
Scalable Unstructured Mesh Decomposition

K McManus, S P Johnson, C Walshaw, M Cross, P Chow

�

k.mcmanus@gre.ac.uk

Parallel Processing Research Group,

The University of Greenwich, London, UK

�

Fujitsu European Centre for Information Technology

Abstract

As the e�ciency of parallel software increases

it is becoming common to measure near linear

speedup for many applications. For a prob-

lem size N on P processors then with soft-

ware running at O(N=P) the performance re-

strictions due to �le i/o systems and mesh de-

composition running at O(N) become increas-

ingly apparent especially for large P . For dis-

tributed memory parallel systems an additional

limit to scalability results from the �nite mem-

ory size available for i/o scatter/gather opera-

tions. Simple strategies developed to address

the scalability of scatter/gather operations for

unstructured mesh based applications have been

extended to provide scalable mesh decomposi-

tion through the development of a parallel graph

partitioning code, JOSTLE [8]. The focus of

this work is directed towards the development

of generic strategies that can be incorporated

into the Computer Aided Parallelisation Tools

(CAPTools) project [1].

1 Introduction

Mesh partitioning and distribution is ordinar-

ily handled as either a pre-processing of the

mesh �le(s) or as a sequential i/o process.

Both schemes are
awed. Pre-processing implies

knowledge of the intended number of processors

and a sequential machine with su�cient power

and memory to accommodate the task. Sequen-

tial i/o is a performance bottleneck and gen-

erally requires that at least one processor has

su�cient memory to hold the data required to

describe the entire mesh. Unstructured mesh

parallelisation has typically relied on bu�ered

scatter/gather operations to implement the data

renumbering required for �le i/o functions. Such

operations encounter memory scalability prob-

lems on multiple address space systems. Many

of these di�culties may arguably be surmounted

with the adoption of a single address space mem-

ory system (implemented either as hardware or

software). It would be unfortunate however, to

mandate a single address space and hence limit

portability and/or performance simply to make

it possible to handle mesh partitioning.

Clearly there are alternatives such as paral-

lel mesh generation but the current state of the

art has not reached a level that is acceptable to

users. The user requirement is for an application

code to read from �le, an often painstakingly

crafted mesh, and produce data �les that may be

post-processed and further analysed. A scalable

solution is therefore required to replace conven-

tional scatter/gather operations and to localise

mesh partitioning.

Key to the implementation of scalable mesh

partitioning has been the development of the

parallel graph partitioning code, JOSTLE [8],

which provides a rapid, highly localised parti-

tion optimisation algorithm. This has enabled

localisation and hence scalability of the entire

mesh decomposition process. A primary moti-

vation of this development has been the Com-

puter Aided Parallelisation Tools (CAPTools)

project [1] which provides an interactive envi-

ronment for the semi-automatic transformation

of application source code into parallel message

passing source code. This requires the develop-

ment of techniques that are su�ciently generic to

be applicable to the potentially enormous range

of data structures used in unstructured mesh

based applications.

2 Overlapping Domain Decom-

position

Computational methods for continuum mechan-

ics modelling require a geometric representa-

tion of the problem space. Discretisation of

the di�erential equations used to model the

continuum phenomena results in programs for

which data dependencies across the discretisa-

tion are highly localised. This has naturally

led to the adoption of geometric domain decom-

position techniques for mapping Finite Volume

and Finite Element based applications onto Dis-

tributed Memory (DM) parallel machines [6].

Inter-sub-domain data dependencies are resolved

through communication of the necessary data

from the sub-domain on which it is assigned,

to the sub-domain on which it is accessed. For

many applications it has proved to be convenient

to extend each sub-domain to overlap with its

neighbours allowing communicated data to be

copied into the overlap layer and consequently

requiring no alteration to the source code in or-

der to address overlap data [4]. Localised data

dependence means that the depth of the overlap

layer, and hence the amount of data to be com-

municated, is kept to an acceptably low level.

2.1 Mesh partitioning

1

19
32

23
152711

33

18
37

13

1741
8

14
22

30

6 42

9

74

28

35

21

16 20 2

25
31

36
5

2934

3

12

26

38

4010

39
24

Figure 1: Simple unstructured mesh.

Consider the unstructured mesh in Figure 1 that

has twomesh entity types, vertices and elements.

The adopted mesh partitioning scheme is to se-

lect the mesh entity type that is associated with

the largest amount of calculation, elements for

example. A primary partition is calculated to

exclusively allocate each entity of that type to a

processor so as to allow a balanced distribution

of the entities across all processors.

Loops that address data structures, and hence

express data dependence, are extracted from the

application code to provide inspector loops [2].

These inspector loops are used, at run-time, to

construct (amongst other things) an undirected

graph, G(N;E) of nodes N and edges E, that

accurately represents the data dependencies that

are required by the code, and are de�ned by the

mesh topology for the selected entity type. This

graph (which may be weighted according to some

workload prediction) is passed to a graph parti-

tioning tool, such as JOSTLE (discussed further

in Section 3.4). The graph partitioner attempts

to partition the graph so as to minimise the im-

balance between the processors and to minimise

the number of graph edges cut between di�er-

ent sub-domains, where these cut edges will in-

fer communications in the parallel code. The

graph partition is returned as an `ownership ar-

ray' containing the sub-domain (processor) num-

ber that `owns' each entity of the selected type.

The secondary partitions that describe owner-

ship of other entity types (e.g. vertices) are de-

termined in accordance with the primary parti-

tion and the mesh connectivity.

The set of entities owned by a processor is re-

ferred to as that processor's core set. Parallel

execution is achieved by performing calculations

that relate to the assigning of values to a data

structure representing a particular entity only

on the processor that owns that entity (owner

computes rule). This calculation may require

access to non-owned data. For example, in a

linear di�erencing code the evaluation of each

element based variable requires the values from

each connected (adjacent) element. This data

dependence requires an element overlap as illus-

trated in Figure 2. Typically, a set of such non-

owned data items will be required, and can be

communicated in a single set of bulk communi-

cations. Each set of overlap entities therefore

de�nes the components of a communication set.

P1-D-2

1

19

7

28

35

21

16 20
25

36

2934

3

12

26

38

4010

39
24

18
37

13

1741
8

14
22

30

6 42

9

74

28
21

16 20

19
32

23
152711

33

18
37

17
20 2

25
31

36
5

2934

24
39

core element

overlap element

core grid point

overlap grid point

Key

1

3

2

Figure 2: Partition of elements in a simple mesh

onto three processors with overlaps.

2.2 Data localisation

In order to scale an application in memory each

processor must store only the necessary data,

that is it's subdomain core and overlap. For

scalability to very large P all data must be lo-

cal, global data structures are simply not pos-

sible. For an unstructured mesh code it tran-

spires that this is largely straightforward and

has the signi�cant advantage of simplifying much

of the parallelisation task. It has been shown

that, for many codes, this strategy enables par-

allelisation of many subroutines with little or no

modi�cation to the source code [4]. Packing the

data associated with each local mesh entity into

local memory implies a local mesh numbering.

Pointer arrays, used extensively to describe an

unstructured mesh, will also be packed into lo-

cal memory. For example, a structure that holds

the vertex numbers for each element, will lo-

cally contain global vertex numbers for each lo-

cally numbered element. Global to local point-

ers are consequently required in inspector loops

[5] used to renumber the contents of such local

pointer arrays into local mesh numbering. But a

global to local pointer would require a globally

dimensioned array and so a scalable solution is

required.

With locally renumbered sub-domains (core

and overlap) on each processor, concurrent ex-

ecution requires only the inclusion of communi-

cation calls into the code. With few exceptions

[4], only two classes of communication are re-

quired in the body of the code; overlap update

and global commutative. Overlap update copies

data from each subdomain core, where it is as-

signed, into the appropriate neighbouring sub-

domain's overlap, where it is accessed. This op-

eration scales well as it only requires communi-

cation between neighbouring subdomains (pro-

cessors) and so, with a good partition, the com-

munication cost tends towards being approxi-

mately constant for increasing numbers of pro-

cessors P [3]. Global commutative (PVM re-

duce, MPI collective) performs some commuta-

tive arithmetic or logical operation (add, and,

etc.) across data held on each processor. This

is a potentially expensive communication as it

requires communication amongst all processors

but the use of binary tree (hypercube) commu-

nications restricts the latency cost increases to

an acceptable log

2

(P �1). Broadcast operations

are a special case of global commutative.

3 Scalability

The focus of attention on scalability has tended

to be directed towards computational scalability,

the ability to pro�tably extend an application to

greater numbers of processors. This provides a

somewhat arbitrary limit resulting from a grad-

ual decrease in parallel e�ciency as P increases.

Memory scalability is the degree to which a prob-

lem size can be increased with increasing P . The

limit for memory scalability is a sudden cut{o�

point at which it is no longer possible to �t a

problem into memory. This either causes the

code to fail or initiates memory paging with a

signi�cant deterioration in e�ciency. Both ef-

fects are highly system and application depen-

dent.

3.1 Scalable Implementation

It has become accepted practice to present im-

pressive, often superlinear, speed-up curves for

parallel applications. But for practical applica-

tions the scalability issues associated with the

input of data �les, incremental output of time

step variables and, perhaps most importantly for

unstructured mesh applications, the decomposi-

tion and distribution of meshes, have not been

fully addressed and present a signi�cant parallel

P1-D-3

overhead. These tasks are not readily amenable

to parallelisation, �le access hardware remains

largely sequential and it is arguable that in a

`real' situation the mesh distribution overhead of

a few minutes is eclipsed by run-times of hours

or days. If, however, parallel hardware is to be-

come interactive or user friendly the i/o scala-

bility problems must be ameliorated.

3.2 Gathering data to �le

Gathering of the resulting data sets to �le neces-

sitates re-ordering the data to global numbering.

Scalable gathering is achieved by copying small

quantities of data to the i/o processor in such

a way as to ensure that the next data item to

be copied to �le is always available and easily

located. Small blocks of contiguous local data,

beginning with the �rst local entity number, are

copied from every processor to the i/o processor,

together with the global entity numbers (held lo-

cally) for the data block. As the local numbering

is in global order, each block will be accessed se-

quentially and so a pointer records the current

position in each block. A list of block numbers

is sorted in accordance with the current entity

number in each block. The next required data

item is therefore always in the block which is �rst

in the list, from where it, and all consecutively

numbered items can be copied to �le, increment-

ing the current position accordingly. The block

number is now inserted back into the list at the

appropriate position and so the �rst entry in the

list will once again be the block containing the

next required data item. To further improve ef-

�ciency, each block is maintained in two halves

so that as a block becomes half empty the ap-

propriate processor is sent a request for the next

(half) block. This allows the communication of

the data to the i/o processor to be concurrent

with the �le output operation and so ensure that

the blocks never empty until all data has been

written to �le.

The method adapts easily to take advan-

tage of whatever memory is available on the

i/o processor(s) at run-time simply by increas-

ing the block size to �t the available mem-

ory. Speed of operation is dependent on the

�le bandwidth, inter-processor communication

performance, block size, mesh size N , available

memory and number of processors P . Di�cul-

ties may arise with extremely large P , in which

case the problem size will be much larger than

the memory per processor resulting in many

small blocks, heavy processor to i/o processor

data tra�c as the large problem is copied across

in small blocks and an overhead in reordering the

block list (O(N log

2

P)). While memory scalabil-

ity is not seriously compromised, such a system

cannot scale well computationally without using

a parallel �le system. Data striping to parallel

�les simply requires that as each processor pre-

pares to send a block, the block is �lled only with

data that falls into the range requested by the

i/o processor.

3.3 Scattering data from �le

Many applications require that, in addition to

the mesh, some global data is required from �le.

This can be handled in a similar manner to the

scalable gather.

Small blocks of memory on the i/o proces-

sor(s), one for each processor, hold the global

entity numbers for the block, received from the

appropriate processor. A current position is

maintained for each block and a block list is

ordered according the global entity numbers in

each block's current position. Data read from �le

is copied into the current block at the current ac-

cess position, looping for consecutive global en-

tity numbers within each block and re-ordering

the block list when switching to a new block.

Each block is again maintained in two halves so

that as a block becomes half full it is sent to

the appropriate processor which returns the next

(half) block of global entity numbers. Again this

allows the communication of data from and to

the i/o processor to be concurrent with �le in-

put operation.

3.4 Localised graph partition optimi-

sation

To reduce the bottleneck of mesh decomposi-

tion and distribution, the run-time calculation of

data dependencies across an unstructured mesh

and the calculation of a mesh partition must

both be localised. That is, any data originating

from a �le systemmust be distributed, as rapidly

as possible, across the available processors, in

P1-D-4

a manner that is at the absolute most O(N).

All subsequent operations on the data must be

restricted to be internal to each data set (pro-

cessor) or, at most, interactions between neigh-

bouring data sets (processors). An unstructured

mesh partition, however crude, possesses a sub-

domain interconnection topology. In the inter-

est of computational e�ciency a mesh partition

should reduce the degree of the sub-domain in-

terconnection topology, and if possible, provide

an e�cient mapping of the partition topology

onto the processor topology [3]. Localised op-

timisation algorithms in the graph partitioning

code JOSTLE [7] has made it possible to localise

the entire mesh decomposition process.

The algorithms in JOSTLE are designed to

address the three problems that arise when par-

titioning unstructured meshes:

� The static partitioning problem (classical).

� The static load balancing problem, in par-

ticular for meshes generated in parallel.

� The dynamic load balancing/partitioning

problem, as discussed in Sections 3.5.

In the second two cases, the initial data is a dis-

tributed local graph which may be inadequately

partitioned. One way of dealing with this is to

send the graph to some host processor, run a se-

rial static partioning algorithm on it and then

redistribute. Clearly this is unattractive for sev-

eral reasons. An O(N) overhead for mesh par-

titioning will not scale if the rest of the code is

running at O(N=P). Also, the graph may not

�t into one processors memory. In addition, a

partition of the graph, which may be perfectly

adequate, already exists and may be used as a

starting point for repartitioning [8]. For Dy-

namic Load Balancing (DLB) this is highly sig-

ni�cant as, not only is the calculation of a new

partition computationally expensive but, if this

information is not used, then large quantities of

data may be unnecessarily migrated without any

reference to the data's current location. There-

fore, because the graph is already distributed it

is logical to repartition it in situ.

JOSTLE provides a highly localised optimi-

sation algorithm with graph reduction to both

accelerate the optimisation and, perhaps more

importantly, provide a more global perception

in a manner analogous to multigrid techniques.

Most signi�cantly for this work, JOSTLE itera-

tively optimises and, if necessary, load balances

an existing partition in parallel.

P t

s

(s) t

p

(s) speed up

16 1.59 0.18 8.83

32 1.97 0.19 10.37

64 2.61 0.18 14.50

Table 1: JOSTLE timings for a 224,000 node

mesh using Cray T3E

JOSTLE makes it possible to read, from �le,

a mesh of N entities in, for example, blocks of

N=P and crudely distribute the blocks across

the processors. The block distribution de�nes

the existing partition and local inspector loops

create the distributed graph which is passed to

JOSTLE. Communication of each block from the

i/o processor to the destination processor may

be concurrent with the often much slower �le

access. In which case the �le access time for

a given problem is approximately constant with

increasing P (O(N)), which is not good, but al-

lows subsequent operations on the mesh to be-

come (O(N=P)). Without parallel �le systems

this bottleneck will persist, but it's impact can

be reduced. The design of a similar initial dis-

tribution scheme to exploit a parallel �le system

is trivial.

3.5 Localised mesh decomposition

Consider the following example, a sequential

code fragment where NUMELE is the global number

of elements, NUM_ADJ_ELE is an array containing

the number of elements adjacent to each element

and ELE_ELE is an array containing the element

to element connectivity (adjacency). The con-

nectivity is represented as the number of each el-

ement adjacent to each face of each element. The

two arrays NUM_ADJ_ELE and ELE_ELE that par-

tially describe the mesh elements are read from

�le at run-time. While this example is necessar-

ily simplistic the processes described are suitable

for many more complex applications without se-

rious di�culty.

INTEGER NUMELE, MAX_NUM_ADJ_ELE

INTEGER NUM_ADJ_ELE(1:NUMELE)

INTEGER ELE_ELE(1:MAX_NUM_ADJ_ELE,1:NUMELE)

P1-D-5

DO I = 1, NUMELE

NX(I) = 0

DO J = 1, NUM_ADJ_ELE(I)

NX(I) = NX(I) + X(ELE_ELE(J,I))

END DO

NX(I) = NX(I) / NUM_ADJ_ELE(I)

X_MAX = MAX(X_MAX, NX(I))

END DO

With the two arrays read from �le and dis-

tributed block-wise then, for NPROC processors,

processor number PROCNUM = NPROC is allocated

the �rst N=P elements. Processor number

PROCNUM = NPROC-1 is allocated the next N=P

and so on, leaving the last remaining elements

on processor number 1 (i/o processor). So for all

processors with the exception of processor num-

ber 1;

NUMELE = GLOB_NUMELE/NPROC

And for processor number 1;

NUMELE = (GLOB_NUMELE/NPROC) +

MOD((GLOB_NUMELE,NPROC)

Where GLOB_NUMELE is the global number of ele-

ments.

The initial local mapping of element numbers

from local to global numbering, held in the local

array LOC_2_GLB_ELE, can be readily calculated

from the initial block partition.

INTEGER LOC_2_GLB_ELE(1:NUMELE)

OFFSET = (NPROC - PROCNUM) * NUMELE

DO I = 1, NUMELE

LOC_2_GLB_ELE(I) = OFFSET + I

END DO

A local inspector loop based on the exam-

ple code loop is used to insert element pairs

(graph edges) into the element to element graph

ELE_ELE_GRAPH, in which each node represents an

element and each edge represents element to el-

ement connectivity.

INTEGER ELE_ELE_GRAPH(1:2,1:MAX_NUM_ADJ_ELE)

INTEGER NEXT

NEXT = 1

DO I = 1, NUMELE

DO J = 1, NUM_ADJ_ELE(I)

ELE_ELE_GRAPH(NEXT) = LOC_2_GLB_ELE(I)

ELE_ELE_GRAPH(NEXT+1) = ELE_ELE(J,I)

NEXT = NEXT + 2

END DO

END DO

This local inspector loop simply copies the two

global element numbers LOC_2_GLB_ELE(I) and

ELE_ELE(J,I) into the local element to element

connectivity (adjacency) graph ELE_ELE_GRAPH.

As I runs from 1 to NUMELE, then the global ele-

ment numbers LOC_2_GLB_ELE(I)must be within

the sub-domain, but the global element numbers

ELE_ELE(J,I) may be outside the sub-domain.

At least one element in each pair is therefore in

the sub-domain core and so the resulting graph

represents what is commonly referred to as a sin-

gle layer overlap.

Each processor can now pass their graph

ELE_ELE_GRAPH to parallel JOSTLE, which re-

turns to each processor an array OWNER_OF_ELE

containing the processor numbers that are to

own each of the elements currently held on

the processor together with an array NEIGHBOURS

which contains the neighbouring processor num-

bers. As the initial block partion is unlikely to

have been appropriate, redistribution of the el-

ement based data structures in accordance with

OWNER_OF_ELE will certainly require a great deal

of communication. It is possible that little or

no entities stay on the same processor and those

that do will need to be relocated in accordance

to the new local numbering.

So for each processor number that ap-

pears in OWNER_OF_ELE, the redistribution rou-

tine copies into a local bu�er the components of

NUM_ADJ_ELE and ELE_ELE (and any other element

based data structures) that are to be sent to that

processor. These bu�ers (one of which may be

required to stay on the same processor) are sent

to the appropriate destination processor. As

each of the bu�ers containing locally required

sections of the element based data structures ar-

rive at a processor they are unpacked into local

memory and the global element numbers for each

core element recorded in LOC_2_GLB_ELE. When

all bu�ers have arrived, LOC_2_GLB_ELE is sorted

to imply a local numbering in a globally ascend-

ing order, and the contents of NUM_ADJ_ELE and

ELE_ELE (and other structures) are rearranged

accordingly.

Each processor now has the required local el-

ement data structures but the contents of some

structures still contain global mesh entity num-

bers. Renumbering such pointer arrays requires

a global to local element mapping. In order to

P1-D-6

provide a global to local mapping, without us-

ing a directly addressed, and consequently glob-

ally dimensioned and non-scalable data struc-

ture, the global numbers for each core element

are stored in either; a local array, which, as it's

contents are in ascending order, can be rapidly

accessed with a binary search, or if memory per-

mits, a hash table of binary trees, which provides

faster access.

A local inspector loop is now used to calcu-

late the receive components of a communica-

tion set, ELE_ELE_COMSET, consisting of the el-

ement numbers required to satisfy inter-sub-

domain element to element dependencies. As

such the receive communication set(s) also de-

�ne the elment overlap (Section 2.1). Here the

routine ADD_TO_COMSET requires GLB_2_LOC_ELE to

be able to search for the global element number

ELE_ELE(J,I) in the sub-domain core. If it can-

not be found then it is added to the receive set

in ELE_ELE_COMSET, which is sorted to remove du-

plicates on leaving the loop.

DO I = 1, NUMELE

DO J = 1, NUM_ADJ_ELE(I)

CALL ADD_TO_COMSET (ELE_ELE(J,I),

+ GLB_2_LOC_ELE, ELE_ELE_COMSET)

END DO

END DO

This loop may be su�cient to describe the entire

element overlap but for many practical codes the

required overlap is often a conjunction of several

communication sets each calculated from sepa-

rate inspector loops.

At this stage each processor has calculated the

global element numbers required in the overlap

but still needs to know which processor owns

those elements. In calculating the mesh parti-

tion JOSTLE has to evaluate the sub-domain

connectivity (topology), part of which is re-

turned in an array NEIGHBOURS containing the

local neighbouring processor numbers. This is

used to localise searches for the processor that

owns each of the overlap elements. The receive

set of global element numbers in ELE_ELE_COMSET

is copied to each processor listed in NEIGHBOURS.

Consequently each processor receives a commu-

nication set from each neighbour. Global ele-

ment numbers in each received set that are found

in GLB_2_LOC_ELE are core elements, and so these

global element numbers are returned to the send-

ing processor, and locally recorded, as local ele-

ment numbers in ELE_ELE_COMSET, as these core

elements are the send communication set for el-

ement to element dependencies required by the

neighbouring processor which sent the commu-

nication set. Clearly the communication sets

are matched between neighbouring processors,

a send set on one processor is a receive set on

it's neighbour.

When all receive sets have been returned from

the neighbours, the element numbers in each

set can be sorted. Each element in each set

is allocated in turn the next free local element

number, the global element number is recorded

in LOC_2_GLB_ELE(I). The local element number

is inserted into GLB_2_LOC_ELE and then copied

into the receive set in ELE_ELE_COMSET. The send

and receive sets in ELE_ELE_COMSET are now lo-

cally numbered and consistent across all proces-

sors. The contents of ELE_ELE can now be locally

renumbered using GLB_2_LOC_ELE.With the addi-

tion of some communications the example code

can now run in parallel without requiring any

other modi�cation.

CALL OVERLAP_UPDATE(X, ELE_ELE_COMSET)

DO I = 1, NUMELE

NX(I) = 0

DO J = 1, NUM_ADJ_ELE(I)

NX(I) = NX(I) + X(ELE_ELE(J,I))

END DO

NX(I) = NX(I) / NUM_ADJ_ELE(I)

X_MAX = MAX(X_MAX, NX(I))

END DO

CALL GLOBAL_MAX(X_MAX)

Here the call to OVERLAP_UPDATE is requested by

the index of X indirected by ELE_ELE to address

values of X in the sub-domain overlap. The com-

munication set ELE_ELE_COMSET for element to el-

ement dependencies ensures communication of

the necessary data. The call to GLOBAL_MAX is

required to return to each processor the global

maximum of X_MAX .

4 Conclusion

E�cient use of DM hardware requires that each

processor operates on a sub{domain that is as

large as will �t into it's memory (consistent with

P1-D-7

load balance). The memory overhead required

for bu�ering i/o processes has led to the con-

struction of DM parallel machines in which the

i/o processor(s) are provided with more mem-

ory than the other processors. Nevertheless the

memory required for mesh partitioning places a

severe restriction on the scalability of problem

size.

The scalable gather/scatter operations require

the i/o processor to provide P bu�ers the size

of which is determined by the available memory

on that processor. With increasing P then for

constant N=P the problem size N increases but

the size of each bu�er must decrease to accom-

modate more bu�ers into memory. This results

in ine�cient communications due to increased

numbers of messages and smaller data packets.

It is arguable that for large P parallel �le sys-

tems will be required but such technologies re-

main uncommon and present compatibility dif-

�culties.

Parallel JOSTLE has made it possible to dis-

tribute not only the memory requirement for

mesh decomposition but also the processing.

The e�ciency of these operations in parallel is

not ideal but represents a major improvement

over what was previously a sequential operation.

The schemes presented in this paper e�ec-

tively reduce the previously signi�cant mesh de-

composition and i/o related scalability restric-

tions. A near maximal sub{domain size can now

be allocated to each processor without requir-

ing excessive i/o memory. The primary bene�t

is that it becomes possible to operate with ef-

�ciency on problems that were previously too

large to partition in one processor's memory.

In addition the start{up and shut{down bot-

tle necks have been greatly reduced to allow

improved interaction with large problem cases.

The use of inspector loops has provided meth-

ods that are each su�ciently generic to allow

automation of the techniques in CAPTools.

5 Acknowledgements

The authors wish to thank the following organi-

sations:

Fujitsu European Centre for Information Tech-

nology for funding support and access to their

AP3000 and VX/4 facilities.

The UK EPSRC for funding support from under

the PSTPA program (Grant No. GR/K40321).

References

[1] C. S. Ierotheou, S. P. Johnson, M. Cross, and

P.F.Leggett. Computer aided parallelisa-

tion tools (CAPTools) - conceptual overview

and performance on the parallelisation of

structured mesh codes. Parallel Computing,

22:163{195, 1996.

[2] S. P. Johnson, C. S. Ierotheou, and M. Cross.

Inspector loop determination to reduce com-

munication overheads in unstructured mesh

code parallelisation. Technical Report

PPRG-98-003, Parallel Processing Research

Group, University of Greenwich, 1998.

[3] K. McManus. PhD Thesis: A strategy for

mapping unstructured mesh computational

mechanics programs onto distributed memory

parallel architectures. PhD thesis, University

of Greenwich, 1996.

[4] K. McManus, M. Cross, and S. Johnson. Is-

sues and strategies in the parallelisation of

unstructured multiphysics codes. In Proc.

PDCCM'97, 1997.

[5] R. Mirchandaney, J. Saltz, R. Smith,

D. Nicol, and K. Crowley. Principles of run-

time support for parallel processors. In Proc.

Second Int. Conf. on Supercomputing, July

1988.

[6] Guy Robinson and Richard Lonsdale. Fluid

dynamics in parallel using an unstructured

mesh. Internal report, UKAEA, April 1990.

[7] C. Walshaw, M. Cross, and M. Everett.

Mesh partitioning and load balancing for dis-

tributed memory parallel systems. In Proc.

PDCCM'97, 1997.

[8] C. Walshaw, M. Cross, and M. Everett. Par-

allel dynamic graph-partitioning for unstruc-

tured meshes. J. Par. Dist. Comput., 1998.

(in press).

P1-D-8

