
Partition Alignment in Three Dimensional Unstructured Mesh

Multi-Physics Modelling

Kevin McManus, Chris Walshaw, Steve Johnson, Mark Cross

k.mcmanus@gre.ac.uk

Centre for Numerical Modelling and Process Analysis

University of Greenwich, London, SE18 6PF, UK

Unstructured mesh codes for modelling continuum physics phenomena have evolved to

provide the facility to model complex interacting systems. Parallelisation of such codes

using single Program Multi Data (SPMD) domain decomposition techniques implemented

with message passing has been demonstrated to provide high parallel e�ciency, scalability

to large numbers of processors P and portability across a wide range of parallel platforms.

High e�ciency, especially for large P requires that load balance is achieved in each parallel

loop. For a code in which loops span a variety of mesh entity types, for example, elements,

faces and vertices, some compromise is required between load balance for each entity type

and the quantity of inter-processor communication required to satisfy data dependence

between processors.

1. Introduction

Work at the University of Greenwich has for some time been focussed on the mod-

elling of multiple interacting physical processes in a range of applications, for example,

metals casting [2,3,1]. Prediction of the quality of a metal casting necessitates accurate

modelling of all of the physical phenomena. These include free surface 
ows, thermal

circulation currents, heat conduction, latent heat of solidi�cation, solid deformation and

stress, gap formation, heat transfer across gaps, contact analysis and other phenomena.

The complexity of the problem geometry has led to the development of Finite Volume

Unstructured Mesh (FV-UM) techniques for the solution of the Navier Stokes equations

with close coupling to a FV-UM solution of the elastic visco-plastic stress strain equa-

tions. Extension of the methods into three dimensions has been enabled through the

development of PHYSICA, a framework for supporting three dimensional, unstructured

mesh, continuum mechanics modelling (http://physica.gre.ac.uk).

The di�culties encountered in implementing large scale CM codes such as PHYSICA

on multiprocessor systems are now fairly well understood. Despite the claims of shared

memory architecture manufacturers to provide e�ective parallelising compilers, these have

not proved to be adequate for large or complex programs. The paradigm of Single Program

Multi Data (SPMD) domain decomposition with message passing, where each processor

runs the same code on a subdomain of the problem, communicating through exchange of

messages, has for some time been demonstrated to provide the required level of e�ciency,



scalability and portability across both shared and distributed memory systems, without

the need to re-author the code into a new language [4].

2. Load Balance and Communication

Parallel PHYSICA uses SPMD techniques to provide potentially high performance on

a wide variety of parallel platforms. The domain decomposition method employed is to

partition the computational mesh into P parts which are distributed on to P processors.

Data that is required in one partition (processor) but is calculated in another partition

creates a requirement for communication between the processors. This is accommodated

through the use of mesh overlaps.

A number of parameters a�ect parallel performance. Of great importance is the data

distribution de�ned by a mesh partition. Much e�ort has been devoted to the development

of mesh partitioning techniques that return a high quality partition for low cost [7].

De�nition of partition quality has itself been a subject for much discussion [5]. The

reduction of interprocessor communication through reduction of the partition surface while

maintaining load balance has been of primary interest. More recently the development

of localised conjugate gradient preconditioners has led to interest in the aspect ratio of

the partition [6]. Inter-processor edge weight, balance and aspect ratio are however only

predictors of partition quality. The best partition is that which returns the shortest

run time. Correlation between predictors and actual performance can become extremely

complex.

Computational load is seldom homogeneous and so weighting systems are employed to

improve predictors. Inter-processor communications are inevitably imbalanced and often

signi�cantly non-deterministic. For a three dimensional unstructured mesh code such as

PHYSICA the situation is further complicated by calculations being performed on vari-

ables that are associated with one of three mesh entity types; vertices, faces and elements.

Parallel PHYSICA consequently requires three partitions, one for each mesh entity type.

This introduces the issue of alignment between each partition. Each individual mesh

entity exists exclusively in one partition (some codes use shared entities but complex in-

teractions preclude use of this technique for PHYSICA). Ideally each vertex that de�nes

a face will exist in the same subdomain as the face. Similarly each face of an element

will exist in the same subdomain as the element. The topology of an unstructured mesh

means that this is almost impossible to achieve. At the surface of each subdomain there

will exist, for example, faces that contain vertices and elements that consist of faces, both

from neighbouring subdomains. If load balance is to be maintained for each mesh entity

type then this mis-alignment can become severe and may lead to a subdomain containing,

for example, a face for which all of the vertices are in neighbouring subdomains. Such

mis-alignment infers a communication requirement. For example calculation of the en-

thalpy for an element requires knowledge of the heat 
ux through each of the element's

faces. If an element's face is not in the same subdomain as the element then it's 
ux,

which is calculated by the processor that owns the face, must be communicated from that

processor. These conditions result in a compromise being forced between load balance

and communication.



3. Partitioning

PHYSICA calls the graph partitioning code JOSTLE [7] to provide mesh partitions at

run time. JOSTLE uses a number of techniques (graph theoretic, heuristic, multi-level)

to rapidly provide a near optimal graph partition. Data dependencies in the unstructured

mesh are are passed to JOSTLE as a graph G(N;E) of nodes N and edges E where each

node represents a mesh entity and each edge represents an entity to entity dependence.

The mesh partition quality is dependent on how the mesh is represented as a graph to

JOSTLE. For example, the workload associated with each element may be proportional

to the number of vertices in the element. A graph can then be created in which each

vertex represents a mesh element, each edge represents element connectivity and each

vertex in the graph is given a weight according to the number of vertices in the element

it represents. The partition returned from JOSTLE will then be a useful partition for the

mesh elements, this is referred to as a primary partition. Partitions for the other mesh

entity types, secondary partitions, can then be derived from the primary partition. So, for

example, with a primary partition based on elements a secondary partition for vertices may

be derived by assigning each vertex to the subdomain that contains the greatest number

of elements containing the vertex. This method provides a good alignment between the

partitions but can result in a poor load balance in the secondary partitions especially if

the element degree varies across the mesh. Clearly the mesh entity type associated with

the greatest amount of work should be chosen to provide the primary partition so that a

load imbalance in the secondary partitions is less signi�cant than any load imbalance in

the primary partition.

Figure 1. Mesh of 102 elements and 94 vertices in two partitions each with 51 elements

and 47 vertices.



21

3

Figure 2. Mesh of 102 elements and 94 vertices in three partitions each with 34 elements

and 34, 35 and 25 vertices.

21

3

Figure 3. Mesh of 102 elements and 94 vertices in three partitions each with 34 elements

and 31, 32 and 31 vertices.



4. Partition Alignment

Consider the unstructured (2D) mesh of 102 elements and 94 vertices shown in Figure 1.

With a primary partition based on elements and a secondary partition for vertices then

for two subdomains the number of elements and vertices is balanced in each subdomain.

With the mesh split into three subdomains as in Figure 2 the number of vertices in

each subdomain is imbalanced. This imbalance can be corrected by moving vertices from

subdomains 1 and 2 into subdomain 3 on the basis of vertex to element connectivity and

vertex to vertex connectivity. The secondary partition resulting from such rebalancing is

shown in Figure 3. Now one element from subdomain 1 and one element from subdomain

2 each consist of vertices belonging entirely to subdomain 3. The e�ect of this partition

misalignment on the required overlap and hence data communication is illustrated in

Figure 4.

���
���
���
���
���

���
���
���
���
���

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

(b)

(d)(c)

(a)

imbalanced balanced

Figure 4. Vertex and element overlaps for subdomain 3.

For an application in which the data dependence requires a vertex overlap de�ned as:

each vertex connected to an owned vertex, then the vertex overlaps will be as shown

in Figure 4 (a) and (b). Here the number of vertices required in the overlaps for the

imbalanced and balanced secondary partitions are the same and so load balance has been

achieved without incurring any communication overhead. In a more realistic case, with

a data dependence such as in PHYSICA (although simpli�ed for this example), where

there are also element based data dependencies to consider:

� A vertex is required in the overlap if:-

The vertex is connected to an owned vertex.

The vertex is required by an owned or an overlap element.



� An element is required in the overlap if:-

The element is adjacent to an owned element.

The element requires a least one owned vertex.

These dependencies lead to the overlaps illustrated in Figure 4 (c) and (d). Now a greater

number of both vertices and elements is required in the overlaps for the balanced secondary

partition. In this case the amount of data to be communicated in an overlap update has

increased but a balance has been achieved for both the primary and secondary partitions.

The e�ect of the increase in communicated data is dependent on many factors:

� The ratio of the inter-processor communication bandwidth to the calculation speed

of the parallel machine.

� The degree of load imbalance in the secondary partition(s), being largely a conse-

quence of the nature of the unstructured mesh.

� Extending the depth of subdomain overlap can result in dependencies between pre-

viously unconnected subdomains and so incur an additional inter-processor commu-

nication start-up latency.

Given the highly platform, mesh and application dependent e�ect of partition alignment

and secondary load balancing it is optimistic to expect performance predictors to be

accurate. Inhomogeneous computational load for each mesh entity further complicates

these problems.

5. Results and Conclusions

Figure 5. Mesh of mixed element types.

Test cases representative of multi-physical applications have shown the potential for

improved parallel performance. In all cases there is a compromise between the idle time



incurred due to a load imbalance in secondary partitions and the time required to com-

municate the additional overlap data resulting from the increased overlap depth. For

many applications, performance is limited primarily as a result of load imbalance and

communication start-up latency and so it is usually worthwhile to trade load imbalance

for communication time. However, there is also the potential for a degradation in perfor-

mance, for example, applications that are bandwidth limited such as large test cases on

workstation networks with poor interconnection.

The mesh in Figure 5 was constructed to demonstrate the problem of partition align-

ment. This mesh is run with a multi-physics problem having a mix of element, vertex and

face based loops. A similar geometry contains 44,775 vertices, 162,358 faces and 58,212

elements, of which 19,404 are hexahedral and 38,808 are pentahedral. Using JOSTLE to

calculate a primary partition for elements ensures an excellent balance in element num-

bers. So for two processors each processor is allocated 29,106 elements but this means that

with aligned secondary partitions each processor is allocated 27,844 and 16,931 vertices,

an imbalance of approximately 3:2. This imbalance leads to a poor speed-up even for

small numbers of processors. With eight processors this situation has reached the point

at which the vertex partition imbalance has become almost 2:1 with each subdomain hav-

ing between 8325 and 4401 vertices. The e�ect of this is re
ected in the speed-up curve

in Figure 6 where the best possible speedup for vertex based loops cannot exceed 50%

e�ciency.

10 20 30

10

20

30

40

40 50

50

60

60

Imbalanced secondary
Re-balanced secondary

58,212 elements
44,775 vertices

Speed-up

Number of Processors

Speed-up for Cray T3E

Ideal

Figure 6. Speedup for imbalanced and balanced secondary partitions on a Cray T3E.

Figure 6 shows that imbalance in secondary partitions limits performance even for

small numbers of processors but good scalability (near constant gradient) is possible as

the imbalance has reached a limit, in this case, at around eight processors, after which

the imbalance for vertices remains approximately 2:1. The speed-up improvement for



re-balanced partitions is good but the gradient of the curve suggests that this will not

continue to scale. This is not surprising as the increasing misalignment between the par-

titions leads eventually to some subdomains having no alignment between the partitions

for each entity. That is a subdomain in which no core element contains a core vertex.

This results in overlaps that are signi�cantly larger than the subdomain core.

As P increases the Amdahl limit for parallel speed-up becomes increasingly appar-

ent. To achieve pro�table speed-up with large P it is therefore important to ensure best

possible load balance for all parallel loops. With inter-processor communication perfor-

mance continuing to improve it is anticipated that secondary partition load balancing will

continue to be a pro�table exchange for data communication. Optimisation of partition

realignment remains a di�cult problem, especially as the misalignment of partitions be-

comes signi�cant. A current focus is apply JOSTLE to the solution of this optimisation

problem and to incorporate partition alignment rules into the dynamic load balancing

strategies being developed for PHYSICA.

Acknowledgements

The authors wish to thank HLRS, the High Performance Computer Centre at the University of

Stuttgart for access to the Cray T3E.

REFERENCES

1. M. Cross. Computational issues in the modelling of materials based maufacturing

processes. J. Computer Aided Materials Design, 3:100{116, 1996.

2. M. Cross, C. Bailey, K. A. Pericleous, K. McManus, S. Bounds, G. Moran, G. Taylor,

and D. Wheeler. Multi-physics modelling { a vital component of virtual manufactur-

ing. Agard-r-821, NATO Advisory Group for Aerospace Research & Development,

May 1998.

3. M. Cross, P. Chow, C. Bailey, N. Croft, J. Ewer, P. Leggett, K. McManus, and K. A.

Pericleous. PHYSICA - a software environment for the modelling of multi-physics

phenomena. In Proc ICIAM 1995, 1996.

4. K. McManus, C. Walshaw, M. Cross, P. Leggett, and S. Johnson. Evaluation of the

JOSTLE mesh partitioning code for practical multiphysics applications. In A. Ecer,

J. Periaux, N. Satofuka, and S. Taylor, editors, Parallel Computational Fluid Dynam-

ics, implementations and results using parallel computers, pages 673{680, 1996. Proc

Parallel CFD 1995.

5. D. Vanderstraeten, R. Keunings, and C. Farhat. Beyond Conventional Mesh Parti-

tioning Algorithms and the Minimum Edge Cut Criterion: Impact on Realistic Appli-

cations. In D. Bailey et al, editor, Parallel Processing for Scienti�c Computing, pages

611{614. SIAM, 1995.

6. C. Walshaw, M. Cross, R. Diekmann, and F. Schlimbach. Multilevel Mesh Partition-

ing for Optimising Domain Shape. Tech. Rep. 98/IM/38, Univ. Greenwich, London

SE18 6PF, UK, July 1998.

7. C. Walshaw, M. Cross, and M. Everett. Mesh partitioning and load-balancing for dis-

tributed memory parallel systems. In B. Topping, editor, Proc. Parallel & Distributed

Computing for Computational Mechanics, Lochinver, Scotland, 1997, 1997.


