1561

Load-balancing for mesh-based applications on heterogeneous
cluster computers

J. Fingberg *, K. Nakajima®, C. Walshaw ¢

¢ C&C Research Laboratories, NEC Europe Ltd., Rathausallee 10, D-53757 St. Augustin, Germany
b Research Organisation for Information Science and Technology, 1-18-16, Hamamatsucho, Minato-ku, Tokyo 105, Japan
¢ Department of Computing and Mathematical Sciences, University of Greenwich, Park Row, Greenwich, London, SE10 9LS, UK

Abstract

This paper discusses load-balancing issues when using heterogeneous cluster computers. There is a growing trend
towards the use of commodity microprocessor clusters. Although today’s microprocessors have reached a theoretical peak
performance in the range of one GFLOPS/s, heterogeneous clusters of commodity processors are amongst the most
challenging parallel systems to programme efficiently. We will outline an approach for optimising the performance of
parallel mesh-based applications for heterogeneous cluster computers and present case studies with the GeoFEM code. The
focus is on application cost monitoring and load balancing using the DRAMA library.

Keywords: Load-balancing; Finite element; Heterogeneous PC cluster; DRAMA; Jostle

1. Introduction

The availability of fast commodity microprocessors and
high-bandwidth networks at relatively low prices enabled
the development of cost efficient cluster computers with the
potential for high performance. This performance can only
be delivered with software tools that enable the exploitation
of the full capacity of the hardware. Cluster environments
naturally become heterogeneous as faster machines are
added to the system or replace slower nodes. A major re-
sulting requirement for HPC software is for heterogeneous
load balancing.

With the first release of the DRAMA load-balancing
library [1] into the public domain, the aim was to enable
a widespread exploitation of the library as a tool to allow
efficient use of general HPC platforms. Current research is
focused on heterogeneous load balancing.

The GeoFEM [2] group is currently developing a par-
allel finite element environment for the simulation of solid
earth phenomena. The final target machine is the Earth
Simulator, a parallel vector processor system, developed
in an inter-disciplinary project at the Earth Simulator Re-
search and Development Centre (ESRDC) in Japan [3].

* Corresponding author. Tel.: +49 (2241) 925263; Fax: +49
(2241) 925299; E-mail: fingberg@ccrl-nece.de

© 2001 Elsevier Science Ltd. All rights reserved.
Computational Fluid and Solid Mechanics
K.J. Bathe (Editor)

The results presented here have been obtained with a
prototype version of the GeoFEM code instrumented to use
the DRAMA library.

2. High-performance cluster computing

Besides network capacity, a vital key to high perfor-
mance commodity cluster computing is the availability of
scalable operating systems and application level software.
On the single node level, an increasing processor-memory
performance gap makes it difficult to achieve a substantial
percentage of the theoretical peak performance. Hierarchi-
cal memory designed to allow the use of slow DRAM at
the access time of fast SRAM technology, requires the op-
timisation of the application data layout for efficient cache
usage. On the parallel level, different CPU speeds and hier-
archical networks have to be considered. The complicated
cluster hardware requires a special software technology
that is able to compensate for its shortcomings and bridge
the gap between peak and sustained performance. This
is a challenge for both operating systems and tools like
dynamic load balancing (DLB) libraries.



1562 J. Fingberg et al./First MIT Conference on Computational Fluid and Solid Mechanics

‘l:[! ‘.‘:” .[W‘uv\j-
iy m 1 ! 1
00

0 20 4000 6000 8000 10000

0 2000 4000 6000 8000 10000

Fig. 1. Performance in MFLOPS/s (upper curve) and total number of L2-cache misses per FLOP (lower curve) scaled by a factor of
20 for single (left) and dual (right) CPU usage for a sparse matrix-vector multiplication in CSR format versus the outer loop length

(corresponding to the number of internal nodes).

3. Hardware calibration

Calibration is necessary to determine the different pro-
cessor speeds and the network capacity. Ideally it should be
possible to measure the characteristic hardware parameters
like CPU speed and network bandwidth by running short,
automatic tests. However, it is not always possible to de-
couple hardware from software parameters. In general, the
MFLOPS rate depends on the application. Network mod-
elling is also not straightforward. It is possible to assign a
cost matrix to the network with an entry for each processor
pair. It is not necessarily a good representation of the phys-
ical computer network [4]. For load balancing, the purpose
of this matrix is to guide both the vertex (node/element)
to sub-domain and the sub-domain to process mapping. For
DRAMA we consider a hierarchy of possibilities ranging
from automatic procedures to full user control:

(1) CPU speeds:
(a) processor clock rate;
(b) timing of an application specific computational ker-
nel (for example a sparse matrix vector product);
(c) inverse method (define CPU speeds as MFLOP
rates for equal execution time of a kernel);
(d) user supplied CPU performance vector.
(2) Network matrix:
(a) path length (number of links) between processor
pairs;
(b) pair-wise measurement of transfer times (Ping-
Pong test);
(c) user supplied network cost matrix.

4. Performance monitoring

An essential prerequisite to successful dynamic load
balancing is an accurate cost monitoring procedure. It is

of special importance to use high-resolution timers, which
are thread-safe and allow the measurement of user and
system times separately in order to avoid contamination
from changing background loads.

As an example, which is relevant for a sparse iterative
solver, we analyse the single/dual CPU performance of
a sparse matrix-vector product in compressed sparse row
(CSR) format. The timing and the total number of L2-cache
misses are based on the PAPI library [5]. Fig. 1 illustrates
the problems: the performance depends on the problem
size and performance degradation and L2-cache misses are
more severe in SMP mode.

5. Heterogeneous partitioning

The geometric module of the DRAMA library has been
extended to allow heterogeneous partitioning with different
CPU speeds by introducing artificial bonus loads inversely
proportional to the processor speed. Full heterogeneous
mapping is supported through the internal interface to
Jostle [6], which is able to take both different CPU speeds
and the network matrix into account. Several heterogeneous
mapping configurations are tested in [4]. The power of the
process to compute such a mapping appears to stem from
the global properties of the multilevel algorithm. Edges
which cross expensive links are penalised heavily within
the cost function and so vertices at either end of such an
edge tend to migrate to more adjacent processors and create
a sort of buffer zone. However, because this occurs high
up in the multilevel process, where each vertex represents
many vertices in the original graph, the buffer zone which
may start off only one vertex wide, can actually represent
reasonably broad regions in the mesh. In this way, the
partition is given a good global quality on the coarse
graphs, which is refined on the finer graphs.



J. Fingberg et al./First MIT Conference on Computational Fluid and Solid Mechanics 1563

6. Case studies

Tests have been performed on a PC-cluster at NEC con-
sisting of 16 dual processor SMP machines, 13 have 200
MHz Pentium-Pro processors (slow nodes), and three have
600 MHz Pentium-III processors (fast nodes). A Myrinet
network composed of four switches each connecting four
machines provides a maximum communication bandwidth
of 1.28 Gb/s.

The application is a parallel adaptive CFD code [7]
that has been developed as part of the GeoFEM project.
A partitioner tool using the DRAMA library has been

9 T T T T T T

1 T 1 1 1 1

30500 31000 31500 32000 32500 33000

integrated to provide dynamic load balancing and data
migration.

We study a simple case to test the hypothesis that
heterogeneous load balancing can be successful without
complicated calibration/tuning using only the clock rate
(assuming one FLOP per cycle) as computational speed.
The load balancing strategy is to balance the number of
nodes with using graph (Jostle) or geometric (RCB) parti-
tioning.

The analysis is over a window of 3000 iterations with
three adaptation steps separated by 1000 time steps after an
equilibration of 30,250 cycles.

9 T T T T T T

30500 31000 31500 32000 32500 33000

Fig. 2. Total time in seconds per solver iteration (upper line) including communication and the computational costs (lower four lines) as
a function of the iteration count without load balancing. The left side shows the homogeneous situation (case 1); the right side shows the

heterogeneous case (2) all in single CPU per machine mode.

9 T T T T T T

30500 31000 31500 32000 32500 33000

bt

A 1 1 1 1

30500 31000 31500 32000 32500 33000

Fig. 3. Homogeneous (left, 3) and heterogeneous (right, 4) partitioning for 2 slow and 2 fast processors. The solver time per iteration
(upper line) and the purely computational costs (lower 4 lines) are shown for each processor as a function of the iteration count.



1564 J. Fingberg et al./First MIT Conference on Computational Fluid and Solid Mechanics

10000 T T T T T T

8000

T
1

6000

4000

2000 .

0 1 I 1 1 I I
1 2 3 4 5 6

Fig. 4. Total solver time in seconds for the six test cases.

The following six test cases, all performed on four

processors, are compared:

(1) 4 slow nodes without DLB;

(2) 2 slow + 2 fast nodes without DLB;

(3) 2 slow + 2 fast nodes with homogeneous DLB;

(4) 2 slow + 2 fast nodes with heterogeneous DLB (homo-
geneous network);

(5) 2 slow + 2 fast nodes with heterogeneous DLB (het-
erogeneous network, SMP mode);

(6) 2 slow + 2 fast nodes with heterogeneous RCB.

The comparison in Fig. 2 shows that adding fast ma-
chines to the cluster does not improve performance without
load balancing. The slowest processor determines the speed
because of explicit (time step) and implicit (boundary ex-
change) synchronisation between processes. Fig. 3 shows
the advantage of heterogeneous over homogeneous parti-
tioning and Fig. 4 illustrates that the heterogeneous meth-
ods (4, 5, 6) give almost equally good solver performance.

7. Concluding remarks

The results presented in Section 6 demonstrate that
heterogeneous dynamic load balancing using the DRAMA
library gives a significant increase in efficiency on a typical
PC-cluster. Initial tests with a small number of processors
indicate that a simple strategy without hardware parameter
tuning is sufficient. Of course, the promising initial results
have to be verified on a larger number of processors, where
the network capability becomes more important.

Finally, it should be pointed out that the DRAMA
library is further developed and maintained. It is hoped that
feedback from present and future DRAMA users will help
to steer these and other future developments.

References

[1] The GeoFEM Web-site: http://geofem.tokyo.rist.or.jp

[2] The DRAMA Web-site: http://www.ccrl-nece.de/DRAMA

[3] The ESRDC homepage: http://www.gaia.jaeri.go.jp

[4] Walshaw C, Cross M. Multilevel Mesh Partitioning for Het-

erogeneous Communication Networks, to appear in Future

Generation Computer Systems (originally published as Univ.

Greenwich Tech. Rep. 00/IM/57), 2000.

The Performance Data Standard and API Web-site:

http://icl.cs.utk.edu/projects/papi

[6] The Jostle homepage: http://www.gre.ac.uk/Jostle

[7] Parthasarathy V, Kallinderis Y, Nakajima K. Hybrid adap-
tation method and directional viscous multigrid with pris-
matic-tetrahedral meshes, AIAA Paper 95-0670, Reno, NV,
January 1995.

[5

—_



