
A parallel method for solving pentadiagonal systems

of linear equations

Ivan G. Ivanov

a1

and Chris Walshaw

b

a

Faculty of Mathematics and Informatics, University of Shoumen, Shoumen, Bulgaria

b

School of Computing and Mathematical Sciences, University of Greenwich, London,

England

Abstract

A new parallel approach for solving a pentadiagonal linear system is presented.

The parallel partition method for this system and the TW parallel partition method

on a chain of P processors are introduced and discussed. The result of this algorithm

is a reduced pentadiagonal linear system of order P � 2 compared with a system of

order 2P � 2 for the parallel partition method. More importantly the new method

involves only half the number of communications startups than the parallel partition

method (and other standard parallel methods) and hence is a far more e�cient

parallel algorithm.

Keywords. parallel algorithm, linear system, pentadiagonal matrix, block tridi-

agonal matrix

1. Introduction

1.1. The parallel solution of pentadiagonal systems

Many problems in mathematics and applied science require the solution of linear

systems having pentadiagonal coe�cient matrices, for example the solution of certain

partial di�erential equations, spline approximation, etc. [6]. This kind of linear system

is a special class of narrow banded linear systems. There are various parallel methods

for computing the solution of general narrow banded linear systems: the divide and con-

quer algorithm (dca) [4, 8]; the single-width separator algorithm (swsa) [5, 7, 10, 16];

the double-width separator algorithm (dwsa) [5, 16]. These methods have a common

structure and three phases: factorization, solution of the reduced system and back sub-

stitution. The solution of the reduced system is the crucial step of these algorithms [3]

because the system is solved sequentially.

In addition, in many applications the given narrow banded linear system has a

special banded structure, e.g. periodically banded [2]. Furthermore, there is the method

of Sameh [12, 13] which does not use communication in the reduction phase and the result

is a pentadiagonal linear system. For instance in spline approximation a banded circulant

linear system is obtained [6]. In other cases we have to solve a block pentadiagonal system

[1, 6].

Here we describe three parallel methods for solving a general pentadiagonal linear

system

1

This work was carried out while the author was visiting the University of Greenwich, London, funded

by a Tempus grant

1

� the TW matrix factorization method designed for pairs of parallel computers (sec-

tion 2)

� the parallel Partition Algorithm for Pentadiagonal Systems (PAPS) designed for

a chain of processors (section 3)

� the TW Partition Algorithm for Pentadiagonal Systems (TWPAPS). This method

combines the two previous methods and works for a chain of

P

2

pairs of processors

i.e. for P processors (section 4)

These three parallel methods are modi�cations of a previous algorithm introduced

and discussed by Walshaw and Farr [14, 15] for a tridiagonal matrix system. The third

method, TWPAPS, solves the reduced pentadiagonal system in parallel. Finally, we

compare the algorithms - dca, swsa, dwsa, Walshaw's Partition Algorithm for Tridiagonal

Systems (PATS) referred to as LUTW in [14] and the TW Partition Algorithm for

Tridiagonal Systems (TWPATS) referred to as TWTW in [14] and the TWPAPS

and PAPS algorithms. We discuss a numerical implementation and the results from

numerical experiments.

1.2. Complexity analysis

In our paper we use the following machine dependent parameters [11, 14]

� t

a

- time for one oating point operation: +; �; �; �

� s

c

- start-up time for each inter-processor communication

� t

c

- time to transmit one number.

For matrices with multiple right hand sides or which remain constant throughout

many iterations much work can be saved by generating a matrix decomposition once and

storing it. We use square brackets notation, [], to denote operations which need only be

carried out once for constant matrices rather than at every iteration. For multiple right

hand sides the costs that are not in square brackets are those required for each right

hand side.

2. A TW matrix factorization algorithm for pentadiagonal matrices

2.1. The method

In this section we describe the TW matrix factorization for a pentadiagonal system

on a pair of processors. The letters TW are an acronym for Two-Way and refer to the

manner in which factorisation and back substitution take place in two directions at once

(top-down and bottom-up). We consider the pentadiagonal linear system

Ax = d (1)

2

where A is a n � n matrix and x; d are vectors (n � 5) of the type

A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

b

1

c

1

h

1

a

2

b

2

c

2

h

2

f

3

a

3

: : : 0

: : : : :

: : : : :

: : : : :

0 : : : : h

n�2

: : : c

n�1

f

n

a

n

b

n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

; x =

0

B

B

B

B

@

x

1

x

2

.

.

.

x

n

1

C

C

C

C

A

; d =

0

B

B

B

B

@

d

1

d

2

.

.

.

d

n

1

C

C

C

C

A

:

and we assume A is strongly diagonal dominant.

Let q =

n

2

. Using the LU -decomposition, the matrix A will be factorised into the

matrix product TW , where

T =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

u

1

0 0

s

2

u

2

0 0 0

f

3

: : : :

: : : : :

f

q

s

q

u

q

0 0

0 0 u

q+1

s

q+1

h

q+1

: : : : :

0 : : : : h

n�2

: : : s

n�1

0 0 u

n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

and

W =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 v

1

w

1

0 1 v

2

w

2

0 : : : w

q�2

0

: : : v

q�1

w

q�1

0 0 1 v

q

w

q

w

q+1

v

q+1

1 0 0

w

q+2

v

q+2

1 :

0 w

q+3

: : : 0

: : : 0

w

n

v

n

1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Hence, we compute the elements of the matrices T and W by

u

1

= b

1

; v

1

=

c

1

u

1

; w

1

=

h

1

u

1

;

s

2

= a

2

; u

2

= b

2

� s

2

v

1

; v

2

=

c

2

� s

2

w

1

u

2

; w

2

=

h

2

u

2

;

3

8

>

>

>

<

>

>

>

:

s

i

= a

i

� f

i

v

i�2

;

u

i

= b

i

� s

i

v

i�1

� f

i

w

i�2

;

v

i

=

c

i

�s

i

w

i�1

u

i

;

w

i

=

h

i

u

i

;

9

>

=

>

;

i = 3; 4; : : : ; q =

n

2

and

u

n

= b

n

; v

n

=

a

n

u

n

; w

n

=

f

n

u

n

;

s

n�1

= a

n�1

; u

n�1

= b

n�1

� s

n�1

v

n

;

v

n�1

=

c

n�1

� s

n�1

w

n

u

n�1

; w

n�1

=

f

n�1

u

n�1

;

8

>

>

>

<

>

>

>

:

s

i

= a

i

� h

i

v

i+2

;

u

i

= b

i

� s

i

v

i+1

� h

i

w

i+2

;

v

i

=

c

i

�s

i

w

i+1

u

i

;

w

i

=

f

i

u

i

:

9

>

=

>

;

i = n � 2; n� 3; : : : ; q + 1

Now, we must solve two linear systems

Wx = z (2)

and

Tz = d:

Then in the upper and lower partitions

z

1

=

d

1

u

1

; z

2

=

d

2

� s

2

z

1

u

2

;

z

i

=

d

i

� s

i

z

i�1

� f

i

z

i�2

u

i

; i = 3; 4; : : : ; q

and

z

n

=

d

n

u

n

; z

n�1

=

d

n�1

� s

n�1

z

n

u

n�1

;

z

i

=

d

i

� s

i

z

i+1

� h

i

z

i+2

u

i

; i = n� 2; n� 3; : : : ; q + 1:

From the linear system (2) the four central equations are

x

q�1

+ v

q�1

x

q

+ w

q�1

x

q+1

= z

q�1

x

q

+ v

q

x

q+1

+ w

q

x

q+2

= z

q

w

q+1

x

q�1

+ v

q+1

x

q

+ x

q+1

= z

q+1

w

q+2

x

q

+ v

q+2

x

q+1

+ x

q+2

= z

q+2

The partitions must exchange information for solving these central equations. The

numbers z

q�1

; z

q

and the numbers for dependent matrices v

q�1

; w

q�1

; v

q

; w

q

must be

passed to the lower partition. The numbers z

q+1

; z

q+2

and the numbers for dependent

matrices w

q+1

; v

q+1

; w

q+2

; v

q+2

must be passed to the upper partition.

4

This system is equivalent to the following system

x

q�1

+ v

q�1

x

q

+ w

q�1

x

q+1

= z

q�1

w

q+2

x

q

+ v

q+2

x

q+1

+ x

q+2

= z

q+2

(1� w

q

w

q+2

)x

q

+ (v

q

� w

q

v

q+2

)x

q+1

= z

q

� w

q

z

q+2

(v

q+1

� v

q�1

w

q+1

)x

q

+ (1� w

q�1

w

q+1

)x

q+1

= z

q+1

� w

q+1

z

q�1

We use Kramer's rule for solving the last two equations of this system and we

obtain

x

q

=

�

1

�

; x

q+1

=

�

2

�

; (3)

where

� =

1

2

� �

1

�

2

;

�

1

= ẑ

q

2

� ẑ

q+1

�

1

;

�

2

= ẑ

q+1

1

� ẑ

q

�

2

and

1

= 1� w

q

w

q+2

;

2

= 1� w

q�1

w

q+1

;

�

1

= v

q

� w

q

v

q+2

; �

2

= v

q+1

� v

q�1

w

q+1

;

ẑ

q

= z

q

� w

q

z

q+2

; ẑ

q+1

= z

q+1

� w

q+1

z

q�1

:

Then x

q�1

; x

q+2

can be calculated from

x

q�1

= z

q�1

� v

q�1

x

q

� w

q�1

x

q+1

x

q+2

= z

q+2

� w

q+2

x

q

� v

q+2

x

q+1

:

Finally, we can compute unknowns fx

i

g

x

i

= z

i

� v

i

x

i+1

� w

i

x

i+2

; i = q � 2; q � 3; : : : ; 1;

x

i

= z

i

� v

i

x

i�1

� w

i

x

i�2

; i = q + 3; q + 4; : : : ; n:

The arithmetic costs of this algorithms are

� for the decomposition [10q � 12]

� for the inwards sweep 5q + 6

� for the central equation 12 + [11]

� for the outwards sweep 4q � 8

We consider a case of two processors. The algorithm requires 1 communica-

tion start-up and the transmission of 2 + [4] numbers (for example : z

q�1

; z

q

and

v

q�1

; w

q�1

; v

q

; w

q

to the lower partition) . Hence the total cost for two processors

is

(9q + 10 + [10q � 1])t

a

+ 1s

c

+ (2 + [4])t

c

:

5

The corresponding cost of the sequential LU algorithm is (9n� 12 + [10n� 17]) t

a

[9] .

2.2. A case of

n

2

processors

Now consider a case of

n

2

processors (again A is of size n � n) and let each be

assigned to two of the variables. Using the same TW algorithm there are

q

2

� 1 commu-

nications start-ups for the inward sweep,

q

2

� 1 for the outward sweep and one for the

central exchange. The total number of communications start-ups is then q� 1. For each

communication on the inward sweep and central exchange 2+ [4] numbers are transmit-

ted. The numbers are z

i�1

; z

i�2

and v

i�2

; v

i�1

; w

i�2

; w

i�1

(except for the �rst step of

the sweep). On the outward sweep 2 numbers are transmitted, x

i�1

; x

i

.

Hence the total cost for

n

2

processors is

(9q + 10+ [10q � 1])t

a

+ (q � 1) s

c

+ (2q � 2 + [2q]) t

c

: (4)

2.3. Stability of the algorithm

We suppose A is a diagonally dominant matrix. Then A is nonsingular and an LU

factorization of A exists and it is stable. Our TW algorithm makes two LU decomposi-

tions and thus they are well de�ned. A possible problem arises in the division by � in

equation (3). The following lemma proves the correctness of the division given certain

conditions on the elements of the matrix A.

Lemma 1. We assume the elements of the matrix A satisfy

b

1

� jc

1

j+ jh

1

j; b

2

� jc

2

j+ jh

2

j+ 2ja

2

j

b

i

� jc

i

j+ jh

i

j+ 2ja

i

j+ 3jf

i

j; i = 3; 4; : : : ; q

b

n

� ja

n

j+ jf

n

j; b

n�1

� jc

n�1

j+ jf

n�1

j+ 2ja

n�1

j

b

i

� jc

i

j+ jf

i

j+ 2ja

i

j+ 3jh

i

j; i = n� 2; n� 3; : : : ; q + 1

then

u

i

� 0; jv

i

j � 1; jw

i

j � 1; jv

i

j+ jw

i

j � 1; i = 1; 2; : : : ; n:

Proof. Obviously u

1

= b

1

� 0. We have

jc

1

j � b

1

; jv

1

j =

jc

1

j

b

1

� 1;

jh

1

j � b

1

; jw

1

j =

jh

1

j

b

1

� 1:

Suppose, for induction

u

k

� 0; jv

k

j � 1; jw

k

j � 1;

for k = 1; 2; : : : ; i� 1 < q.

6

Then

u

i

= b

i

� s

i

v

i�1

� f

i

w

i�2

= b

i

� (a

i

� f

i

v

i�2

)v

i�1

� f

i

w

i�2

= b

i

� a

i

v

i�1

+ f

i

v

i�2

v

i�1

� f

i

w

i�2

= b

i

� j�j:

Therefore

j�j = ja

i

v

i�1

� f

i

v

i�2

v

i�1

+ f

i

w

i�2

j

� ja

i

j+ 2jf

i

j

� b

i

:

For v

i

jv

i

j =

jc

i

� s

i

w

i�1

j

u

i

;

=

jc

i

� (a

i

� f

i

v

i�2

)w

i�1

j

u

i

;

=

jc

i

� a

i

w

i�1

+ f

i

v

i�2

w

i�1

j

u

i

:

In order to satisfy jv

i

j � 1, it is necessary that

jc

i

� a

i

w

i�1

+ f

i

v

i�2

w

i�1

j � u

i

and hence

jc

i

� a

i

w

i�1

+ f

i

v

i�2

w

i�1

j � b

i

� j�j:

Then

jc

i

� a

i

w

i�1

+ f

i

v

i�2

w

i�1

j+ j�j � jc

i

j+ 2ja

i

j+ 3jf

i

j � b

i

:

But last inequality is true which follows from condition of the lemma.

For w

i

jw

i

j =

jh

i

j

u

i

=

jh

i

j

b

i

� j�j

:

Then

jh

i

j+ j�j � jc

i

j+ ja

i

j+ 2jf

i

j � b

i

:

Furthermore

jv

i

j+ jw

i

j =

jc

i

� a

i

w

i�1

+ f

i

v

i�2

w

i�1

j

u

i

+

jh

i

j

u

i

7

and

jc

i

� a

i

w

i�1

+ f

i

v

i�2

w

i�1

j+ jh

i

j+ j�j � jc

i

j+ 2ja

i

j+ 3jf

i

j+ jh

i

j

� b

i

; i = 3; 4; : : :

Consequently

u

i

� 0; jv

i

j � 1; jw

i

j � 1; jv

i

j+ jw

i

j � 1; i = 1; 2; : : : ; q:

The proof of the lemma is analogous in the case i = n; n� 1; : : : ; q + 1.

3. The partition algorithm for pentadiagonal matrices

We now consider the partition algorithm for pentadiagonal matrices. The solution

of the linear system (1) on an array of P processors is discussed. We obtain P pentadiag-

onal subsystems f�

i

; i = 1; : : : ; Pg of order m (m � 5) and 2(P �1) boundary equations

f�

i

; i = 1; : : : ; P � 1g. Here the integer m is de�ned so that n = mP + 2(P � 1). For

simplicity it is assumed that n and P are such that m exists.

We can rewrite the vector x

T

= fx

i

g in the following way

x

T

= (x

1

1

; : : : ; x

1

m

; x

2;1

; x

2;2

; x

2

1

; : : : ; x

2

m

; : : : ; x

P;1

; x

P;2

; x

P

1

; : : : ; x

P

m

)

x

T

= ((x

1

)

T

; (
^
x

2

)

T

; (x

2

)

T

; : : : ; (
^
x

P

)

T

; (x

P

)

T

):

The vectors b

T

= fb

i

g; a

T

= fa

i

g; f

T

= ff

i

g; c

T

= fc

i

g; h

T

= fh

i

g;

d

T

= fd

i

g; i = 1; : : : ; n are partitioned in the same way. Thus the system (1) can be

written of the form

(�

1

) P

1

x

1

+D

1

^
x

2

= d

1

(�

i

) Q

i

^
x

i

+ P

i

x

i

+D

i

^
x

i+1

= d

i

; i = 2; : : : ; P � 1

(�

P

) Q

P

^
x

P

+ P

P

x

P

= d

P

where

P

i

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

b

i

1

c

i

1

h

i

1

a

i

2

: : :

f

i

3

: : : : 0

: : : : :

: : : : :

: : : : :

0 : : : : h

i

m�2

: : : c

i

m�1

f

i

m

a

i

m

b

i

m

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

8

Q

i

=

0

B

B

B

B

B

B

@

f

i

1

a

i

1

0 f

i

2

0 0

.

.

.

.

.

.

0 0

1

C

C

C

C

C

C

A

; D

i

=

0

B

B

B

B

B

B

@

0 0

.

.

.

.

.

.

0 0

h

i

m�1

0

c

i

m

h

i

m

1

C

C

C

C

C

C

A

:

The method has three phases

� phase 1 - this is a local reduction to eliminate o�-diagonals in the subsystems

� phase 2 - this is the global solution of the reduced block matrix for the boundary

variables

� phase 3 - the local back-substitution for the subsystem variables

For the �rst phase each processor i is assigned the pentadiagonal system (�

i

).

The unknown vector
^
x

i

=

x

i;1

x

i;2

!

denotes the boundary variables of the boundary

equations

(�

i

) Q

i

B

x

i�1

m�1

x

i�1

m

!

+ P

i

B

^
x

i

+D

i

B

x

i

1

x

i

2

!

=

^

d

i

;

where

Q

i

B

=

f

i;1

a

i;1

0 f

i;2

!

; D

i

B

=

h

i;1

0

c

i;2

h

i;2

!

; P

i

B

=

b

i;1

c

i;1

a

i;2

b

i;2

!

:

We use the equation (�

i�1

) for computing x

i�1

m�1

; x

i�1

m

and the equation (�

i

) for

computing x

i

1

; x

i

2

in the �rst phase. Each processor solves the following linear systems

P

i

w

i

= d

i

;

P

i

R

i

= Q

i

;

P

i

S

i

= D

i

:

In fact there are 5 linear systems with the same coe�cient matrix P

i

. We have

w

i

= (P

i

)

�1

d

i

;

R

i

= (P

i

)

�1

Q

i

;

S

i

= (P

i

)

�1

D

i

:

and from equation (�

i

) obtain

((�

i

)

0

) x

i

= w

i

�R

i

^
x

i

� S

i

^
x

i+1

:

The unknowns x

i;1

; x

i;2

; x

i+1;1

; x

i+1;2

can be computed from the boundary equa-

tions

�Q

i

B

ER

i�1

^
x

i�1

+(P

i

B

�Q

i

B

ES

i�1

�D

i

B

FR

i

)
^
x

i

�D

i

B

FS

i

^
x

i+1

=

^

d

i

�Q

i

B

Ew

i�1

�D

i

B

Fw

i

;

9

where i = 2; : : : ; P; and E; F are 2� n matrices of the type

E =

0 : : : 0 1 0

0 : : : 0 0 1

!

; F =

1 0 0 : : : 0

0 1 0 : : : 0

!

:

We obtain a new tridiagonal block system with 2� 2 block matrices

My = q; (5)

where

M =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

~

B

2

~

C

2

~

A

3

: :

: : : 0

: : :

: : :

: : :

0 : :

~

C

P�1

~

A

P

~

B

P

1

C

C

C

C

C

C

C

C

C

C

C

C

A

and

y =

0

B

B

B

B

@

^
x

2

^
x

3

.

.

.

^
x

P

1

C

C

C

C

A

; q =

0

B

B

B

B

@

~

d

2

~

d

3

.

.

.

~

d

P

1

C

C

C

C

A

:

The coe�cients of the system are given by

~

A

i

= �Q

i

B

ER

i�1

; i = 3; : : : ; P;

~

B

i

= P

i

B

� Q

i

B

ES

i�1

�D

i

B

FR

i

; i = 2; : : : ; P;

~

C

i

= �D

i

B

FS

i

; i = 2; : : : ; P � 1;

~

d

i

=

^

d

i

�Q

i

B

Ew

i�1

�D

i

B

Fw

i

; i = 2; : : : ; P:

The second phase is the computation of the coe�cients and right hand side and

solution of this reduced tridiagonal block system for the boundary variables. The cost is

� [8] arithmetic operations for computing

~

A

i

and the transmission of 4 numbers of

ER

i�2

(the last two rows)

� [8] arithmetic operation for computing

~

C

i

and not transmission

� [24] arithmetic operation for computing

~

B

i

and the transmission of 4 numbers of

ES

i�1

(the �rst two rows)

� 12 arithmetic operation for computing

~

d

i

and the transmission of 2 numbers w

i�1

m�1

; w

i�1

m

10

The calculation of the reduced block matrix and right hand side requires 12+ [40]

arithmetic operations per processor and the transmission of 2 + [8] numbers. Hence the

�rst processor requires 12 + [32] operations for computing

~

B

2

;

~

C

2

and

~

d

2

and the trans-

mission 2 + [4] numbers. In the same way the processor P requires 12 + [32] operations

and the transmission 2 + [8] numbers. However, we assume that these two processors

need the same quantity of arithmetic operations as the other processors.

Thus the total cost for computing the coe�cients of (5) is

(12 + [40]) t

a

+ (2 + [8]) t

c

: (6)

Next we have to solve this system (5). This can be done in various ways [3]. Here

we propose a new approach for the solution of this special block tridiagonal system (5).

First we reduce the obtained matrix M to a pentadiagonal matrix. We compute

�M� �

�1

y = �q;

where �; � are diagonal matrices of the type

� = diag[I

2

;�

3

; : : : ;�

P

];

� = diag[I

2

;�

3

; : : : ;�

P

];

I

2

is the 2� 2 identity matrix and

�

j

=

1 0

�

j

1

!

; �

j

=

1 �

j

0 1

!

; j = 3; : : : ; P:

We receive a new block tridiagonal system

^

M ŷ = f; (7)

where

^

M =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

^

B

2

^

C

2

^

A

3

: :

: : : 0

: : :

: : :

: : :

0 : :

^

C

P�1

^

A

P

^

B

P

1

C

C

C

C

C

C

C

C

C

C

C

C

A

and

ŷ = �

�1

y; f

T

= (�q)

T

= (f

T

2

; f

T

3

; : : : ; f

T

P

):

For the block-elements of this system we obtain

^

A

3

= �

3

~

A

3

;

^

A

j

= �

j

~

A

j

�

j�1

; j = 4; : : : ; P;

^

B

2

=

~

B

2

;

^

B

j

= �

j

~

B

j

�

j

; j = 3; : : : ; P;

^

C

2

=

~

C

2

�

3

;

^

C

j

= �

j

~

C

j

�

j+1

; j = 3; : : : ; P � 1;

f

2

=

~

d

2

; f

j

= �

j

~

d

j

; j = 3; : : : ; P:

11

If

^

A

j

= (â

j

ik

);

^

B

j

= (

^

b

j

ik

);

^

C

j

= (ĉ

j

ik

) we choose �

j

; �

j

; j = 3; : : : ; P so that

â

j

21

= 0; ĉ

j

12

= 0: (8)

From (8) we �nd

�

j

= �

~a

j

21

~a

j

11

; j = 3; : : : ; P;

�

j+1

= �

~c

j

12

~c

j

11

; j = 3; : : : ; P � 1:

If ~a

s

11

= 0 or ~c

s

11

= 0 for 2 � s � P � 1 then we can choose

�

s

=

0 1

1 0

!

; or �

s+1

=

0 1

1 0

!

:

This choice leads to the exchange the rows or columns of the matrix M .

The calculation of the new coe�cients requires :

� [4] arithmetic operations for computing

^

A

j

and the transmission of [1] number

(�

j�1

)

� [8] arithmetic operations for computing

^

B

j

� [6] arithmetic operations for computing

^

C

j

and the transmission of [1] number

(�

j+1

)

� 2 arithmetic operations for computing f

j

per processor. The total cost for computing block elements of

^

M and right hand side is

(2 + [18]) t

a

+ 2 t

c

: (9)

Then the total cost from (6) and (9) is

(14 + [58]) t

a

+ (4 + [8]) t

c

(10)

for computing the coe�cients of the system (7).

Now, we solve our pentadiagonal linear system (7) using the TW matrix factoriza-

tion described in section 2. Since we have to solve the system with 2(P � 1) equations,

we shall use P � 1 processors, i.e. each processor assigned two of the variables. Here

q = P � 1 and we have total cost

(9q + 10+ [10q � 1])t

a

+ (q � 1) s

c

+ (2q � 2 + [2q]) t

c

: (11)

When we solve the linear system (7) we have to compute the solution y = �ŷ of the

system (5). For this 2 arithmetic operations per processor are required and the cost is

2 t

a

.

12

The total cost on second phase from (10) , (11) and computing y is

(9q + 26+ [10q � 57]) t

a

+ (q � 1) s

c

+ (2q + 2+ [2q + 8]) t

c

:

In the third phase each processor has the value of the boundary variables. Then

these values are substituted into (�)

0

to obtain the solution.

The arithmetic costs of phase 1 and 3 of this algorithm are

� phase 1 - [L

i

; U

i

] calculation [10m� 17]

� phase 1 - w

i

calculation 9m� 12

� phase 1 - [R

i

] calculation [16m� 21]

� phase 1 - [S

i

] calculation [6m� 6]

� phase 3 - x

i

calculation 8m

There are a few notes:

1. The solution of the systems P

i

R

i

= Q

i

and P

i

S

i

= D

i

uses LU decomposition

of the matrix P

i

. It depends on the implementation of the LU decomposition and

uses either forward or backward substitution. Since Q

i

and D

i

are right hand sides of

these systems which have a special type, the computation of R

i

and S

i

includes fewer

arithmetic operations than for a full right hand part such as w

i

.

2. Processor 1 need not compute R

1

and processor P need not compute S

P

. Hence

the cost of phase 3 for these two processors is 5m.

Thus the total cost of vector operations in phase 1 and 3 is

(17m� 12 + [32m� 44])t

a

:

Thus the total cost of vector operations in phase 1, 2 and 3 is

(17m+ 9q + 14+ [32m+ 10q � 101]) t

a

+ (q � 1) s

c

+ (2q + 2+ [2q + 8]) t

c

: (12)

Then in terms of n and P the operations can be summarised as P � 2 commu-

nications with 17

n

P

+ 9P arithmetic operations for constant matrices and 49

n

P

+ 19P

arithmetic operations for time-dependent matrices.

4. The parallel TW partition algorithm for pentadiagonal matrices

In this section we combine the methods of section 2 and 3 and we obtain a new

more e�cient algorithm for solving a pentadiagonal system on P processors.

Firstly we consider the partition algorithm for

P

2

processors. Each processor con-

siders the subsystem (�

i

); i = 1; 2; : : : ;

P

2

and makes the LU decomposition of phase

1. Thus it is possible to assign each subsystem (�

i

) to two processors and use the TW

factorization from section 2 on phase 1 instead of LU decomposition for solving each

subsystem (�

i

).

13

So the �rst phase of this algorithm is to execute TW factorization of the subsystem

(�

i

). Then in the second phase we have to solve the reduced block tridiagonal system of

order 2(

P

2

� 1) instead of block tridiagonal system of order 2(P � 1).

Now we describe the TW parallel partition algorithm. We consider the solution

of the pentadiagonal system (1) on an array of P processors. Assume that P is even

and that q =

P

2

. We de�ne q pentadiagonal subsystems of order 2m; (2m � 5) f�

i

; i =

2; 4; 6; : : : ; Pg and q � 1 boundary equations f�

i

; i = 4; 6 : : : ; Pg. Here the integer m is

de�ned so that n = 2mq + 2(q � 1). For the system (1) we obtain

(�

2

) P

2

x

2

+D

2

^
x

4

= d

2

(�

i

) Q

i

^
x

i

+ P

i

x

i

+D

i

^
x

i+2

= d

i

; i = 4; 6; : : : ; P � 2

(�

P

) Q

P

^
x

P

+ P

P

x

P

= d

P

:

Then each subsystem (�

i

) is assigned to two processors i�1 and i; i = 2; 4; : : : ; P ,

so that each of these pairs of processors store the system (�

i

).

This system is distributed by assigning the �rst m equations to processor i�1 and

the second m equations to processor i. Again we receive the boundary equations

(�

i

) Q

i

B

x

i�2

2m�1

x

i�2

2m

!

+ P

i

B

^
x

i

+D

i

B

x

i

1

x

i

2

!

=

^

d

i

; i = 4; 6; : : : ; P;

and (x̂

i

)

T

= (x

i;1

; x

i;2

) are boundary variables between the subsystems (�

i�2

) and (�

i

).

Phases 1 and 3 of this algorithm are the same as phases 1 and 3 of the partition

algorithm (section 3). The calculation ofw

i

; R

i

; S

i

is necessary for each pair of processors

using a TW matrix factorisation and one communication exchange.

In phase 2 the reduced block tridiagonal system for boundary variables is solved.

This system is a q � 1(=

P

2

� 1) block system or 2q � 2(= P � 2) linear system. For

solving this system we follow phase 2 of the partition algorithm. First we reduce the block

system into the pentadiagonal linear system. Secondly the TW matrix factorization for

pentadiagonal matrix is applied. In this case each boundary equation is stored on both

sides of the inter-processor interface and the network can be divided into two independent

parts : the even numbered processors and the odd numbered processors. Each group of

processors has a copy of the reduced matrix. Both odd and even systems can be solved

with a TW factorization. Then the value of boundary variables x̂

2

and x̂

P

must be

transmitted to processors 1 and P respectively to start phase 3.

The arithmetic costs of phase 1 and 3 of this algorithm are

� phase 1 - the arithmetic operations for [T

i

;W

i

] are [10m � 1] for i � 1 and i

processors

� phase 1 - the arithmetic operations for w

i

are 9m+ 6 for i� 1 and i processors

� phase 1 - the arithmetic operations for [R

i

] are [16m� 25] and [6m� 12] for i� 1

and i processors respectively

14

� phase 1 - the arithmetic operations for [S

i

] are [6m� 12] and [16m� 25] for i� 1

and i processors respectively

� phase 3 - the arithmetic operations for x

i

are 8m

In phase 1 there is one communication exchange of 2+[6] numbers, 2+[4] numbers

the computation of w

i

; R

i

; S

i

and extra [2] numbers for the communication of the �ll-ins

for the pentadiagonal matrix. The total cost of phases 1 and 3 is

(17m+ 6 + [32m� 38]) t

a

+ 1 s

c

+ (2 + [4]) t

c

: (13)

In phase 2, the calculation of the reduced matrix

~

M and right hand side f requires

the same quantity of arithmetic operations and transmission of numbers as in phase 2

of partition algorithm, i.e.

(14 + [58]) t

a

+ (4 + [8]) t

c

: (14)

Now, we compute the cost for solving pentadiagonal linear system with P � 2

equations. We use

P

2

� 1 processors . Then from (11) and k =

P

2

� 1 we have

(9k+ 10+ [10k� 1])t

a

+ (k � 1) s

c

+ (2k� 2 + [2k]) t

c

: (15)

At the end of phase 2, x

2

and x

P�2

must be transmitted to processor 1 and P

respectively, a cost of

1 s

c

+ 2 t

c

: (16)

Then from (13) - (16), we have

(17m+ 9k + 30+ [32m+ 10k + 19])t

a

+ (k + 1) s

c

+ (2k + 6 + [2k + 12]) t

c

: (17)

Finally the operation counts of this method can be de�ned as

P

2

communications

with 49

n

P

+

19

2

P arithmetic operations for time-dependent matrices or 17

n

P

+

9

2

P opera-

tions for constant matrices.

There are a few advantages for the parallel TW partition algorithm

1. The operations cost in (12) is reduced to that in (17).

2. In the case of a chain of processors the number of communications start-ups

can be reduced to

P

2

.

3. The operation cost is reduced to 49

n

P

+

19

2

P arithmetic operations.

5. Discussion and numerical results

Arbenz and Gander [3] have discussed the three methods - dca, swsa, dwsa. They

have considered these methods under the assumption the reduced system is solved by

block Gaussian elimination [9] or by block cyclic reduction [9]. They have given parallel

complexities of both cases. We consider the parallel complexity only the case of block

Gaussian elimination used in second phase of these methods. Arbenz denotes the par-

allel complexity C

par

dca

; C

par

swsa

; C

par

dwsa

for these methods and the complexity of Gaussian

15

elimination on serial computers as C

Gauss

and computes

C

par

dca

(k) � (8k

2

+ 7k � 1)

n

P

+ (p� 1)

k

6

(28k

2

+ 45k � 1)

C

par

swsa

(k) � (8k

2

+ 10k � 1)

n

P

+ (p� 1)

k

6

(28k

2

+ 27k � 7)

C

par

dwsa

(k) � (16k

2

+ 10k � 1)

n

P

+ (p� 1)

2k

3

(13k

2

+ 12k + 5)

C

Gauss

(k) � (2k

2

+ 5k + 1) n

where k is lower half-bandwidth and upper half-bandwidth.

The following tables give the theoretical complexity for the various algorithms in

the case of a tridiagonal system and in the case of a pentadiagonal system.

algorithm complexity k = 1 speedup communications

Gauss 8n - -

PATS 17

n

P

+ 4P

C

Gauss

C

PATS

=

P

17

8

+

1

2

P

2

n

P � 1

TWPATS 17

n

P

+ 2P

C

Gauss

C

TWPATS

=

P

17

8

+

1

4

P

2

n

P

2

+ 1

dca 14

n

P

+ 12(P � 1)

C

Gauss

C

par

dca

(1)

=

P

14

8

+

12

8

P

2

�P

n

2P

swsa 17

n

P

+ 8(P � 1)

C

Gauss

C

par

swsa

(1)

=

P

17

8

+

P

2

�P

n

2P

dwsa 25

n

P

+ 20(P � 1)

C

Gauss

C

par

dwsa

(1)

=

P

25

8

+

20

8

P

2

�P

n

2P

Table 1. Complexity for various algorithms of a tridiagonal system

algorithm complexity k = 2 speedup communications

Gauss 19n - -

PAPS 49

n

P

+ 19P

C

Gauss

C

PAPS

=

P

49

19

+

P

2

n

P � 2

TWPAPS 49

n

P

+

19

2

P

C

Gauss

C

TWPAPS

=

P

49

19

+

1

2

P

2

n

P

2

dca 45

n

P

+ 67(P � 1)

C

Gauss

C

par

dca

(2)

=

P

45

19

+

67

19

P

2

�P

n

2P

swsa 51

n

P

+ 55(P � 1)

C

Gauss

C

par

swsa

(2)

=

P

51

19

+

55

19

P

2

�P

n

2P

dwsa 83

n

P

+ 27(P � 1)

C

Gauss

C

par

dwsa

(2)

=

P

83

19

+

27

19

P

2

�P

n

2P

Table 2. Complexity for various algorithms of a pentadiagonal system

16

From the tables we see that the TW approach for solving tridiagonal and pentadi-

agonal linear systems is faster in terms of arithmetic complexity than the double-width

separator algorithm (dwsa) and about the same as the single-width separator algorithm

(swsa). The divide and conquer algorithm (dca) is slightly faster than the TWPATS and

TWPAPS algorithms. However, the main advantage of the TW approach is that uses

fewer communications than other algorithms. TWPAPS algorithm solves the reduced

block tridiagonal system in the second phase using TW parallel algorithm described in

section 2.

Both algorithms, the partition algorithm for pentadiagonal systems PAPS and the

algorithm TWPAPS have been implemented. We carried out numerical experiments on

a cluster of workstations at Greenwich University. The code was written in FORTRAN

77 using the Message Passing Interface (MPI) communications library.

The results are divided into di�erent cases for di�erent number of processors. In

case of 2 processors the TWPAPS algorithm is the TW decomposition without boundary

variables (section 2). For 4 and 8 processors the TWPAPS algorithm is faster than

PAPS algorithm. The following tables show results from numerical experiments.

sequential computer 2 processors

PAPS TWPAPS PAPS TWPAPS

m n time time m n time m n time

10000 20000 0:36 0:36 10000 20002 0:61 10000 20000 0:27

20000 40000 0:75 0:72 20000 40002 1:22 20000 40000 0:55

30000 60000 1:11 1:10 30000 60002 1:82 30000 60000 0:77

40000 80000 1:66 1:56 40000 80002 2:43 40000 80000 1:07

Table 3. Times in seconds for PAPS and TWPAPS for sequential computer and 2

processors.

4 processors

PAPS TWPAPS

m n time m n time

5000 20006 0:55 5000 20002 0:44

10000 40006 1:02 10000 40002 0:89

15000 60006 1:54 15000 60002 1:24

20000 80006 1:99 20000 80002 1:65

Table 4. Times in seconds for PAPS and TWPAPS for 4 processors.

17

8 processors

PAPS TWPAPS

m n time m n time

2500 20014 0:45 2500 20006 0:42

5000 40014 0:74 5000 40006 0:64

7500 60014 1:06 7500 60006 0:87

10000 80014 1:38 10000 80006 1:15

Table 5. Times in seconds for PAPS and TWPAPS for 8 processors.

6. Conclusion

From the theoretic complexities in Tables 1 and 2 we see that the main advantage

in using the TW approach (i.e. solving the block systems on

P

2

pairs of processors) is

that the number of communication startups is halved. On many parallel machines these

startups can be a considerable overhead and this is borne out in the parallel timing results

(Tables 3, 4 and 5). Of course, on systems where the computational costs dominate

or for very large values of n then the complexity tables suggest that the divide and

conquer algorithm (dca) will be the most e�cient parallel algorithm. However, in other

circumstances, where the number of communication startups does play an important

role, the results suggest that TWPAPS will be fastest algorithm.

References

[1] P. Amodio and M. Paprzycki, A cyclic reduction approach to the numerical solution

of boundary value ODEs, SIAM J. Sci. Comput. 18 (1997) 56-68.

[2] P. Arbenz and M. Hegland, The stable parallel solution of general narrow banded

linear systems, Technical Report, Department of Informatics, ETH Zurich (1994).

[3] P. Arbenz and W. Gander, A survey of direct parallel algorithms for banded lin-

ear systems, Technical Report 194-221.ps, Department of Informatics, ETH Zurich

(1994).

[4] S. Bondineli, Divide and conquer: a parallel algorithm for a solution of a tridiagonal

linear system of equations, Parallel Computing 17 (1991) 419-434.

[5] J. Conroy, Parallel algorithms for the solution of narrow banded systems, Applied

Numerical Mathematics 5 (1989) 409-421.

[6] M. Chen, On the solution of circulant linear systems, SIAM J. Numer. Analisys 24

(1987) 668-683.

[7] J. Dongarra and L. Johnsson, Solving banded systems on a parallel processor, Par-

allel Computing 5 (1987) 219-246.

18

[8] J. Dongarra and A. Sameh, On some parallel banded solvers. Parallel Computing 1

(1984) 223-235.

[9] G. Golub and C. Van Loan, Matrix Computations (The John Hopkins University

Press, Baltimore, 1989).

[10] S. Johnsson, Solving narrow banded systems on ensemble architectures, ACMTrans-

actions on Mathematical Software 11 (1985) 271-288.

[11] S. Johnsson, Solving tridiagonal systems on ensemble architectures, SIAM J. Sci.

Stat. Comput. 8 (1987) 354-392.

[12] D. Lawrie and A. Sameh, The computation and communication complexity of a

parallel banded system solver, ACM Transactions on Mathematical Software 10

(1984) 185-195.

[13] A. Sameh and D Kuck, On stable parallel linear system solvers, Journal of the

Association for Computing Machinery 25 (1978) 81-91.

[14] C. Walshaw and S. Farr, A two-way parallel partition method for solving tridiagonal

systems, Research Report Series 93.25, School of Computer Studies, University of

Leeds (1993).

[15] C. Walshaw, Diagonal dominance in the parallel partition method for tridiagonal

systems, SIAM J. Matrix Anal. Appl. 16 (1995) 1086-1099.

[16] S. Wright. Parallel algorithms for banded linear systems. SIAM J. Sci. Stat. Comput.

12 (1991) 824-842.

19

