases

of total calculation times per phase and counting total numbers of compu-

tational operations allow the determination of calculation speeds s

calc

i

. For

communication, the number of bytes noc(u

1

; u

2

) that have potentially to be

transferred for a link between two objects of type u

1

and u

2

and communi-

cation speeds s

comm

i;j

have to be speci�ed (latency is not considered). s

comm

i;j

essentially depends on the speci�c communication protocol. A suited commu-

nication model considering the message length has to be chosen. Moreover, a

correspondence between types and phases must be given.

2

With these parameters, the DRAMA cost model has the following form.

F =

X

iphase

max

i

F

iphase

i

; F

iphase

i

= w

iphase

i

+

X

j

c

iphase

i;j

w

iphase

i

=

X

u

N

i

(u)

nop

i

(u)

s

calc

i

; c

iphase

i;j

=

X

u

1

u

2

N

i;j

(u

1

; u

2

)

noc(u

1

; u

2

)

s

comm

i;j

N

i

(u) is the number of elements/nodes of type u and nop

i

(u)=s

calc

i

is the com-

putational cost of an object of this type. Since only the ratio is relevant both

nop

i

(u) and s

calc

i

may be speci�ed as relative values if this makes instrumen-

tation easier. N

i;j

(u

1

; u

2

) is the number of elements/nodes in a sub-domain

boundary region, and noc(u

1

; u

2

)=s

comm

i;j

is the potential communication cost

for a link between two objects of type u

1

and u

2

.

3 DRAMA Library Interface

The interface between the application code and the library is designed around

the DRAMA cost model and the instrumentation of the application code to

specify current and future computational and communication costs.

2

Thus

the application code has to provide DRAMA, per sub-domain, with the cur-

rent mesh description, i.e., the element-node connectivity including the type

information. The elements can be either real or virtual elements. The nodal

coordinates are given in addition.

Moreover, the application code places the calculation and communication

cost parameters per type at DRAMA's disposal as well as the correspondence

between types and phases.

DRAMA returns the new partition in terms of a new numbering of lo-

cal elements and nodes together with the relationships between old and new

numbering systems and the coordinates of the new set of nodes local to a

process. The relationships between old and new numbering systems support

the application code in building send and receive lists.

4 Dynamic Load Balancing with DRAMA

The goal of any load balancing method is to improve the performance of ap-

plications which have computational requirements that vary with time. The

DRAMA library is targeted primarily at mesh-based codes with one or more

phases. It o�ers a multiplicity of algorithms allowing the di�erent needs of

a wide range of applications (Finite Element, Finite Volume, adaptive mesh

re�nement, contact detection) to be covered. The DRAMA library contains

3

PE1

PE2

tPhase I Phase II

Phase I Phase II

Figure 1. Left: Load imbalance in two phases separated by two sychronisation points.

Right: Operations in two phases on di�erent parts of the same mesh.

geometric (RCB), topological (graph) and local improvement (direct mesh mi-

gration) methods.

3

It enables the use of leading graph partitioning algorithms

through internal interfaces to ParMetis and PJostle.

5;8

Over using the graph partitioners directly, DRAMA has the following

advantages.

1. DRAMA's interface is mesh-based. Since an element-node connectivity

list is an essential component of mesh-based application codes DRAMA

can be easily integrated. Mesh to abstract graph conversion is performed

within DRAMA.

2. Beside graph partitioners, DRAMA o�ers local improvement (migration)

and geometric methods. Thus DRAMA is more general.

3. DRAMA supports cost capturing and cost monitoring.

4. DRAMA supports the application code in building new mailing lists after

the re-partitioning.

5. DRAMA allows di�erent element/node type managment.

Thus, DRAMA provides pre-de�ned solutions for most mesh-based codes.

Many applications consist of several phases separated by explicit or im-

plicit global synchronisation points. This is a challenging problem that re-

quires each phase to be balanced independently. Figure 1 (left) illustrates the

situtation for two processors and two phases. Both phases show distinct load

imbalance. If both phases depend on each other as for the stress-strain and

contact phase in PAM-CRASH | the computations refer to the same mesh

in both phases | balancing the aggregate costs of both phases is of no use,

both phases have to be balanced separately. There are two approaches to this

problem, one is to work with a separate division of objects for each phase,

the other is to balance each phase on a common partition. The �rst strategy

4

is advantageous if all computational sections (phases) of the code work on

the entire model. It requires fast communication between the di�erent de-

compositions in each computing cycle. If the code works on di�erent parts

of the model (mesh) in di�erent phases it can be favourable to maintain a

single mesh decomposition and save communication time. The latter situa-

tion is displayed in Figure 1 (right). The �rst phase refers to the whole mesh,

the second only to the left part of the mesh. For a frontal car crash simula-

tion against a rigid wall with PAM-CRASH, stress-strain is computed for the

whole mesh whereas contact detection and correction is mainly performed in

the front part of the car model.

Here we follow the single mesh decomposition strategy because it is

much easier to implement in existing applications. We show �rst results for

the FE phase and contact phase of PAM-CRASH exploiting the new multi-

phase/multi-constraint options of Jostle and Metis.

6

The graph-partitioning is built upon a combined graph of elements and

nodes

3

because a part of the computation is node-based and a part element-

based. The basic objects during contact detection are pairs of nodes and

segments of a surface, the segment being de�ned by four nodes. These objects

are passed to the DRAMA library as virtual �ve-node elements in the DRAMA

mesh format.

2

5 Evaluation of di�erent partitioning techniques

To demonstrate the viability of the DRAMA approach we show �rst results

obtained with multi-constraint (mc) Metis and multi-phase Jostle (MJostle)

for a box-beam model with PAM-CRASH. We start from an initial parti-

tion with 44% imbalance (� = 1:44). The reason for this imbalance are

contact calculations in the lowest domain. The cost weights for contact calcu-

lations are arti�cially increased for this small test case to illustrate the e�ect

of multi-partitioning. For the industrial models AUDI and BMW below, re-

alistic weights are applied. After 10,000 simulation cycles, we compute a

repartitioning with single-phase/uni-constraint ParMetis static (stat) as well

as PJostle di�usion and compare the resulting distribution with the multi-

phase/multi-constraint approaches.

The load imbalance factors are de�ned as

�

1

=

max

i=0::p�1

(w

1

i

)

w

1

i

(FE) ; �

2

=

max

i=0::p�1

(w

2

i

)

w

2

i

(contact) ;

5

Table 1. Distribution of shell elements and contact pairs (CPs) per sub-domain for di�erent

partitioning methods together with the load imbalance factors for the box-beam model.

PE initial ParMetis stat PJostle di� Metis mc MJostle

shell CPs shell CPs shell CPs shell CPs shell CPs

0 512 118 415 61 330 91 512 30 515 30

1 512 0 599 0 516 27 512 30 515 29

2 512 0 445 57 601 0 512 28 507 30

3 512 0 589 0 601 0 512 30 511 29

�

1;2

1.00 4.00 1.17 2.07 1.17 3.09 1.00 1.02 1.01 1.02

�

1

tot

1.442 1.026 1.004 1.002 1.007

�

2

tot

1.442 1.302 1.455 1.002 1.007

�

1

tot

=

max

i=0::p�1

(

P

nphases

j

w

j

i

)

P

nphases

j

w

j

i

; �

2

tot

=

P

nphases

j

max

i=0::p�1

(w

j

i

)

P

nphases

j

w

j

i

:

x

i

denotes the mean value of all x

i

, i = 0::p� 1. �

1

tot

neglects synchronisation

points, whereas �

2

tot

, the real load imbalance, considers them.

From Table 1 we see that only multi-partitioning methods can improve

the performance of the application; they are the only schemes giving a total

imbalance �

2

tot

close to one. Of course, the other schemes minimised the

aggregate cost-function as can be seen from the values of �

1

tot

but neglecting

the two synchronisation points only results in an increased idle time.

To evaluate the performance of di�erent partitoning methods for more

realistic cases we compare results obtained with test meshes of an AUDI and

a BMW car model which originate from PAM-CRASH simulations of a frontal

impact with a rigid wall. The mesh data are stored after 10,000 cycles from

a total of around 80,000 cycles. The two models consist of 4-node shell and

2-node beam elements. The initial total load imbalance of the AUDI model

is 12.1%, the initial total load imbalance of the BMW model is 3.1%. For

the graph representation of the mesh we use a combined graph

3

consisting

of elements and nodes where the connections are only between elements and

nodes. We consider the methods listed in Table 2.

5;6;8

Method 6 is a single phase partitioner and is added for comparison rea-

sons, all other methods are multi-phase/multi-constraint algorithms. Meth-

ods 1 and 2 are sequential multi-partitioners, all other methods are parallel.

MOC PARMETIS SR is a re-partitioner that should minimise load-imbalance

and the di�erence between the current and the new partition. The latter was

not investigated here but will be checked in detail in future tests. Tables 3

and 4 show minimum, maximum, and mean total computational weights per

6

Table 2. Re-partitioning methods.

method partitioner

1 METIS mCPartGraphkway, sequential

2 MJostle, sequential

3 MOC PARMETIS Partkway

4 MOC PARMETIS SR

5 MJostle, parallel

6 PARMETIS RepartGDi�usion, single phase

phase of 16 sub-domains for the AUDI and the BMW model with all parti-

tioning methods considered. FE and CO are the costs for the stress-strain

phase and the contact phase. Cut edges as well as load imbalance factors per

phase and total load imbalance factors are given in addition.

The results in Tables 3 and 4 demonstrate that all multi-partitioning

methods are able to achieve nearly perfect load balance. The multi-

partitioners reach a load imbalance of around 1% and less for both models

whereas the single phase partitioner ends up with a load imbalance of about

15% for the AUDI and of about 9% for the BMW.

6 Conclusions

As demonstrated by tests with meshes from a real industrial simulation code,

all multi-partitioning methods achieve nearly perfect load balance whereas

single phase partitioners fail to improve the initial imbalance. The new mesh

distribution balances both computational phases simultaneously with small

remaining imbalance.

Acknowledgements

First, the authors would like to thank all our colleagues from the DRAMA

project. Particular thanks go to ESI for providing access to the PAM-CRASH

code. The support of the European Commission through ESPRIT IV (Long

Term Research) Programme is gratefully acknowledged.

References

1. The DRAMA Consortium, Project Homepage:

http://www.cs.kuleuven.ac.be/cwis/research/natw/DRAMA.html

7

Table 3. Total computational weight per phase, cut edges, and imbalance, AUDI.

meth. FE [min max] CO [min max] edge cut imbalance [FE CO] tot.

1 [10428 10437] [126 134] 2193 [1.000 1.011] 1.001

2 [9354 10536] [132 134] 3116 [1.001 1.011] 1.010

3 [10095 10548] [128 136] 2308 [1.011 1.026] 1.011

4 [10158 10632] [126 136] 2682 [1.019 1.026] 1.019

5 [10380 10518] [130 136] 2641 [1.008 1.026] 1.008

6 [9075 11070] [0 1128] 4154 [1.061 8.513] 1.155

mean: 10432.1 mean: 132.5

Table 4. Total computational weight per phase, cut edges, and imbalance, BMW.

meth. FE [min max] CO [min max] edge cut imbalance [FE CO] tot.

1 [19647 19653] [232 246] 4018 [1.000 1.006] 1.000

2 [17238 19992] [238 246] 8472 [1.017 1.006] 1.017

3 [19281 19857] [220 248] 4096 [1.010 1.014] 1.011

4 [19245 19848] [234 250] 4017 [1.010 1.022] 1.010

5 [19422 19953] [238 252] 5029 [1.015 1.030] 1.016

6 [18525 20706] [0 982] 6863 [1.054 4.014] 1.090

mean: 19650 mean: 244.6

2. The DRAMA Consortium, Updated Library Interface De�nition,

DRAMA Project Deliverable D1.2b,

1

, 1999.

3. The DRAMA Consortium, Report on Re-Partitioning Algorithms and the

DRAMA Library, DRAMA Project Deliverable D1.3a,

1

, 1998.

4. J. Clinckemaillie, B. Elsner, G. Lonsdale, S. Meliciani, S. Vlachoutsis,

F. de Bruyne and M. Holzner, Performance issues of the parallel PAM-

CRASG code, Int. J. Supercomputer Applications and High Performance

Computing, 11 (1), page 3-11, 1997.

5. G.Karypis andV.Kumar, ParMetis: Parallel graph partitioning and sparse

matrix ordering library, University of Minneapolis, tech. rep. #97-060.

6. G. Karypis and V. Kumar, Multilevel Algorithms for Multi-Constraint

Graph Partitioning, University of Minneapolis, tech. rep. #98-019.

7. B. Maerten, D. Roose, A. Basermann, J. Fingberg, and G. Lonsdale,

DRAMA: A library for parallel dynamic load balancing of �nite element

applications, Proceedings of the Ninth SIAM Conference on Parallel Pro-

cessing for Scienti�c Computing, SIAM, Philadelphia, CD-ROM, 1999.

8. C. Walshaw, M. Cross, and M. Everett, Parallel Dynamic Graph Par-

titioning for Adaptive Unstructured Meshes, J. Par. Dist. Comput.,

Vol. 47, No. 2, pp. 102-108, 1997.

8

