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Summary

Realizing scalable performance on high performance
computing systems is not straightforward for single-phe-
nomenon codes (such as computational fluid dynamics
[CFD]). This task is magnified considerably when the tar-
get software involves the interactions of a range of phe-
nomena that have distinctive solution procedures involv-
ing different discretization methods. The problems of ad-
dressing the key issues of retaining data integrity and the
ordering of the calculation procedures are significant. A
strategy for parallelizing this multiphysics family of codes
is described for software exploiting finite-volume
discretization methods on unstructured meshes using iter-
ative solution procedures. A mesh partitioning-based
SPMD approach is used. However, since different vari-
ables use distinct discretization schemes, this means that
distinct partitions are required; techniques for addressing
this issue are described using the mesh-partitioning tool,
JOSTLE. In this contribution, the strategy is tested for a va-
riety of test cases under a wide range of conditions (e.g.,
problem size, number of processors, asynchronous/syn-
chronous communications, etc.) using a variety of strate-
gies for mapping the mesh partition onto the processor to-
pology.

1 Introduction

Computational mechanics (CM) modeling and analysis
software now underwrites almost all the design functions
for almost every industry sector. Most CM analysis activi-
ties fall into three categories:

• solids-dominated problems, serviced by the extensive
finite element analysis (FEA) community (Zien-
kiewicz and Taylor, 1991);

• flow-dominated systems, serviced by the more com-
pact computational fluid dynamics (CFD) community
(Patankar, 1980; Versteg and Malalasekera, 1995);

• electromagnetics problems, serviced by a developing
computational electromagnetics (CEM) community
(el Dabaghie et al., 1998).

The numerical techniques, particularly implementation
strategies and software structures for the above themes,
have developed through rather different routes and so
have the appearance, at least, of a disparate family of anal-
ysis tools. As one example, most FEA tools are structured
on the basis of direct solvers, while the vast majority of
CFD codes exploit segregated iterative solvers, and this
one distinction has a significant effect on the resulting
software.

We now see CFD or FEA being applied to problems
with a mesh of 105 to 106 elements/cells, for 10+ variables
per cell/element and for 102 to 103 time steps. The demand
to solve such problems in a reasonable time frame (i.e.,
hours, not days or weeks) means that parallel computer
architectures with substantial raw processing power and
large, though distributed, memory capability are being in-
creasingly exploited. As such, for the past decade, a huge
research effort has been under way to develop, imple-
ment, and demonstrate parallelization strategies for CM
codes on a wide range of hardware.

There is now a well-established consensus that the
most effective way to parallelize CM codes to achieve
scalable efficient parallel performance involves the use of
the single-program multiple-data (SPMD) paradigm
whereby

• Each processor runs essentially the same program but
operates on its own subset of the total data.

• The mesh that covers the solution domain is partitioned
so that each processor stores only its own submesh plus
some halo layers to hold data that are generated on an-
other processor but required on the current one.

UNSTRUCTURED MESH-ITERATIVE CODES 137

The International Journal of High Performance Computing Applications,
Volume 14, No. 2, Summer 2000, pp. 137-174
 2000 Sage Publications, Inc.

Address reprint requests to Mark Cross, Centre for Numerical
Modelling and Process Analysis, University of Greenwich, Mari-
time Greenwich University Campus, 30 Park Row, Greenwich,
London SE10 9LS.



• Standard message-passing tools (e.g., PVM, MPI) to
send data to or receive data from neighboring proces-
sors are used. These are required to emulate the solution
process in scalar mode, or the equivalent data access in
shared-memory systems using open MP, for example, is
facilitated.

The mesh-partitioning task is trivial for single-block
structured meshes, typical of many CFD codes, and can
be easily achieved at runtime with a simple algorithm
that allocates sets of cell layers to a processor. For block-
structured and unstructured meshes, the mesh-partitioning
problem is more complex, and techniques and tools have
been developed for this purpose.

While the focus on phenomena-specific analysis tools
exemplified by the CFD and FEA software communities
have adequately served the needs of most engineering de-
sign functions, this constraint is not appropriate for many
manufacturing processes, which may well involve interac-
tions among the fluids, solids, and thermal and electro-
magnetic phenomena. To model such processes ade-
quately requires a distinctive approach. For a variety of
reasons, it is not practical to “hook together” phenomena-
specific codes:

• The incompatibility of the meshes and variable data
representation requires a good deal of numerical filter-
ing that compromises analysis accuracy.

• If the phenomena (and, consequently, the codes) are
anything other than very loosely coupled, the whole
simulation process is dominated by data transfer be-
tween the software tools. If the simulation is to operate
in parallel (which it may well need to be), this problem
is exacerbated.

• Achieving reliably converged solutions of tightly cou-
pled problems can be extremely difficult.

This means that if these “multiphysics” problems are to
be addressed effectively in the next decade, a more coher-
ent approach is required. One could argue (Cross, 1996)
that solving closely coupled multiphysics problems re-
quires a single software framework that has the following
key features:

• a single mesh, so that as the problem requires, different
physics (and their interactions) can be switched on or
off dynamically throughout the whole domain;

• a single database, so that there is no data transfer be-
tween programs but only usage by separate modules;
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• the solution procedures for each of the phenomena
have a measure of compatibility;

• every opportunity to enable high numerical accuracy
filtering and use of data generated in one module but
used by another.

In addition, one could further delineate the structure of
the solution of such problems via the fully assembled ma-
trix approach or through the segregated solution of groups
of equations representing each of the phenomena within
some iterative loop. We have been involved in one such
venture for most of the past decade. This venture has been
based on a family of numerical procedures using finite-
volume techniques but has been extended to an unstruc-
tured mesh. Procedures have been developed for heat con-
duction with solidification/melting, Navier-Stokes flow
(including free surfaces), electromagnetically driven
flow, and solid mechanics. The solution strategy has fol-
lowed the segregated approach because procedures for
each distinctive phenomenon are well established and so
successful techniques for multiphysics computations could
more readily be identified. Finite-volume techniques
were employed because it was recognized that many
multiphysics simulations involve complex Navier-Stokes
flows (e.g., free surfaces, multiphase), and at the time this
work was initiated (~1990), the former was demonstrably
better able to address such phenomena than conventional
finite-element methods. The initial product of the Green-
wich effort was the UIFS code, which had the capability
to address fluid flow (Chow, Cross, and Pericleous,
1995), heat transfer with melting/solidification (Chow
and Cross, 1992), and nonlinear solid mechanics (Taylor,
Bailey, and Cross, 1995). This code was particularly tar-
geted at casting processes that typically involve the pour-
ing of hot liquid metal into a (relatively) rigid solid mold,
residual convection of the liquid metal, and cooling and
solidification, followed by the development of stress in
both the solidified metal and mold plus their relative de-
formation (Bailey et al., 1996). This work has been subse-
quently extended to three dimensions and now forms the
basis of the multiphysics analysis software, PHYSICA
(Cross, 1996). This tool is one of a number of
multiphysics codes emerging in the engineering analysis
community, including SPECTRUM and, most recently,
the TELLURIDE code at Los Alamos.

As suspected at the outset, it very quickly became ob-
vious that simulations involving interactions of the above
phenomena would require significant processing power.
Hence, a strong need for operating such codes in parallel
was perceived. However, although it was obvious that a
conventional SPMD strategy should be employed, its ap-
plication in a multiphysics context gives rise to a range of
unique problems that need to be addressed. Hence, we de-
cided to investigate these issues in the context of the UIFS
code because all the perceived challenges appeared to be
no less difficult in 2-D than 3-D. Moreover, the resulting
strategies have been subsequently directly incorporated
into the 3-D code, PHYSICA (Cross, 1996). This paper
describes the parallelization strategy pursued to deliver
high-efficiency parallel operation for multiphysics codes,
involving fluids interacting with solids and using iterative
procedures over an unstructured mesh.

The layout of the paper is as follows: a brief overview
of the target multiphysics code is given to place the work
into a computational context. It is followed by a descrip-
tion of the parallelization strategy (including some
key implementation details), an assessment of the
parallelization strategy on a typical multiphysics test
problem for a range of scenarios, and a conclusion.

2 Overview of the
Target Multiphysics Code

2.1 KEY SET OF EQUATIONS

The UIFS code is two-dimensional (Bailey et al., 1996).
The key sets of continuum equations are as follows.

Navier-Stokes Flow
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which expresses the conservation of momentum, and

∂ρ
∂

ρ
t

v Sc+ ∇ =( ) , (2)

which describes the conservation of mass—see the list of
nomenclature. The momentum source is essentially a
function of two factors—a buoyancy force and the flow
resistance due to the presence of solidified material:
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The source term is associated with the release or con-
sumption of latent heat during a phase change and is given
by

S
t

L vfh = −
∂
∂

ρ( )l , (5)

where the liquid fraction,f<, is a function of temperature.

Solid Mechanics

The general equilibrium equations governing the conser-
vation of force on a static body are
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In matrix form, these equations may be transformed to

∆ ∆σ ε= D e( ), (7)

where

D
E

=
−















−( )1

1 0

1 0

0 0
2

1
2

µ

µ
µ

µ
.

The total and elastic strains are related by

∆ ∆ ∆ ∆ε ε ε ε( ) ( ) ( ) ( )T e vp th= + + ,

which is related to displacements by

∆ ∆Τε ( ) = L d, (8)

where

L
x

y

y x

=



















∂
∂

∂
∂

∂
∂

∂
∂

0

0 ,

∆ ∆ε
∂
∂xx

T

x
u( ) , .,= etc

∆ ∆ε αxx
th T= , .,etc

and the viscoplastic strains are given by the Perzyna
model form:
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and the other variables are explained in the list of nomen-
clature.

2.2 THE ISSUE OF COUPLING

Obviously, the fluid flow field affects the thermal energy
field and vice versa. The relationship between the fluid
flow/heat transfer and solid-mechanics phenomena is
more subtle. The influence of the temperature from the
energy calculations on the solid-mechanics calculations
is straightforward enough. However, in most casting ap-
plications, the development of stress and relative defor-
mation in the solidifying metal and the mold gives rise to a
gap at the metal-mold interface, which causes an inhibi-
tion of heat transfer across it. The heat transfer across
the metal mold is adequately governed by a lumped
expression,

( )∂
∂
T

n
h T Teff metal mold= ± − , (11)

where the heat transfer coefficient is defined by

h
K

eff
gap

gap

=
∆

.
(12)

The parameter,∆gap, is the normal distance between the
metal and the mold at the interface and is calculated from
the solid-mechanics equations. As such, the flow, heat
transfer, and solid-mechanics behavior are closely cou-
pled and have to be solved in a manner that reflects the di-
rect interactions among the phenomena.

The application of this computational modeling soft-
ware to the analysis of shape-casting processes is de-
scribed in detail elsewhere (Bailey et al., 1996).
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2.3 DISCRETIZATION USING A
FINITE-VOLUME UNSTRUCTURED MESH
APPROACH

In the approach described, all the above equations are
solved on a single mesh. However, the flow and heat
transfer equations are solved using a cell-centered dis-
cretization, while the solid-mechanics equations are
solved using a vertex-centered discretization; this distinc-
tion is illustrated in Figure 1.

Cell-Centered Scheme

The general form of the mass, momentum, and energy
equations may be written as
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which may be transformed using the divergence theorem
to give
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Each of the above terms may be discretized as (Chow,
Cross, and Pericleous, 1995) the following:
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over the cell-centered control volume. The fluid flow and
heat transfer equations are then solved by the standard
SIMPLE procedure (Patankar, 1980; Versteg and
Malalasekera, 1995), using iterative solvers for each of the
key variables—u, h, and the pressure correction term. As
is current practice, because the pressure (correction) and
velocity components are colocated at the cell center, the
Rhie-Chow approximation is used to prevent checker-
boarding of the pressure field (Rhie and Chow, 1982).

Cell Vertex Scheme

The equilibrium equations are integrated over the control
volume illustrated in Figure 1, whereP is the node vertex,
to give
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where the summation is over the number of faces that con-
stitute the control volume. Substituting equation (17) into
(16) gives a first-order equation for the solution of the dis-
placements. In thex-direction, this yields
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with a similar expression for the∆v.
Many factors have influenced the selection of

discretization. For example, vertex-based boundary con-
ditions are most convenient for vertex-based discre-
tization procedures for solid mechanics. Conversely, for
flow calculations, flux boundary conditions are straight-
forward to apply for a cell-centered discretization.

2.4 INTEGRATION IN THE UIFS CODE

The integration of the fluid, heat transfer, solidification,
and solid-mechanics procedures are illustrated in Figure 2.
The flow/heat transfer/solidification group of processes is
solved as one implicit procedure using a derivative of the
well-established SIMPLE procedures (Patankar, 1980;
Versteg and Malalasekera, 1995). The SIMPLE strategy
solves the momentum variables (u, v), the pressure (p),
heat transfer (h, T), and phase change (f) in a segregated
manner, although, of course, each variable is solved
iteratively within the overall loop. When this has achieved
convergence at a time step, it passes onto the solid-
mechanics loop. Here, the whole problem for (∆u, ∆v) is
assembled and solved as a single matrix using a precondi-
tioned conjugate-gradient (PCCG) solver. In principle, it
is quite possible to make the whole procedure fully im-
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plicit essentially, using the idea of false time stepping. In
practice, this never showed any advantage for the prob-
lems addressed with the UIFS code. Each of the solvers
may be turned on or off to suit the requirements of a given
problem. As the fluid mechanics stage often requires more
effort to obtain a satisfactory solution than solid mechan-
ics, the solid-mechanics solver loop may be masked to
only run everykth time step. Even withk = 1, the bulk of
the computational effort is usuall
y expended in the fluid-mechanics loop. This is, of course,
problem dependent; for a solidification-type problem, the
initial time steps may be entirely fluid while the closing
time steps are entirely solid.

The above strategy has enabled the evaluation of a
range of levels of numerical coupling within the software
framework. However, certainly in metals-processing ap-
plications, the straightforward coupling (i.e., not fully im-
plicit) has proved more than adequate. The features that
have made this possible are the numerical fidelity inherent
in the single code, which has one database on a single
mesh. This code has been used to evaluate the coupled
strategy in a number of solidification-based processes—
particularly related to shape casting (Bailey et al., 1996).
In Figure 3, we show plots of the residual flow at an early
phase, the temperature profile, and the effective stress and
deformation at a later stage of the process. The code,
though only two-dimensional, adequately demonstrates
the potential for solving genuine multiphysics problems
(Bailey et al., 1996).

3 Strategy for Parallelization

As stated earlier, the parallelization strategy is based on
the now standard SPMD paradigm. However, its imple-
mentation in a multiphysics code with a range of possible
discretization strategies on a single mesh presents a series
of challenges, which will become apparent below.

3.1 THE BASIC STRATEGY

When dealing with multiphysics simulations, there are a
range of issues to address that affect the strategy for mesh
partitioning. These include (Cross, 1996) the following:

• the relative computational effort of each physical phe-
nomenon in each element;

• the presence or absence of a specific physics phenome-
non in an element;

• the algorithmic structure, which determines whether
each phenomenon can be solved simultaneously.
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It is tempting to develop a partition strategy for
multiphysics that performs separate partitions for each
distinct physics procedure or module independently.
However, if an element has a number of phenomena active
simultaneously, this could involve a substantial amount of
additional interprocessor communication, unless the
solution of each variable is coincidentally on the same
processor.

The real challenge in parallel multiphysics simulation
is todeviseapartitioningstrategy thatensures the following:

• all the distinct physics operating in an element is essen-
tially located on the same processor,

• the partition of the single mesh reflects the weights as-
sociated with the physics active at each element and
load balances accordingly (as a weighted graph).

The approach adopted here was first suggested by
McManus, Cross, and Johnson (1995) and may be sum-
marized as the following:

• The code is restructured on the basis of partitioned sin-
gle mesh for the whole solution domain as a single en-
tity (i.e., without regard to the physics).

• The partitioning strategy (i.e., tool) recognizes the dif-
ferent weights depending on the physics active in that
element and constructs partitioned subdomains (which
may be disjoint) that ensure a computational load
balance.

Actually, in the early stages of this work, there were no
mesh-partitioning tools with this capability. Now there
are at least two—METIS (Karypis and Kumar, 1998) and
JOSTLE (Walshaw, Cross, and Everett, 1995); the latter is
used in this work (see below). Even though a single mesh
is used in the analysis, the procedures for each physics
component do not necessarily use the same discretization
process. In fact, the flow, heat transfer, and solidification
procedures are solved at the cell center where the element
is the control volume, while the solid-mechanics proce-
dures are solved at the vertex, and the control volume is
assembled from components of the neighboring elements
(see Figure 1). Hence, to ensure that the above strategy
can be implemented, it is necessary to construct second-
ary partitions (for the vertex-based graph from the ele-
ment-based graph) that maximize the locality of element
and associated vertex discretizations on one processor.

The key advantage of the above strategy is twofold:

1. The approach to parallelizing the multiphysics
code is essentially similar to that for a single disci-
pline code (such as CFD) with the added complex-
ity of the secondary partitioning issue.

2. The problem of ensuring a partition that yields a
load balance for any kind of multiphysics problem
is essentially addressed by the distinct partition-
ing/load-balancing tool.

3.2 MESH PARTITIONING

A key to success is the quality of the mesh partitioner;
what is required here is

• a partitioned mesh that is well load balanced (i.e., the
same workload on each processor),

• one that is well balanced with regard to interprocessor
communications (i.e., the data exchanged between pro-
cessors is minimized with respect to both volume and
distance over the processor network), and

• one that runs very rapidly with respect to the parallel
multiphysics simulation so that partitioning is a nomi-
nal overhead cost.

There is a vast literature on mesh partitioning and dy-
namic load balancing in the engineering analysis context.
It is not the objective of this paper to review this area but
simply to identify the approach taken to address the chal-
lenge of multiphysics. However, an excellent review of
mesh partitioning and dynamic load balancing has re-
cently appeared in Hendrickson and Devine (forthcom-
ing), who raise some of the issues discussed above and
highlight various possible approaches. The tool used in
the mesh-partitioning task in this work is JOSTLE, also
developed at Greenwich by Walshaw, Cross, and Everett
(1995). This tool is a state-of-the-art partitioner. It em-
ploys a two-phase procedure and optimizes at various lev-
els to rapidly produce high-quality partitions using O(N)
process. In particular, the latest version of JOSTLE

• runs in parallel,
• load balances with respect to computational load and

interprocessor communication,
• exploits the use of disconnected subdomains to achieve

a load balance,
• enables dynamic load balancing.

In this context, it is necessary to know that a graph is
built from the physical domain mesh that describes the el-
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ement connectivity. The JOSTLE tool then uses the dual
of this graph as the basis for its partitioning process. It can
produce partitions for an arbitrary number of processors
and also match the partition connectivity of the resulting
subdomains to specified processor topologies. We will re-
turn to this later.

3.3 THE ISSUES OF MESH DECOMPOSITION

Having obtained a partition of the mesh intoP parts, the
partition is used to decompose the mesh intoP
subdomains that can be allocated one per processor. The
elements, nodes, and faces that are allocated uniquely to a
processor are referred to in this paper as the core mesh
components. These components are said to be “owned” by
a processor. Each subdomain is extended with a layer of
points, faces, and elements that overlaps the subdomains
along the interprocessor boundaries, as illustrated in Fig-
ure 4. These overlap or halo regions carry variable values
from neighboring subdomains that are required for the so-
lution of variables inside the subdomain.

Decomposition of the mesh into a set of extended
submeshes consists of five essential steps:

1. Find a partition of the mesh (primary).
2. Derive secondary partitions from the primary

partition.
3. Determine the mesh overlaps to the neighboring

subdomains.
4. Renumber the mesh in each subdomain.
5. Construct templates for overlap data exchange.

This strategy is an extension of what needs to be done
for a primary-only partition and involves some careful
housekeeping.

3.4 DERIVING SECONDARY PARTITIONS

The mesh entity that provides the dominant spatial refer-
ence used by the code to be parallelized is ordinarily cho-
sen as a basis for mesh partitioning. This partition is re-
ferred to as the primary partition. Secondary partitions
may be derived from the primary partition for the other
mesh entities used in the code. The compute time for a CM
code is largely dominated by the time spent in the solution
of an equation of the formAx=b. It is consequently impor-
tant for load balance to obtain an equal number of rows
and an equal number of coefficients in each of the distrib-
utedA matrices. This inevitably results in some compro-
mise. With an element-based unknown vector, for exam-
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with the overlaps required for the flow scheme

“The mesh entity that provides the
dominant spatial reference used by the
code to be parallelized is ordinarily chosen
as a basis for mesh partitioning.”



ple, a primary partition based on elements will keep the
vector length and hence the number of rows in theA ma-
trix balanced across each subdomain. But the number of
off-diagonal coefficients in eachA matrix depends on the
number of internal faces in the subdomain. Balancing ele-
ments will not necessarily balance matrix coefficients. In
the case of the two-dimensional flow procedure in UIFS,
the primary partition is based on elements, and there is
only one secondary partition, that being for grid points.
For reasons of clarity, the following discussion is based
on an element-based primary partition. The discussion is
nonetheless applicable to other mesh entity partitioning
orders.

Secondary partitions are inherited from the primary
partition in accordance with the connectivity between the
entities. For example, each node is connected to a number
of elements, each of which belongs exclusively to one
subdomain. This provides a basis for the allocation of
nodes to a subdomain. The most obvious and simple parti-
tion inheritance scheme is to allocate the node to the
subdomain that owns the majority of the connected ele-
ments. In the case of an equal number of connected ele-
ments being owned by two or more subdomains, the node
is allocated to the domain that owns the least number of
nodes. This simple, inexpensive scheme gives a good
alignment between the primary and secondary partitions
but can lead to a high load imbalance in the secondary par-
tition. It does not follow that two unstructured meshes
with equal numbers of elements will have the same num-
ber of nodes; indeed, there may be a large discrepancy be-
tween the two node counts. When the two meshes are
subdomains to be operated on in parallel, this can produce
an unacceptably high degree of load imbalance for ele-
ment-based matrix computations, as discussed earlier,
and possibly even greater imbalance for node-based cal-
culations. If, however, the node allocation between the
subdomains is forced to be balanced, the element and
node partition may not be well aligned, which can result in
an undesirably large and imbalanced overlap layer. This
will consequently lead to large and unbalanced communi-
cations between the subdomains.

Load imbalance may be redressed to an extent through
the use of more elaborate schemes. In this work, all nodes
are allocated to the subdomain with the highest number of
elements connected to the node. Nodes with an equal
number of connected elements in each connected
subdomain are not allocated until all other nodes have
been allocated, at which point they are assigned in se-
quence to the least loaded subdomain.

It is conceivable that the nodal imbalance may become
unmanageably large, in which case some nodes may re-
quire allocating to subdomains that own none of the con-
nected elements to redress the balance. The resulting
communication imbalance may or may not be significant
depending on the characteristics of the hardware plat-
form. The quality of the secondary partitions then be-
comes a platform-dependent optimization issue.

These schemes may be seen as an attempt at solving a
graph problem by the application of simple heuristics. It
may therefore be worthwhile to use graph-based tech-
niques to derive the secondary partitions. One possible
scheme is to produce a weighted graph of the nodes that
clusters the nodes for which all connected elements lie on
one partition. This graph can then be partitioned using
one of the graph-partitioning algorithms developed for
obtaining the primary partition. The amount of effort that
is worthwhile devoting to the derivation of a secondary
partition is problem dependent. Like the search for a pri-
mary partition, there may be no singular optimal solution,
and a near-optimal solution will, in the majority of cases,
provide a sufficiently good solution.

3.5 HALO LAYER/OVERLAP CONSTRUCTION

The overlaps between the subdomains are determined in
accordance with the data dependency required by the
code. For example, if the solution for an element-based
variable requires the values in all adjacent elements, then
the adjacent elements that lie in neighboring subdomains
are added as overlaps to the list of elements. Similarly, if
the nodes that compose the overlap elements are also re-
quired, then they too are added to the list of overlap node.
In this way, the description of the mesh for each
subdomain is extended to include all data that are required
for the solution of the subdomain. The utility used to con-
struct overlaps for the codes discussed in this paper em-
ploys a simple set of rules to determine the elements and
nodes that are to be included in the overlaps.

When using only the element flow and heat code:

Overlap elements are defined as all elements that are ad-
jacent to a core element.

Overlap nodes are defined as nodes of all elements, in-
cluding overlaps that are not core nodes.

However, the node-based stress code involves a more ex-
tensive data dependency, and the required overlap layers
become deeper so that:
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Additional overlap elements are defined as elements that
contain at least one core node.

Additional overlap nodes are defined as nodes that are
connected to core nodes.

An example of the overlaps required for the flow code is
shown in Figure 4. The same mesh is shown in Figure 5
with the additional elements and nodes in the overlaps re-
quired for the stress code.

Given that the mesh data structure is either one-dimen-
sional linked or indexed lists or stored as multidimen-
sional arrays, then the number of entities is the highest in-
dex (last in F77, first in C), and the overlaps may be stored
as extensions to existing data structures. This allows them
to be passed to subroutines and addressed in the parallel
code in the same manner as the original data structures.
This hides the parallelism and results in only small source
code changes being required to extend the mesh as it is im-
plemented in the serial code. For example, the array of grid
points in the Fortran code of UIFS may be declared as the
following:

INTEGER DIMENS, NO_OF_GRID_POINTS
REAL GRID_POINTS(1:DIMENS, 1:NO_OF_

GRID_POINTS)

This array may be easily extended to include overlaps such
as the following:

INTEGER DIMENS, EXTD_NO_OF_GRID_POINTS
REAL GRID_POINTS(1:DIMENS, 1:EXTD_NO_

OF_GRID_POINTS)

Clearly, this structure will still be correctly declared in all
subsequent subroutines calls without any code modifica-
tion. Subroutines may be called with either the original or
the extended point count, and the declaration will remain
consistent. If, however, thearrayofgridpoints isdeclaredas

REAL GRID_POINTS(1:NO_OF_GRID_POINTS,
1:DIMENS)

then the array may also be extended as

REAL GRID_POINTS(1:EXTD_NO_OF_GRID_
POINTS, 1:DIMENS)

But now each subroutine must declare grid points to the
extended size to remain consistent. It may prove less inva-
sive to change the serial code to reverse such declarations
and subsequently all occurrences of the variable. Apart
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Fig. 5 A mesh of 28 triangles divided into two subdomains
with the overlaps required for the stress scheme



from cache effects, such a modification will not affect the
serial code and is unlikely to raise objections from the se-
rial code authors.

3.6 PARALLEL EXECUTION
CONTROL AND DATA LOCALIZATION

Consider the following code fragment that loops over
each grid point in each element:

INTEGER NUMBER_OF_GP_IN_ELEMENT(1:NUMBER_
OF_ELEMENTS)

INTEGER GP_IN_ELEMENT(1:MAX_NUM_GP_PER_
ELE,1:NUMBER_OF_ ELEMENTS)

REAL    XELE(1:NUMBER_OF_ELEMENTS)
REAL    YGP(1:NUMBER_OF_GRID_POINTS)
DO I=1, NUMBER_OF_ELEMENT

DO J=1,   NUMBER_OF_GP_IN_ELEMENT(I)
XELE(I) = XELE(I) + YGP(GP_IN_

ELEMENT(J,I)
END DO

END DO

Two arrays are used in this example to describe the ele-
ment topology:NUMBER_OF_GP_ELEMENTis a vector
that contains the number of grid points that are in each ele-
ment.GP_IN_ELEMENTis a two-dimensional array that
contains the grid point number for each grid point in each
element. Two data items are involved: an element- based
variableXELEand a grid point-based variableYGP.

This code fragment can be implemented in parallel by
using “owner computes” execution control masks that are
conditionals to control the scope of operations for each
processor. To achieve scalability in both computation per-
formance and memory, a processor needs to both act on
and only store its own data, plus copies of other proces-
sors’ data in the overlap areas. Hence, the fundamental
mesh entity (the grid point described as a set of coordi-
nates) will be locally renumbered through the simple pro-
cess of being packed into memory as a consecutive list of
coordinates for each grid point in the subdomain. So
the core grid points are packed into the first 1 to
LOCAL_NUMBER_OF_GRID_POINTSlocations and
the overlap grid points asLOCAL_NUMBER_OF_GRID_
POINTS+1 to EXT_LOC_NUMBER_OF_GRID_
POINTS, whereLOCAL_NUMBER_OF_GRID_POINTS
is the number of grid points in the subdomain core, and
EXT_LOC_NUM_OF_GRID_POINTSis the number of
grid points in the entire subdomain. Similarly, extracting
and storing (packing) only the local entries for the vari-
ables XELE, YGP, and NUMBER_OF_GP_IN_ELE
MENTis straightforward. Moreover, through the exploita-

tion of the local subdomain mesh information, the loop
can localize the data usage so that the above code frag-
ment is transformed to

INTEGER NUMBER_OF_GP_IN_ELEMENT(1:EXT_
LOC_NUM_OF_ELEMENTS)

INTEGER
GP_IN_ELEMENT(1:MAX_NUM_GP_PER_ELE,1:
INTEGER PTR_ELE(1:NUMBER_OF_ELEMENTS)
INTEGER PTR_GP(1:NUMBER_OF_GRID_POINTS)
REAL      XELE(1:EXT_LOC_NUM_OF_ELEMENTS)
REAL      YGP(1:EXT_LOC_NUM_OF_GRID_

POINTS)
DO I=1, LOCAL_NUMBER_OF_ELEMENTS

DO J=1, NUMBER_OF_GP_IN_ELEMENTS(I)
XELE(I) = XELE(I) + YGP(GP_

IN_ELEMENT(J,I))
END DO

END DO

If this code fragment exists inside a subroutine where
NUMBER_OF_ELEMENTSis passed into the subroutine
as an argument, then the calling routine can be modified
to call the subroutine withLOCAL_NUMBER_OF_
ELEMENTS, so that no code modification is required in
the subroutine.

This paper follows the option of renumbering each en-
tire subdomain to a local numbering scheme. Each pro-
cessor “sees” its renumbered subdomain as a complete
mesh consisting of 1 tone elements and 1 tonp grid points,
wherene andnp are the local number of elements and grid
points, respectively. This can be carried out at the highest
possible level in the code, that is, where the problem spec-
ification is read from file. A record of the global (serial)
numbers for each local mesh entity (referred to as a local-
to-global index) is stored on each processor to allow re-
construction of data back into the original global form.
Translation from local to global numbering using this re-
cord is only required as an I/O process when writing vari-
ables to file (or dynamically load balancing). Rebuilding
of global variables is carried out by the I/O (master) pro-
cessor, and so this is where the local-to- global indices are
required. However, the indices are distributed with the
subdomains to maintain scalability of memory. This
scheme can encounter difficulty when the problem size
increases to the point at which the geometry description
will no longer fit into the memory processor. This is not,
however, insurmountable and is discussed further else-
where (McManus, Cross, and Johnson, 1995). The effect
of renumbering is illustrated in Figures 6 and 7. Consider
the element partition in Figure 7. The partition listPe of
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processor numbers that own each element as returned
from the partitioner is as follows:

1 1 1 1 1 12 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

Renumbering the core elements in the first 14 elements
of each partition allows transformation to local loop lim-
its. The implications of renumbering are discussed further
below.

3.7 OVERLAP COMMUNICATION

The notion of the mesh overlaps is that each processor cal-
culates only the values of core variables. That is, variables
associated with mesh entities within their own domain,
with no computation being performed on the overlaps.
Variable values are then copied into the overlap from the
processors on which the variables are calculated, as shown
in Figure 8. This is a one-way communication process be-
tween all adjacent subdomains. Data travels only from the
core of the subdomains (where they are calculated) into
the overlaps of adjacent subdomains (where they are
used). However, there are some rather obvious exceptions
in which data operations are so trivial that it is faster to per-
form the operation locally on the overlap than to import
the new values from a neighbor. For example, setting a
variable to a fixed value (e.g., zero) requires a processor
only to write a register to memory. This will undoubtedly
be faster than reading data from the communication port
and writing the data back to memory. Implementation of
such exceptions may be seen as an optimization of the
parallelization. Indeed, such optimizations may produce
an improvement in performance on some platforms and
not others. Overlap values are generally exchanged be-
tween processors as soon as practically possible, usually
whenever a variable has been fully updated (e.g., at each
iteration of the solver). Asynchronous communication
schemes may be used to improve the parallel performance
by overlapping communication with calculation. This is
discussed further below. The coordination of overlap data
exchange requires a communication template for each
subdomain that holds the mesh entity numbers to be sent
and the processor number to which they are to be transmit-
ted. A corresponding template records the entity numbers
to be received and the processor number from which they
will arrive. These templates must be matched across each
subdomain boundary so that the data sent from one
subdomain are received in the anticipated order in the ad-
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Fig. 6 A mesh of 28 triangles divided into two subdomains
showing the renumbering of grid points from global to local
numberin.

Fig. 7 A mesh of 28 triangles divided into two subdomains
showing the renumbering of elements from global to local
numbering

“The notion of the mesh overlaps is that
each processor calculates only the values
of core variables. That is, variables
associated with mesh entities within their
own domain, with no computation being
performed on the overlaps.”



jacent subdomain. This is relatively simple as the decom-
position preserves the global ordering of the mesh entities.
For a simple processor interconnection topology such as a
pipeline (a one-dimensional chain), in which the partition
can guarantee mapping to the processor topology, the tem-
plate becomes reasonably straightforward. Exchange of
data between processors can be synchronized by the tem-
plate on an odd-even alternate-pair basis. This is a
four-cycle process described in Table 1.

This simple scheme enables the exchange to be carried
out as a parallel process. More elaborate processor topolo-
gies can be handled with variations on such a scheme.
Regular two-dimensional processor arrays, for instance,
can use red-black checkerboard-type schemes. It cannot,
however, be assumed that the mesh can be partitioned in
such a way as to map perfectly onto the processor inter-
connection topology. A scheme is required that can cope
efficiently with an unstructured partition of an unstruc-
tured mesh mapped imperfectly to an array of processors.
This is a scheduling problem of the type familiar to opera-
tional research.

The scheme adopted involves constructing the graph
G(P, C) of processorsP and subdomain (processor) inter-
connectionsC and weighting the interconnects according
to the size of the interface. This graph is initially sorted by
weight, with the processor pair having the largest amount
of data to communicate being first. The graph is then
scheduled to provide a sequence in which exchanges oc-
cur as a parallel process with the largest exchanges first.
Starting with the heaviest node pair, the processor num-
bers are recorded. The graph is then searched for the next
heaviest weight that does not use one of the already re-
corded processors. When found, this processor pair is
sorted to be the next entry in the graph. This operation is
carried out until either all processors are involved in com-
munication or an unrecorded pair is no longer available for
scheduling. If there are still entries in the graph that have
not been scheduled, the list of recorded processors is
cleared and the process repeated until all processor pairs
have been scheduled. This results in a layering of ex-
change communication processes that should be (but is
not guaranteed to be) no deeper than the maximum node
degree of the processor graphG(P, C).

Consider the simple mesh of 42 triangles illustrated in
Figure 9, decomposed into three renumbered subdomains,
as shown in Figure 10.

Here the overlap renumbering has followed the original
global numbering scheme. Processor (a) must receive data
for overlap elements 17 and 18 from processor (b), where
they are numbered 6 and 9, respectively. Similarly, proces-
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Communication Operations Required for a Simple Chain

of Processors

Processor Number Odd Even

Send right Receive left
Receive right Send left
Send left Receive right
Receive left Send right

Fig. 8 Overlap update communication scheme



sor (b) must receive data for overlap elements 15 and 16
from processor (a), where they are numbered 3 and 8, re-
spectively. The communications for this example may be
carried out in three exchanges as follows:

Processor (a)
1 Send to processor (b) elements 3 and 8
1 Receive from processor (b) elements 17 and 18
2 Send to processor (c) elements 9 and 12
2 Receive from processor (c) elements 15 and 16

Processor (b)
1 Receive from processor (a) elements 15 and 16
1 Send to processor (a) elements 6 and 9
3 Send to processing (c) elements 5, 7, 10, and 13
3 Receive from processor (c) elements 17, 18, 19,

and 20
Processor (c)

2 Receive from processor (a) elements 15 and 19
2 Send to processor (a) elements 5 and 6
3 Receive from processor (b) elements 16, 17, 18,

and 20
3 Send to processor (b) elements 6, 8, 10, and 14

Note that these element numbers are always in increasing
order both globally and locally. The send is carried out
first to allow parallelism in packing.

Data that are to be transmitted from a subdomain core
are collected into a data buffer, which allows one transmis-
sion and therefore only one latency to complete the trans-
fer. Unpacking of data from a buffer is an overhead that is
not necessary for data reception. Arranging for the over-
lap-renumbering scheme to consecutively number overlap
entities that are owned by the same processor allows in-
coming data to be received directly into the overlap mem-
ory. So the global number ordering is preserved for each
interface to other processors but not throughout the over-
lap. In the above example, elements 15 and 19 on proces-
sor (c) are in the core on processor (a) and so should be
numbered consecutively. This involves renumbering over-
lap element 19 on processor (c) to be 16 and then overlap
elements 16, 17, 18, and 20 to be 17, 18, 19, and 20, re-
spectively.

3.8 MATRIX DECOMPOSITION
AND PARALLEL SOLVERS

UIFS, in common with most other CM codes, requires the
solution of a number of linear systems of the formAx= b.
The mesh partitioning, as well as the renumbering strat-
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Fig. 9 Mesh of 42 triangular elements

Fig. 10 Mesh of 42 triangular elements partitioned into three
renumbered domains



egy, obviously has an impact on how the submatrices are
represented. The first-order element matrix for the mesh
in Figure 9 is shown in Figure 11. Decomposition of this
mesh into the three subdomains in Figure 10 gives rise to
the three subdomain matrices in Figure 12. This illustrates
how the matrices resulting from the decomposition are not
square. Rows of the matrices that correspond to the
interprocessor (subdomain) boundaries contain coeffi-
cients that address elements in the overlap layer. Figure 12
also shows the data transport from the core of eachxvector
into the overlap region ofxon the neighboring processor.

The UIFS code uses three iterative solvers, and their
parallel form is summarized below.

Parallel Jacobi, Gauss-Seidel, and SOR Algorithms

Obviously, all of these algorithms attempt to find a solu-
tion ofAx= bby generatingx k( )+1 from components ofx(k)

for k≥ 0 in an iterative fashion. The scalar form of these al-
gorithms can be expressed as
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wheres= 0,α = 1 for the Jacobi scheme,s= 1 for the oth-
ers, and generally,α < 2.

Parallelizing the Jacobi algorithm is trivial. Much work
also has been done to develop parallel versions of
Gauss-Seidel procedures. However, in CFD calculations,
the GS-SOR algorithms are used in the calculation of the
velocity components, and there is a fair amount of flexibil-
ity here. In the SIMPLE-type procedures (Patankar, 1980;
Versteg and Malalasekera, 1995), the computational effort
is dominated by the pressure correction calculation, and
only a relatively few solver GS-SOR cycles are required
for the velocity components each time through the full it-
erative cycle. Hence, the above algorithm can be imple-
mented in parallel as
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wherei = 1, . . .,np andp= 1, . . .,P; np is the number of ele-
ments (coefficients) in subdomainp; P is the number of
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Fig. 11 Matrix for the 42-triangle mesh

Fig. 12 Matrix for the 42-triangle mesh partitioned into three
subdomains



processors; andmp is the number of elements (coeffi-
cients), including the overlap/halo elements in
sub- domainp.

Obviously, even though there is a renumbering of the
mesh within a partitioned subdomain, the update will re-
quire the latest values ofx located in the overlap/halo lay-
ers (and so calculated on other processors). However, us-
ing the above formula, which involves using some old
values in overlap/halo layers, appears to have little practi-
cal effect on the convergence behavior of the overall flow,
heat, and solid-mechanics procedures (and so for the full
multiphysics loop). Formally, results in McManus’s
(1996) thesis show that variations in the values of serial
and parallel variables and differences in the number of it-
erations required to converge are both insignificant. In
practical terms, the variations between the serial and par-
allel results are significantly less than the variations
caused by running the serial code on different processors
(Sparc, i860, MIPS, etc.). Even with processors using
IEEE arithmetic, differences in rounding modes give rise
to subtle variations in numerical behavior.

Parallel PCCG Algorithm

CGM is an established nonstationary iterative method for
symmetric positive-definite systems providing rapid con-
vergence and 0(m) computational efficiency, wherem is
the number of nonzero components ofA. Preconditioning
is frequently used to improve the condition number of the
matrixA (Golub and Van Loan, 1989). For a positive-defi-
nite matrix preconditionerM,

Ax b M Ax M b= ≡ =− −1 1 . (21)

If the eigenvalues ofM –1A are clustered better than the
eigenvalues ofA, then the preconditioned problem may
converge in fewer iterations than the original problem.
The Jacobi preconditioner is the diagonal of theA matrix
that has the effect of scaling the quadratic form along the
coordinate axes. While not the most effective precon-
ditioner in reducing iterations, its simplicity provides
computational efficiency. A modification that transforms
Ax= b into
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results in the diagonal of
(
Abeing the identity matrixI and

hence the Jacobi preconditionerM = I. The CGM iteration
can then be expressed as
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This method involves three basic computational pro-
cesses: matrix-vector product, vector inner product, and
AXPY (axplusy).

Recall that each distributedA matrix is no longer
square as it now addresses coefficients in the overlaps. So
an overlap exchange communication is required to obtain
the values ofp in the overlaps before evaluating the matrix
vector productAp in equation (23).

The inner products in equations (24) and (27) are cal-
culated in parallel as a sum of local partial inner products.
Equation (27), for example, is evaluated as
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This requires a global summation and hence synchroniza-
tion across all processors.

The AXPY in equations (25), (26), and (29) is an
ideally parallel process requiring no interprocessor
communication.

The diagonally preconditioned conjugate-gradient
(DPCG) algorithm, along with most other precondition-
ing schemes, is explicit in that it uses only old variable
values within each iteration. It may therefore be expected
to give identical results from both serial and parallel ver-
sions. In practice, however, finite numerical precision
gives rise to variations of the inner products withP. As the
solutions are highly sensitive toα andβ, these small vari-
ations lead to quite noticeable numeric differences be-
tween the serial and parallel solution. In this case, it could
be argued that both serial and parallel solutions are
equally valid solutions to the original problem. Clearly,
all solutions should be quantitatively identical.
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3.9 PARALLEL UTILITIES:
SCALABILITY ISSUES

Parallel utilities developed for this work build on the es-
tablished CAPLib communication library that provides a
useful portability layer to a range of transports. Together
with JOSTLE, utility routines to partition, decompose,
and recompose the mesh have been developed.

The key communication utility, OVERLAPX
VARIABLE, SPATIAL_REFERENCE), performs an
exchange of overlap data for the inputVARIABLE be-
tween all processors in accordance with the communica-
tion schedule defined by the argumentSPATIAL_REF-
ERENCE(i.e., element or grid point). Overlap exchange is
a highly parallel process that involves a matching
send-and-receive operation across all subdomain bound-
aries (Section 3.7). The time required for OVERLAPX is
approximated as 2s

max
t

m
, wheres

max
is the maximum node

degree in the processor (subdomain) communication
graphG(P,C), andt

m
is the average time to send a message.

The important point here is that the number of processors
P does not feature highly in this approximation, and so
OVERLAPX scales well, the time required being largely
independent ofP.

Global commutative operations (PVM reduce, MPI
collective) are used to obtain global values of commuta-
tive functions by combining local partial evaluations of
the function and broadcasting the results to each proces-
sor. The time required for a global commutative operation
is dependent on the actual implementation of the opera-
tion, which can vary with partition strategy, communica-
tion harness, and platform hardware. For example, a
global commutative may be implemented on a chain of
processors by passing all partial evaluations to the master
processor, where the global value can be evaluated and
broadcast to all processors. The time required for this op-
eration will consequently be something like 2(P – 1)t

1
,

where t
1

is the communication start-up time (latency).
With a mesh ofp × qprocessors, a similar strategy will re-
quire 2(p + q – 2)t

1
. No matter how a global operation is

implemented, the time required increases withP and so
does not scale particularly well. Care is therefore required
in avoiding as far as possible such operations. Some global
commutative strategies do not ensure that an identical re-
sult reaches all processors. It must be remembered that
floating-point operations have finite precision, and so
floating-point arithmetic commutative operations are not
truly commutative. So, for example, a floating-point
global summation operation based on a ring of processors
that accumulates partial summations by passing the partial
results around the ring of processors will complete in (P –
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“Global commutative operations (PVM
reduce, MPI collective) are used to obtain
global values of commutative functions by
combining local partial evaluations of the
function and broadcasting the results to
each processor.”



1)t
1
, but the values left on each processor will have differ-

ent rounding errors. This can cause severe problems. If,
for instance, the result is tested to determine convergence,
some processors may test true and others false, and the
code will consequently fail. Execution of a global sum-
mation in parallel must produce a different result to the se-
rial summation, but both results are valid. It is only re-
quired that a global commutative produces an identical
result across all processors, not an identical result to the
serial commutative operation. Global commutative oper-
ations are now implemented as a binary tree or hypercube
communication that returns a numerically identical result
on each processor. This requires only 1 + [log

2
(P– 1)] la-

tencies and consequently scales to largeP.
A scatter routine is used to distribute a variable across

the processors, again in accordance with the given spatial
reference. Similarly, a gather is used to rebuild variables
from components on each processor. Scatter/gather oper-
ations are costly of both time and memory, requiring a
number of messages proportional toP and globally
dimensioned data space. The negative impact of these op-
erations, however, is not particularly significant as they
are only required for I/O operations.

4 Tools and Equipment Employed

In this paper, we will focus on the parallel performance of
the UIFS code on a PARAMID-i860XP system because it
has a number of parallel facilities that enable a range of is-
sues to be assessed that could affect scalability. The
PARAMID is essentially a distributed-memory parallel
system with a flexible interconnection topology and a rea-
sonable latency, bandwidth, and asynchronous function-
ality. As such, we will investigate the impact on perfor-
mance of the following:

• the quality of the mesh partition,
• the extent to which the mesh partition connection to-

pology matches that of the processors in the parallel
system, and

• the impact of asynchronous communications.

With regard to scalability, our experiments have involved
both relative speedup for a fixed problem size, as well as
increasing the problem size in proportion to the number of
processors available. However, our results have focused
on the former because they are more discriminating in
showing the effective limits of scalability for a particular
problem size.

4.1 EXPLOITING THE JOSTLE
TOOL TO EXPLORE THE EFFECT
OF THE MESH PARTITION QUALITY

The JOSTLE strategy is to derive an initial partition as
quickly and cheaply as possible and then use optimization
techniques to improve the quality of the partition. Two al-
ternative methods are provided to produce the initial par-
tition. One method is a variation of the greedy algo-
rithm—in this case, a graph-based variant on the original
mesh-based algorithm proposed by Farhat (1988). The
other method is geometric sorting, which operates in a
similar manner to orthogonal coordinate bisection. This
method provides a crude mapping to ap× qprocessor grid
(p ≥ q). The nodes,N, are sorted on the longest axis and
split into sets ofN/pq. The nodes in these sets are then
sorted in the orthogonal axis and split into sets ofN/pq.
Having used one of the above methods to obtain an initial
partition, one of two optimization methods can be applied
to improve the partition. Uniform optimization is a tech-
nique in which each partition attempts to minimize its
own surface energy analogous to the way that bubbles
pack together. The technique works by calculating the
center of each partition in a graphical sense and determin-
ing the radial distance of each node from the center.
Nodes that are most distant from the center can then be
migrated between neighboring partitions. Grid optimiza-
tion is a similar technique to uniform optimization, except
that nodes are allowed to migrate only between neighbors
in the processor grid. Four partitioning (mapping) strate-
gies are provided by JOSTLE. Unmapped partitioning ig-
nores the processor interconnection topology throughout
the entire partitioning process. A postmapped partition is
an unmapped partition that has been mapped to the pro-
cessor topology with a simple mapping algorithm applied
after partitioning. The premapped partition begins with a
partition that is crudely mapped to the process topology
and then is optimized, ignoring the processor topology to
minimize the number of cut edges. The mapped partition
acknowledges the processor topology throughout the par-
titioning process. The mapping strategies are summarized
in Table 2.

JOSTLE operates on a graph that, in the case of UIFS,
represents the mesh and returns a partition of that graph.
For parallel PUIFS, the dual graph of the mesh is used to
obtain a partition based on elements. The dual graph is
where the nodes or vertices of the graph represent the ele-
ments of the mesh, and the graph edges represent the ele-
ment adjacency (connectivity). For the purposes of exper-
imentation, JOSTLE can be run as a stand-alone program
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that produces a file describing the mesh partition. This al-
lows for flexibility in adjusting the parameters used to
control the partition and visualization of the partition pro-
duced. JOSTLE also has been embedded into PUIFS so
that a partition may be produced rapidly at runtime. The
partition produced by JOSTLE (primary partition) is used
to generate a secondary partition for the mesh grid points.
The primary and secondary partitions are inverted to gen-
erate lists of the global element and grid point numbers
that exist in each subdomain. The rules for overlap genera-
tion given in Section 3.5 are applied to produce descrip-
tions of the halo layers/overlaps in a global numbering
scheme. The element and grid point lists are extended to
contain the global element and grid point numbers for the
overlaps. Boundaries in UIFS are described as a set of grid
points, and boundary conditions are described in a file as a
set of “patches.” This allows the boundary points along
with the associated boundary patch numbers to be parti-
tioned in accordance with the extended grid point parti-
tion. The boundary patch descriptions and material prop-
erties are not partitioned. These parameters are read at
runtime and distributed to all processors whether or not
they are needed on that processor. For small numbers of
processors (P< 500), this is an insignificant memory over-
head for PUIFS, which is worthwhile because it simplifies
any code modifications.

4.2 HARDWARE EMPLOYED:
TRANSTECH PARAMID SYSTEM

Most of the computational experiments reported here
were performed on this system, and so the description is
worth describing in more detail.

This machine has 28 i860XP-based processor ele-
ments, 16 of which are equipped with 32 Mbytes and 12 of
which are equipped with 16 Mbytes of fast (40 ns) DRAM
memory. Each i860 is equipped with a T800 communica-
tion coprocessor with 8 or 4 Mbytes of memory. The PEs
are hard connected in pairs with Inmos C004 multistage
crossbar switches, providing interconnection between the
PE pairs. This configuration allows great versatility in PE
interconnection topology. An obvious and simple arrange-
ment for the Paramid topology is a two-dimensional grid,
which is the arrangement used for these results. A virtual
channel router resident on each processor allows message
passing between all of the processors in the machine, al-
lowing the machine to be programmed as though the ma-
chine were a fully connected network. Parmacs, PVM, and
C Toolset-style communication libraries are all available
on the Paramid. These results have been obtained using
the C Toolset library as this library gives better perfor-
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Table 2

Partition Mapping Strategies Provided by JOSTLE

Processor
Strategy Initial Partition Optimization Allocation

Unmapped Greedy Uniform No
Postmapped Greedy Uniform Yes
Premapped Geometric sort Uniform No
Mapped Geometric sort Grid No



mance than the alternatives on this platform. In this con-
text, the latency was measured as 33µs with a bandwidth
of 1.7 Mb/s.

4.3 MEASURING PARALLEL PERFORMANCE

Strictly speaking, the runtime of the original serial code
should be used as a measure of the runtime on one proces-
sor. This is, however, not always the most practical scheme
(Fox, Williams, and Messina, 1994). It is often the case
that in scrutinizing a code for parallelization, there arise
instances when optimizations of the serial code may or
must be made to achieve honest comparisons. One com-
mon occurrence in computational mechanics (CM) codes
is the printing of end-of-sweep residuals, principally as a
means of imparting confidence to the code user. Inter-
rupting an operating system to print can carry a significant
overhead, and so silencing a code gives a reduced runtime.
This effect is of greater importance in parallel, where for
many systems, the operating system interrupt can carry a
significant overhead. We are left with a dilemma as to
what we consider to be the runtime on one processor and
what is the runtime on many processors. Many CM codes
incorporate a timer to report the elapsed CPU time for a
run. It has become normal practice for such timers to start
after reading the problem specification from the file and
stop before writing results to the file. This is reasonable
because file access times can be dependent on other traffic
on the systems. Timing only the CPU activity gives an op-
timistic view of parallel performance as parallel I/O hard-
ware is rare, and so I/O activity seldom scales. The order
of CM codes tends to be somewhere between linear 0(N)
and quadratic O(N)2, so measuring only CPU time is not
unreasonable as this forms the asymptotic bound on
runtime for large problems.

The results presented in this paper use the CPU time of
the parallel code on one processor fort

1
, which in this case

is less than the runtime of the original code because of a
number of serial optimizations. The overhead of the paral-
lel version on a single processor is only the cost of the call
to the communication routines in which no communica-
tion occurs. This has proved to have an insignificant im-
pact on the runtime in numerous parallelized codes.

Parallel speedupS
P

is the ratio of the runtime on one
processort

1
to the runtime onP processorst

P
.

S
t

tP
P

= 1 . (31)

If the parallelization is 100% efficient, thenSP = P, but this
is rarely the case for real CM problems. There is always
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“One common occurrence in
computational mechanics (CM) codes is
the printing of end-of-sweep residuals,
principally as a means of imparting
confidence to the code user.”



some fraction of the codefs (0 < fs < 1) that is inherently se-
rial. This limitation on the maximum possible speedup is
summarized as Amdahl’s law,

S
t

f t
P f t

P s
s

max
( )

=
+−

1
1

1
1

. (32)

The asymptotic limit of Amdahl’s law asP → ∞ gives

S
fP
s

max =
1

. (33)

This clearly places a finite limit on the maximum achiev-
able speedup from a parallel code. Amdahl’s law was
originally cited as a strong reason to doubt the usefulness
of massively parallel systems. For a fixed problem size,fs

is constant, and so scalability is restricted. Scalability can
only be possible iffs reduces with an increasing problem
size. It is now well established that, in practice,fs for a CM
code is often extremely small, even with modest problem
sizes. CM codes tend to be somewhere between 0(N) and
0(N2), whereasfs is somewhere between constant and
0(N). Consequently,fs tends toward insignificance as the
problem size increases, and so scalability becomes possi-
ble. The communication cost and the idle time inevitably
in a parallel code deteriorate the performance further.
However, other factors not included in Amdahl’s law,
such as better cache usage for each subdomain in compar-
ison with the global problem, can have a beneficial effect.

Parallel efficiency,E
P
, is often used as the performance

measure for a parallel code and is simply the ratio of the
parallel speedupS

P
to the number of processorsP:

E
S

PP
P= × 100%. (34)

In principle, parallel efficiency cannot exceed 100%.
However, there are two instances when parallel efficiency
may become superlinear and exceed 100%. One possibil-
ity is to break some data dependency in the parallel code
that is not actually required. The implication here is that
the serial code is open to some form of optimization. Hav-
ing applied the optimization to the serial code, a super-
linear parallel efficiency should no longer be achievable.
The other cause of superlinear performance is cache us-
age. Decomposing a large problem that does not fit well
into cache into a number of small problems may allow the
decomposed problems to fit into cache. Cache success is
an important factor in CPU performance, especially for
high clock rates (>100 MHz) in the current generation of
processors that are able to process data far faster than con-
ventional DRAM memory may be accessed.

4.3.1 Scalability. Here we are concerned with two
aspects of scalability—computation and memory.

Briefly, computational scalability is the extent to
which the computation time is reduced for a problem of
the same size as the number of processes is increased. An-
other way to estimate computational scalability is to con-
sider how the parallel performance varies as the problem
size per processor is kept constant but the number of pro-
cessors increases.

The second scalability issue is concerned with
memory—can the size of the problem be scaled linearly
with the number of processors used? Thisrequires that
there are no globally sized data items and no significant
arrays that have the number of processors as an index.

5 Results and Discussion

5.1 IRREGULAR SHAPE TEST CASE

The geometry of the irregular test case is shown in Figure
13 for the 3034 triangular mesh case. In fact, this geome-
try was configured for 5 mesh densities, with 3034,
10,027, 30,064, 60,005, and 119,822 triangles. Themeshes
were all partitioned using JOSTLE, and Figure 13 illus-
trates the use of different mapping strategies. In fact,
five different mapping strategies were employed in the
mesh-partitioning process:

1. Unmapped: Machine topology is ignored through-
out the partitioning process.

2. Postmapped: The unmapped partition is post-
mapped to match the machine topology as ap × 2
grid.

3. Premapped: Initially mapped 2-D partition opti-
mized to reduce the number of cut edges.

4. Mapped 1-D: Mapped to a 1-D processor array.
5. Mapped 2-D: Mapped to a 2-D processor array.

The effect of the partitioning strategy on the cut edge
count is illustrated in Figure 14. Through all of the mesh
sizes, the lowest cut edge count is obtained using the un-
mapped (postmapped) partitioning strategy. The mapped
1-D and mapped 2-D partitions give the highest cut edge
count, with the mapped 1-D partition having approxi-
mately twice the cut edge count of the other partitions.
Conventional wisdom, of course, would indicate that the
lowest edge cut is the best partition to use. However, this
has to be balanced against the additional cost of commu-
nication if the mesh connectivity is not on a neighboring
processor.
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5.2 THE TEST CASES

Three cases were used to investigate the performance of
each algorithm and the impact of physical coupling on the
parallel performance.

5.2.1 Fluid Dynamics Test Case. To provide a fluid
dynamics test case, the shape is filled with liquid gallium
at 80°C. The boundary is set at 80°C with the exception of
the top surface, which is cooled to 30°C. The test case is
run to steady state to produce the convection currents illus-
trated in Figure 3a. The momentum, pressure, and heat
solvers are used only for this test case, with the Jacobi
method used for each solver. The Jacobi method is used
simply because the parallel results with a Jacobi solver are
identical regardless of the number of processors used. This
makes it easier to detect any errors in the test runs. The
Jacobi method does not give the best serial performance,
and a Gauss-Seidel SOR solver would ordinarily be used
for the pressure and heat solvers for such a problem. How-
ever, this issue is irrelevant for the purpose of evaluating
speedup; performance results should be the same if
Gauss-Seidel SOR is used.

5.2.2 Solid-Mechanics Test Case. To provide a
solid-mechanics test case, the mesh was left free to move
in all directions with the exception of the top surface,
which was fixed. Material properties used were for gal-
lium. A uniform fixed thermal load of 10°C was applied to
an initial temperature of –30°C. This load was applied for
four 2-second time steps. Four time steps were used sim-
ply to provide a convenient runtime for the purposes of
measurement. An exaggerated mesh displacement is
shown in Figure 15. Only the displacements are solved in
this test case, with stresses being calculated from the dis-
placements. The diagonally preconditioned conjugate-
gradient method is used in the displacement solvers.

5.2.3 Solidification Test Case. The solidification
test case starts with liquid gallium close to solidification at
30°C. The boundary is held at 20°C with the exception of
the top surface, which is held at 0°C. The case is run until
the gallium is largely solidified with small regions of recir-
culating liquid remaining. The residual stress contours,
mesh displacement, and flow vectors are illustrated in Fig-
ure 3b. This case uses the larger stress overlaps for both the
flow and the stress portions of the problem. At the start of
the run, there is negligible work for the stress solver as
most of the domain is liquid. At the end of the run, only a
small portion of the problem remains liquid, yet the major-
ity of the compute time is still required in the flow solvers.
All of the solvers are enabled for this test case, momen-
tum, pressure, heat, and displacement. The Jacobi method
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Fig. 13 Partitions of a 2-D mesh into (a) 1-D, (b) 2-D, and (c)
uniform topologies with the corresponding subdomain con-
nectivity graphs



is used for the momentum, pressure, and heat solvers as in
the fluid dynamics test case. The diagonally precondi-
tioned conjugate-gradient method is used in the displace-
ment solvers as in the solid-mechanics test case.
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Fig. 14 The number of cut edges against the numbers of partitions for a range of partition strategies for the (a) 3034, (b) 10,027, (c)
30,064, (d) 60,005, and (e) 119,822 triangular meshes



5.3 PERFORMANCE ON A
RELATIVELY HIGH-LATENCY SYSTEM

The following parallel performance measurements were
obtained using the Transtech Paramid at the University of
Grenwich, which communication delivers a start-up la-
tency of 33µs. This is quite high in comparison with cur-
rent technology that provides around 5µs latency.

The 30,064-element test case is the largest of the test
cases that can fit into the memory of one 32 MByte proces-
sor node. The serial runtime for the 60,005-element case
was regressed from the two-processor runtime, and for the
119,822-element test case, the four-processor runtime was
used. Clearly, this affects the absolute accuracy of the
graphs but does not change the trend in providing a com-
parison between partitioning techniques, as shown in Fig-
ures 16 to 30.

The lowest number of cut edges and (in this case) the
lowest amount of communication for each mesh size is
given by the unmapped (postmapped) partition, but this
partition clearly does not give the best speedup perfor-
mance. The unmapped and postmapped partitions are ac-
tually the same partition, the postmapped partition having
had an additional optimized mapping of partitions to pro-
cessors applied to it. Where the two partitions give a simi-
lar speedup, this reflects an unintentionally fortuitous
mapping of the unmapped partition to the processor topol-
ogy. It is possible that the unmapped and postmapped par-
titions may by chance be identical. It is, however, highly
unlikely that the unmapped partition would ever give a
better speedup than the postmapped partition; in such a
case, the processor allocation strategy would have failed.
Of course, any performance differences between the un-
mapped and postmapped partitions are unlikely to be sig-
nificant for small numbers of processors.

The best overall speedup performance in the graphs is
given by the mapped partitions, despite the cut edge count
being higher than the other partitions. This confirms the
proposition that partitioning in accordance with the ma-
chine topology will result in improved performance when
the interprocessor communication:processor speed ratio
is sufficiently high.

Using a pipelined (mapped 1-D) partition leads to a sig-
nificantly higher number of cut edges, and consequently
the message length is far greater, although fewer messages
are required. A mapped 1-D partition requires only two
messages and hence two latencies for each overlap update
(one to each neighbor), which explain the perhaps unex-
pectedly good speedup results for the pipeline partition.
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Fig. 15 Mesh displacement for the solid-mechanics test
case



The mapped 2-D partition in Figure 13 shows the max-
imum node degree of the processor communication graph
to be 4. However, the edges in this communication graph
represent only element adjacency, but the data depend-
ency is actually more extensive than merely adjacent.
Adding overlaps to the subdomains therefore increases
the maximum node degree of the processor communica-
tion graph to 5 as the overlaps reveal dependencies be-
tween subdomains previously shown as unconnected.
Consequently, five messages are required for each overlap
update. Given that the imbalance of elements between the
subdomains for all cases is less than 0.25% (and for the
secondary grid point partition, the imbalance is less than
0.75%), the effect of load imbalance for the test cases is
insignificant (i.e., with constant element shape with
near-constant mesh density).

These results indicate that the machine performance
with this code is latency bound for the smaller test cases
and bandwidth bound for the larger flow-dominated test
cases. Consider Figure 16a, in which the best speedup is
given with the mapped 1-D partition; this partition has the
greatest amount of data to communicate but the lowest
number of messages (latencies) per processor. Clearly, la-
tency is the bound on performance with this problem. For
the larger fluid dynamic test case shown in Figure 16b, the
mapped 2-D partition gives the best speedup. Here, the
large amount of data communication required for the
mapped 1-D partition is eroding the advantage of fewer
latencies, allowing the mapped 2-D partition to outper-
form it. Clearly, the interprocessor bandwidth is the
bound on this problem. For the graphs between the small
and large test case, the transition from latency to band-
width bound can be seen. Figure 16c is an encouraging re-
sult that demonstrates that scalability is achievable given
a large enough problem size. The slowdown exhibited
with the small test cases is a direct consequence of the
communication dominating the calculation, as the num-
ber of processors increases the time required for calcula-
tion falls, but the time required for communication re-
mains more or less constant (see Figure 17).

Investigation shows that the relatively poor results for
the solid-mechanics test cases (see Figures 18 and 19) are
primarily a consequence of the two global commutative
operations required in every iteration of the CG solver as
implemented in the serial code. Each global commutative
operation incurs a number of communication start-up la-
tency costs; a high-latency cost leads to poor perfor-
mance. This is revealed by profiling the parallel code exe-
cution in which the global commutative summations
dominate the runtime. The solidification test case uses the

larger overlaps required for the stress code, but this has
only a slight effect on the speedup in comparison with the
flow-only results. This confirms that the predominant
limiting factor for performance on the Transtech Paramid
is the communication start-up latency. Part of the solidifi-
cation test case involves the CG solver, but again this only
marginally affects the results as the time required for the
stress calculation is considerably less than the time re-
quired for the flow and heat calculation, as can be seen in
Figures 20 and 21.

Communication on the Transtech Paramid has been
measured with a peak bandwidth of 1.7 MBytes per sec-
ond. This bandwidth is not sustained with virtual channel
routing and degrades to around 1.3 for near-neighbor
communication and can get as low as 0.9 for nonlocal
messages. This can deteriorate further to around 0.3
MBytes per second if the communication channels are
saturated, as they will be for real problems with un-
mapped partitions. Similarly, the start-up latency de-
grades with increasing network traffic. While this band-
width is low in comparison with other parallel machines
(Dongarra and Dunigan, 1995), the latency appears rea-
sonable. Similar performance may therefore be expected
from other parallel platforms for the test cases that run to a
latency bound. The test cases show that what is bandwidth
limited on the Paramid would be expected to run slightly
faster on other platforms and become latency bound.

Partitioning onto ap × q processor array forq > 2 has
yet to be tested but is not expected to improve perfor-
mance on the Paramid (or, indeed, other machines) with
these test cases because of the latency bound. While aq=
2 mapped partition is likely to incur five latencies, aq > 2
mapped partition will incur eight latencies but will not
significantly reduce the number of cut edges untilP (and
N) increases considerably.

5.4 IMPROVING PERFORMANCE
ON THE HIGH-LATENCY SYSTEM

The results given in Section 5.3 demonstrate a range of re-
sults from poor to good with moderate parallelism. It is
fair to say that the poor results reflect poor communica-
tion performance, especially in terms of the communica-
tion start-up latency. This, coupled with the reasonably
good calculation performance of the parallel platform,
leads to a poor calculation-to-communication ratio.
Given that a parallel machine is unlikely to ever return
perfect performance, all possible optimizations of the
code should be sought. Two simple-to-implement
optimizations that may be expected to realize a significant
performance improvement became apparent. One is to re-
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duce the start-up latency overhead of global commuta-
tive operations; the other is to overlap communication
with calculation.

5.4.1 Latency Reduction. As communication
start-up latency is the dominant component of the com-
munication overhead, it seems reasonable to tackle this
problem first. Profiling code execution provides a rea-
sonably accurate view of where time is being spent in the
code. For the test cases presented above, the profiles
present a clear picture of the nature of the execution. The
overriding proportion of the runtime was taken up in the
linear solvers, and a significant portion of that time was
spent in communication. Of the time spent in communi-
cation, it took approximately the same amount of time to
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Fig. 16 Speedup for the fluid dynamic test case against the number of processors for a range of partition strategies for the (a)
3034, (b) 30,064, and (c) 119,822 triangular meshes

Fig. 17 Best speedup obtained for the fluid dynamic test case
against the number of processors for a range of mesh sizes



carry out an overlap update as it did to carry out a global
commutative operation.

5.4.2 Flow and Heat Solvers. Looking closely at the
Jacobi and GS-SOR solvers, it becomes apparent that the
preferred mode of operation in UIFS is to run these solvers
to some preset maximum number of iterations, usually set
at less than the amount required for convergence, and then
loop over all solvers until an overall convergence criterion
is reached. The logic here is that no one solver should take
precedence in the path to convergence. The relative impor-
tance of each component in the solution is then reflected
by the number of iterations set for each solver (e.g., 2 for
each momentum, 10 for enthalpy, 20 for pressure correc-
tion). It is therefore not necessary to evaluate the residual
norm at each iteration. A flag TOMITR in the original se-
rial code is passed into each of the solvers to specify
whether to run to the specified maximum number of itera-
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Fig. 18 Graph of speedup for the solid-mechanics test case against the number of processors for a range of partition strategies
for the (a) 3034, (b) 30,064, and (c) 119,822 triangular meshes

Fig. 19 Best speedup obtained for the solid-mechanics test
case against the number of processors for a range of mesh
sizes



tions. For the test cases, TOMITR is always true. A simple
conditional test of TOMITR allows the norm evaluation
and hence global commutative operation to be omitted.
This reduces the serial runtime by a small amount but has a
significant effect on the parallel runtime.

The effect of this modification on the fluid dynamics
test case is shown in Figure 22. In comparison with the
performance of the unoptimized solver, the degree of im-
provement in the speedup is more pronounced with large
numbers of processors as the proportion of communica-
tion to calculation increases with the number of proces-
sors. Also, the effect is more apparent with the smaller test
cases as the proportion of communication to calculation is
greater on the smaller latency-bound cases.

5.4.3 Solid-Mechanics Solver. The conjugate-gra-
dient solver used in the solid-mechanics code has two
inner-product operations. These operations appear in the
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Fig. 20 Speedup for the solidification test case against the number of processors for a range of partition strategies for the (a) 3034,
(b) 30,064, and (c) 119,822 triangular meshes

Fig. 21 Best speedup obtained for the solidification test
case against the number of processors for a range of mesh
sizes



source as two separate global summation operations.
Close inspection of the code reveals that it is possible to
rearrange the code to bring the summations to the same
point in the code.

Substituting forr(k) in equation (27) gives

ρ α α( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )k k k k T k k k= − −− −r u r u1 1 , (35)

which can be expanded to produce

ρ α α( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )k k k k k T k k k kT T

= + +− − −r r u u r u1 1 2 12 .(36)

Substitutingr r( ) ( )k T k− −1 1 from equation (27) and gather-

ing terms now gives

ρ ρ α α( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )k k k k k T k k T k= + +− −1 12u u r u . (37)

Calculation ofρ ( )k now requires two inner products in-

stead of one but no longer requiresr (k) and so may be
moved forward in the loop to the same point at whichα ( )k

is calculated. So the algorithm becomes

u Apk k( ) ( )= −1 , (38)

α
ρ( )

( )

( )
k

k

k Tp
=

−

−

1

1 u( )k
,

(39)

ρ ρ α α( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )k k k k k T k k T k= + +− −1 12u u r u , (40)

x( ) ( ) ( ) ( )k k k kx= +− −1 1α p , (41)

r r u( ) ( ) ( ) ( )k k k k= −−1 α , (42)

β
ρ

ρ
( )

( )

( )
k

k

k
= −1

,
(43)

p r p( ) ( ) ( ) ( )k k k k= + −β 1 . (44)

The three inner products in equations (39) and (40) may
now be calculated using only a single commutative opera-
tion to perform the three global summations.

This is similar to the work of D’Azevedo, Eijkhout, and
Romine (1993) but involves no algorithmic modification
whatsoever and so has no effect on the stability or conver-
gence of the method. The time required for a global sum-
mationt

gs
is dominated by the communication start-up la-

tency, and so the time for three merged global summations
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Fig. 22 Speedup obtained with the optimized (solid lines)
and unoptimized (dashed lines) Jacobi solver for the fluid dy-
namics test case with a range of mesh sizes



is approximately equal to the time required for a single
global summation. This modification is trading the time
required for an inner productt

ip
against the time required

for a global summation. Whent
gs

increases with increasing
P andt

ip
decreases with increasingP, with increasingP,

there rapidly comes a point where this modification is ben-
eficial. The effect of this modification on the solid-me-
chanics test case is shown in Figure 23. These results use
the one-processor runtime for the faster unmodified CG
solver to give a correct evaluation of the speedup. What is
immediately apparent from Figure 23 is the improvement
across a range of test case sizes for four or more proces-
sors. Close examination shows that the largest test case
does not show improvement until more than four proces-
sors are used. This is consistent witht

gs
being a function of

Ponly; however,t
ip

is a function of bothPand the problem
sizeN. Further increases in problem size would be ex-
pected to more clearly reveal this effect.

Figure 23 represents a significant improvement on the
speedup results for the unoptimized solver, but the one re-
maining commutative operation remains an undesirable
overhead. This prompts a closer examination of the global
summation operation. A global summation operation has
a great deal of parallelism as each processor evaluates its
own partial sum. The original global summation algo-
rithm was developed before the virtual channel router pro-
vided all-to-all communication. For this reason, the global
summation operates in a chain fashion where each proces-
sor numberP receives a sum from processorP+ 1, adds its
own partial sum, and passes the result to processor number
P – 1. After P – 1 messages, processor 1 has the global
summation that can be broadcast to all processors; this
will therefore involve 2(P– 1) latencies overall (i.e., the la-
tency overhead increases with the number of processors).
This scheme ensures that each processor receives an iden-
tical copy of the global sum regardless of rounding errors.

As the C Toolset transport was lacking the functionality
of a PVM reduce or MPI collective operation, a hyper-
cube-based global commutative was implemented in
CAPlib as discussed in Section 3.9. This scheme gives the
lowest possible number of latencies and it is apparent from
the results in Figure 24 that the effect of the hypercube
commutative is highly significant. This confirms the prop-
osition that communication start-up latency is an
overridingly important factor in the achieved performance
of a parallel system. The hypercube global commutative
has since been found to provide superior performance to
both PVM reduce and MPI collective on a wide range of
platforms.
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Fig. 23 Graph of speedup obtained with optimized (solid
lines) and unoptimized (dashed lines) conjugate-gradient
solver for the solid-mechanics test case with a range of
mesh sizes



5.4.4 The Effect of Optimized Solvers on the So-
lidification Test Case. Figure 25a shows the effect of the
optimized solvers and global commutative functions on
the solidification test case. The reduction of latency-based
communication overheads in the optimized solvers has
had three important effects. Comparing Figure 25a with
the plot in Figure 25b for the unmodified code clearly
shows the effects. First, the overall level of speedup has in-
creased; speedup that was in the range 12 to 15 for 28 pro-
cessors has increased to 15 to 21. Second, the separation of
the performance from the different partitions is more pro-
nounced. Most noticeably, the lines for the mapped 1-D
and mapped 2-D partitions have separated; this is a direct
consequence of the bandwidth becoming more relevant as
the latency is reduced in the solvers. The mapped 1-D par-
tition has a larger amount of data to communicate and
fewer communications than the mapped 2-D partition.
Third, the gradient of the mapped 2-D partition line is
much steeper in Figure 25a. Further, speedup could there-
fore be expected if more processors were available.

5.4.5 Asynchronous Communication. Many paral-
lel platforms provide asynchronous or nonblocking com-
munication calls to allow calculation to overlap communi-
cation. This allows subroutines to initialize a communica-
tion and return from the subroutine call before completion
of the communication. The communication can then be
tested for completion (synchronized) at some future point
in the code. In an ideal case, unrelated code can be exe-
cuted immediately after an asynchronous communication
call and synchronization effected prior to the point at
which the communicated data are used. This allows the
execution of unrelated code to be overlapped with the
communication. Often, this is not possible since the com-
municated data are immediately required. With PUIFS,
asynchronous communication can be exploited within the
solvers by splitting the computation into two parts. The
Jacobi and Gauss-Seidel solvers first calculate the values
around the perimeter of the subdomain where it isrequired
in the overlaps of the neighboring subdomains. Once the
perimeter calculation is complete, asynchronous commu-
nications of these variables is initiated. This leaves the
time required to calculate the values in the rest of the
subdomain for the asynchronous communication to com-
plete. Completion of the communication is tested at a
synchronization point before proceeding to the next itera-
tion. The conjugate-gradient solver operates in a similar
manner, splitting two loops so that calculation ofu andp
over the independent grid points is overlapped with the
communication. These schemes amount to a renumbering
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Fig. 24 Speedup obtained with the optimized conjugate-gra-
dient solver using a hypercube (solid lines) and a pipeline
(dashed lines) global commutative for the solid-mechanics
test case with a range of mesh sizes



of each subdomain core so that entities that are required by
the overlaps of neighboring subdomains are numbered be-
fore the rest of the core. Such renumbering is generally ac-
ceptable as partitioning has already changed the original
numbering that was often merely a consequence of the
mesh generation in the first instance (Jacobi and CG
algorithm are order-independent anyway). The effect of
this renumbering scheme on the mesh of 42 triangles is il-
lustrated in Figure 26. Two changes in the numbering are
apparent from the original local numbering scheme in Fig-
ure 10. First, the overlaps have been numbered as de-
scribed at the end of Section 3.7, so that overlap elements
that are owned by the same subdomain are numbered con-
secutively. This allows an overlap exchange to write the
received overlap variables directly into memory without
the need to unpack a buffer. Second, the elements within
each subdomain that are overlap elements on neighboring
subdomains have been numbered before the rest of the
subdomain. Figure 27 shows the effect of the renumbering
on the overlap communications. In contrast with the ma-
trices shown in Figure 12, the communications now origi-
nate in the first few rows of each subdomain’s matrix. In
the iterative solver, these rows are evaluated first, and then
the asynchronous communication of overlaps is initiated.
Evaluation of the remainder of the rows in the matrix
equation can then proceed for that iteration while the com-
munication is being carried out. Completion of the com-
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Fig. 25 Speedup obtained with the solvers for the solidification test case with a range of partition strategies for the 60,005 mesh
when (a) optimized and (b) unoptimized



munication is tested before continuing on to the next itera-
tion.

On the Transtech Paramid, asynchronous communica-
tion is achieved through exploitation of the T-800
coprocessors to manage this task. For workstation net-
works, notorious for their high latency, this is effected
through communication buffers. The results of using
asynchronous modified solvers for the fluid-dynamic test
case and the solid-mechanics test case are presented in
Figures 28 and 29. Here, the improvement in performance
over the synchronous results is clear. These results paint a
very different picture of parallel performance on a
Transtech Paramid than those shown, for instance, in Fig-
ures 17 and 19. These results reinforce the common asser-
tion that parallel performance is highly code, problem, and
machine dependent. Overlapping the communication
with calculation effectively hides the communication
overhead as long as there is enough calculation to conceal
the communication. The curves for the 3034- and
10,027-element test cases in Figure 28 show a drop in per-
formance in comparison with the synchronous results for
28 processors. With largeP and a small problem, the
amount of calculation may not be sufficient to overlap all
of the communication. Figure 30 clearly shows how effec-
tive this hiding is for the 60,005-element solidification test
case. Here, the spread in performance between the parti-
tioning strategies is far less apparent than the synchronous
case in Figure 25. The mapped 1-D and mapped 2-D parti-
tions still have a performance advantage, but the perfor-
mance from the other partitions is now comparable with
the mapped partitions. The premapped, postmapped, and
unmapped partitions now look capable of returning fur-
ther speedup beyond the 28 available processors, which is
clearly not the case in Figure 25. The mapped 1-D and
mapped 2-D partitions return near-identical performance
as the bandwidth overhead of the mapped 1-D partition is
effectively concealed and the advantage of the lower la-
tency requirement for the 1-D partition becomes signifi-
cant. These results invite investigation of the performance
at higher numbers of processors. There must inevitably
come a point at which the performance returned from the
different partitions becomes apparent as the amount of
computation in each subdomain core will no longer be suf-
ficient to fully overlap the communication.

The scalability of this parallelization strategy is con-
firmed by the data below, which summarize the efficiency
per processor when the problem size is scaled with the
number of processors:
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Fig. 26 Mesh of 42 triangular elements partitioned into three
subdomains renumbered for asynchronous communication

Fig. 27 Matrices of the 42-element mesh partitioned into
three subdomains renumbered for asynchronous communi-
cation



Number of processors 1 2 6 12 24
Efficiency/processor 1 0.96 0.93 0.93 0.87

These results are based on 5000 nodes per processor
(± 0.1%) with optimized DPCG solver, hypercube
communative and asynchronous communications, and a
mapped partition. The scalability is fading fairly grace-
fully and indicates a 65% efficiency per processor on a
~200 processor system.

4 Conclusions

In this paper, the issues associated with parallelizing codes
that solve multiphysics problems on unstructured meshes
have been examined. The focus is on codes that involve
closely coupled physical interactions. Arguably, there are
a range of alternatives for delivering the multiphysics
functionality in scalar, let alone in parallel. However, the
contextual software engineering strategy pursued for the
scalar code is to employ a suite of procedures (one for each
physical phenomenon) on a single mesh in a single code.

A parallelization strategy has been proposed that

• takes a partitioning approach that essentially disregards
the physics during the code transformation into parallel
form,

• requires the mesh-partitioning/load-balancing tool to
provide a suitable partition based on a combination of
the mesh geometry and distribution of the physics.

The first component above simplifies the code restruc-
turing essentially to that of the conventional single disci-
pline (e.g., CFD) code. There are a few additional com-
plexities, such as secondary partitions and the associated
interprocessor communication issues, but this approach
appears to have significant potential provided there are
mesh-partitioning/load-balancing tools that can deliver
the functionality required. Such tools are now emerging,
and the one exploited in this work is JOSTLE.

The above strategy has been explored in the context of
the 2-D code, UIFS, which uses finite-volume techniques
on an unstructured mesh and has “physics” solution proce-
dures for fluid flow, heat transfer, phase change, and solid
mechanics. Using this strategy, the entire UIFS code has
been parallelized with only minimal changes to the code
and the algorithm being required. Many of the subroutines
required no change whatsoever. The majority of program-
ming effort was required for the implementation of the ini-
tial decomposition of the code.
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Fig. 28 Speedup obtained with the asynchronous (solid
lines) and synchronous (dashed lines) optimized solvers for
the fluid dynamic test case with a range of mesh sizes

Fig. 29 Speedup obtained with the asynchronous (solid
lines) and synchronous (dashed lines) optimized solvers for
the solid-mechanics test case with a range of mesh sizes



One issue that is significant in the parallelization of
multiphysics codes is the fact that procedures for distinct
phenomena may well use different discretization proce-
dures (and so use a range of data dependence stencils).
This means that secondary (and possibly tertiary) parti-
tions are required, which need to be structured so that as
much interacting physics as possible in the same element
is actually located on the same processor in parallel. This
issue is covered in some detail here.

Convergence is much more of a challenge in multi-
physics simulation than for single-discipline codes. Pre-
serving the convergence behavior in parallel without de-
stroying the parallel efficiency requires great care. The
linear solvers used in this work are essentially parallel.
The only one that is not, Gauss-Seidel SOR, can easily be
made parallel by using “old” values in the overlap areas.
Surprisingly, this has little effect on the convergence be-
havior when it is used on the velocity components and sca-
lar quantities, in the context of the SIMPLE-type flow pro-
cedure. However, it turns out that the global summations
involved in the conjugate gradient algorithm can affect the
numerical result; this can be (and is) caused by a simple
arithmetic process such as summingn real numbers,
which is affected by rounding error. Even the ordering can
affect the result given by summing from 1 ton as against
summing fromn to 1. In parallel, with two processors, the
summation would be executed as something like

+
+∑∑ ,n

n n

2

2

11
which can give a different result to

1

n

∑ . In

practice, the coefficients that constitute the system matrix
are also subject to numerical differences arising from
rounding errors, which can actually mask the rounding ef-
fects from the solver. If the original serial algorithm is sta-
ble, then these effects have no actual significance on the
results. If rounding effects lead to divergence of the paral-
lel results, then suspicion must fall on the validity of the
serial case.

Finally, we have examined the performance of this
parallelization strategy. Looked at in the cold light of day,
initial results were rather disappointing despite the careful
consideration given to all the key issues identified above.
Small, rather localized optimizations achieved very sig-
nificant returns with regard to parallel performance. It is
not that all the details in the broad strategy were wasted; it
is more that without local optimizations, its full potential
cannot be realized.

In the belief that reducing interprocessor communica-
tion time was vital to optimizing parallel performance,
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Fig. 30 Flow vectors for the fluid dynamics test case and re-
sidual stress contours with flow vectors for solidification
test case

“Convergence is much more of a
challenge in multiphysics simulation than
for single-discipline codes. Preserving the
convergence behavior in parallel without
destroying the parallel efficiency requires
great care.”



Walshaw, Cross, and Everett (1997) worked hard at
mesh-partitioning algorithms to map the submesh con-
nectivity to that of the processor topology. This proved to
be significant for a system in which the communica-
tions:processor speed ratio is relatively low, and only
synchronous communications can be used. If asynchron-
ous communications can be employed, these provide a
significant advance in parallel performance; there is still
some advantage afforded by the processor mapping, but
its effect is much reduced. However, when running on
systems in which the communications:processor speed is
relatively high, there is little advantage served by exploit-
ing either asynchronous communications or processor
mapping. The key issue, then, is reduced to the generation
of a high-quality partition very rapidly in parallel, so very
large problems can be run as cost-effectively as possible.
This issue has recently been addressed explicitly in
parallelizing the multiphysics code, PHYSICA.

In this paper, we have focused on multiphysics in
which each node/element/cell has the opportunity to be in
the fluid or solid state. Here, the parallelization process is
simplified to a certain extent—the same algorithms are
applied over the whole mesh in turn. The next level of
complexity is to address problems in which one phenom-
enon is active in one part of the mesh and another is active
elsewhere. This class of problem forms the basis of cur-
rent work.

LIST OF NOMENCLATURE

aij Elements of the matrixA
d Displacement in solid-mechanics equations
Ep Parallel efficiency
E Young’s modulus
f Liquid fraction
fs Code fraction inherently serial
go Gravitational acceleration
h Reduced enthalpy
heff Effective heat transfer coefficient
k Thermal conductivity
K Permeability
Kgap Thermal conductivity of metal-mold gap
L Latent heat
M Preconditioner
NI (i = x, y) weighting function
p Pressure
Sφ (φ = solved for variable) source term
SP Speedup
T Temperature
t1, P Time on 1 andtP processors
uI Fluid velocity components

v Fluid velocity vector
Vp Cell volume
Y Yield limit
α Relaxation coefficient
γ Flow resistance parameter
∆FI Body force (i = x, y)
∆gap Metal-mold gap distance
εij Strain (ij = xx, xy, yy)
σij Stress (ij = xx, xy, yy)
θ(eff) Effective stress
µ Viscosity
µ Poisson’s ratio
φ Scalar-transported variable
Γ Diffusivity of φ
ρ Density
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