
A Generational Scheme for Partitioning Graphs

Alan Soper
Computing & Mathematical Sciences,

University of Greenwich,
Old Royal Naval College, Greenwich,

London, SE10 9LS, UK.
A.J.Soper@gre.ac.uk

Chris Walshaw
Computing & Mathematical Sciences,

University of Greenwich,
Old Royal Naval College, Greenwich,

London, SE10 9LS, UK.
C.Walshaw@gre.ac.uk

Abstract

Graph partitioning divides a graph into several
pieces by cutting edges. Very effective heuris-
tic partitioning algorithms have been developed
which run in real-time, but it is unknown how
good the partitions are since the problem is, in
general, NP-complete. This paper reports an evo-
lutionary search algorithm for finding benchmark
partitions. Distinctive features are the trans-
mission and modification of whole subdomains
(the partitioned units) that act as genes, and the
use of a multilevel heuristic algorithm to effect
the crossover and mutations. Its effectiveness is
demonstrated by improvements on previously es-
tablished benchmarks.

1 INTRODUCTION

The graph partitioning problem can be stated as: partition
the vertices of a graph into a given number of sets so that
each set is of (approximately) equal size and so that the
number of edges cut by the partition is minimised. The
need for graph partitioning arises naturally in many appli-
cations such as distributing a finite element mesh across the
nodes of a parallel computer in order to minimise commu-
nication overhead. It is well known that this problem is
NP-complete (i.e. it is unlikely that an optimal solution can
be found in polynomial time), so in recent years much at-
tention has been focused on developing suitable heuristics,
and a range of powerful methods have been devised, e.g.
[8].

Here we report on a technique, combining an evolution-
ary search algorithm together with a multilevel graph par-
titioner, which has enabled us to find partitions consider-
ably better than those that can be found by any of the pub-
lic domain graph partitioning packages such as JOSTLE,
METIS, etc. We do not claim this evolutionary technique

as a possible substitute for the aforementioned packages;
the very long run times preclude such a possibility for the
typical applications in which they are used. However we do
consider it of interest to find the best possible partitions for
benchmarking purposes and for certain applications such
as circuit partitioning, where the quality of the partitionis
paramount, the computational resources required may be
completely justified by the very high quality partitions that
the technique is able to find.

The main focus of this paper is to describe a strategy for
combining evolutionary search techniques with a standard
graph partitioning method. In Section 2 we outline the mul-
tilevel graph partitioning method used and establish nota-
tion & definitions. In Section 3 we then describe the ge-
netic framework by defining the crossover and mutation
operators and discuss how they are combined with the mul-
tilevel partitioner. Related work is also discussed here. We
have conducted many experiments to test the technique and
in Section 4 present some of the results including tests on
unstructured meshes (x4.1). We also compare our results
against a recent benchmark of Kang & Moon, [10]. Some
of these graphs have similar structure to meshes, but some
less structured examples are included.

The principal innovation described in this paper is the
construction of crossover and mutation operators with an
heuristic bias suitable for partitioning certain types of
graphs which include meshes. These operators rely on the
use of a multilevel graph partitioner, which is used to par-
tition carefully chosen subgraphs of the original graph.

2 MULTILEVEL GRAPH
PARTITIONING

Let G = G(V;E) be an undirected graph of verticesV ,
with edgesE. Given that the graph needs to be distributed
to P processors, define a partition� to be a mapping ofV
into P disjoint subdomainsS

p

such that
S

P

S

p

= V . The
partition� induces asubdomain graphonGwhich we shall

refer to asG
�

= G

�

(S;L); there is an edge orlink (S
p

; S

q

)

in L if there are verticesv
1

; v

2

2 V with (v

1

; v

2

) 2 E

andv
1

2 S

p

andv
2

2 S

q

. We denote the set of inter-
subdomain or cut edges (i.e. edges cut by the partition) by
E

. Vertices which have an edge inE

(i.e. those which
are adjacent to vertices in another subdomain) are referred
to asborder vertices. Finally, note that we use the words
subdomain and processor more or less interchangeably: the
mesh is partitioned intoP subdomains; each subdomainS

p

is assigned to a processorp and each processorp owns a
subdomainS

p

.

In the context of partitioning a mesh for a parallel appli-
cation, the definition of the graph partitioning problem is
to find a partition which evenly balances the load or ver-
tex weight in each subdomain whilst minimising the com-
munications cost. To evenly balance the load, the optimal
subdomain weight is given byS := djV j=P e

1 and theim-
balanceis then defined as the maximum subdomain weight
divided by the optimal (since the computational speed of
the underlying application is determined by the most heav-
ily weighted processor). There is some discussion about
the most appropriate metric for partitioning, e.g. [7], and
indeed it is unlikely that any one metric is appropriate,
however, it is common practice in graph partitioning to ap-
proximate the communications cost byjE

j, the weight of
cut edges orcut-weight. The usual (although not universal)
definition of the graph partitioning problem is therefore to
find � such thatjS

p

j � S and such thatjE

j is (approxi-
mately) minimised.

In fact it has been noted for some time that partition qual-
ity can often be improved if a certain amount of imbal-
ance is allowed, [15]. If we allow�% imbalance then the
partitioning problem becomes ‘find a partition� such that
jS

p

j � S� (100+ �)=100 and thatjE

j is (approximately)
minimised’.

2.1 The multilevel paradigm

In recent years it has been recognised that an effective way
of both speeding up graph partitioning techniques and/or,
perhaps more importantly, giving them a global perspec-
tive is to use multilevel techniques. The idea is to match
pairs of vertices to formclusters, use the clusters to de-
fine a new graph and recursively iterate this procedure un-
til the graph size falls below some threshold. The coars-
est graph is then partitioned (possibly with a crude algo-
rithm) and the partition is successively optimised on all the
graphs starting with the coarsest and ending with the orig-
inal. This sequence of contraction followed by repeated
expansion/optimisation loops is known as the multilevel
paradigm and has been successfully developed as a strategy

1where the ceiling functiondxe returns the smallest integer
greater thanx

for overcoming the localised nature of the Kernighan-Lin
(KL), [12], and other optimisation algorithms. The multi-
level idea was first proposed by Barnard & Simon, [2], as a
method of speeding up spectral bisection and improved by
both Hendrickson & Leland, [8] and Bui & Jones, [4], who
generalised it to encompass local refinement algorithms.
Several algorithms for carrying out the matching of vertices
have been devised by Karypis & Kumar, [11], while Wal-
shaw & Cross describe a method for utilising imbalance in
the coarsest graphs to enhance the final partition quality,
[18].

3 THE GENETIC ALGORITHM

Genetic algorithms produce new search points by one of
two operations: crossover which combines information
from two or more randomly selected individuals in the cur-
rent generation, and mutation which modifies a single, ran-
domly selected, individual. The construction of success-
ful crossover and mutation operators is problem specific
and often complex, especially where individuals are sub-
ject to constraints (as are the partitions) so that information
from different individuals cannot be arbitrarily combined
or modified. Further, the information needs to be effec-
tively exploited so that new individuals result that are fitter
than the current best individuals with sufficient probability
even when the current generation is already very good, [1].

A number of genetic algorithms for graph partitioning (e.g.
[10]) have been constructed using a ‘linear’ chromosomal
representation consisting of a list of subdomain member-
ships of a graph’s vertices, each list item representing the
subdomain in which the vertex appears. Crossover com-
bines information from two chromosomes using standard
operations (one-point crossover etc) to produce a child
chromosome. In this case the linkage is determined by dis-
tance apart in the list and given that the ordering of vertices
is arbitrary for most graphs, so is the linkage. The linkage
has been improved by defining orderings of the list items
which place nearby vertices in the graph (separated by few
edges) close together in the list, and by ‘normalising’ the
chromosomes before mating by relabeling the subdomains
in one parent so that it has more vertices with the same
subdomain membership as when they appear in the second,
[10].

Genetic algorithms using this representation usually apply
a local optimisation procedure to the resulting offspring,
which improves and repairs them so that they are again bal-
anced partitions. A novel and more powerful such proce-
dure, termed Cyclic Partitioning, has recently been used by
Kang & Moon with a GA of this type. Their procedure pro-
vides a more comprehensive search for local improvements
than previous Kernighan-Lin based schemes by investigat-
ing the possible improvements available by transferring

(a) (b)

repartition

(c)

Figure 1: An illustration of the crossover operator

vertices across a set of partition boundaries (one vertex
at each), such that the subdomains the vertices belong to
form a cycle in the subdomain graph. They have run exten-
sive tests comparing their genetic algorithm with recursive
Kernighan Lin, pairwise Kernighan Lin and Cyclic Parti-
tioning, using many repeated applications of the optimi-
sation algorithm on different, initial, randomly-generated
partitions. The authors have used the results to establish
a set of high quality, benchmark partitions documented in
[5]; 8-way & 32-way partitioning were performed.

Soperet al. have recently constructed a genetic algorithm
which uses neither a linear chromosomal representation nor
a traditional crossover operator, [16]. The crossover is im-
plemented by modifying the graph to record where the par-
ents had cut-edges by weighting them, and then applying
a local optimisation procedure JOSTLE to the new graph
so that cut edges of the parents are more likely candidates
to be cut again due to the weighting. The mutation op-
erator has an heuristic bias which exploits the local trans-
lational invariance possessed by many graphs of interest.
This work produced benchmark partitions for evaluating
public domain packages, and especially on graphs repre-
senting unstructured meshes. The current work is based
on similar operators but further exploits the properties of
the graphs being partitioned. The major difference is that
the local optimisation procedure used during crossover and
mutation needs only to be applied to a fraction – almost al-
ways less than half – of the graph to be partitioned. Much
more information is transferred into the offspring from the
parent(s) and the optimisation algorithm is more effectively
focussed on one part of the problem at a time.

3.1 Recombining and mutating subdomains

Both crossover and mutations act on subdomains (or the set
of of cut edges containing a subdomain). Crossover selects
sets of complete subdomains from two individuals, and
combines them in the child by partitioning the remainder
of the graph as illustrated in Figure 1 ; Figures 1(a) & 1(b)
show two parent partitions which have been selected for
crossover. Sets of adjacent subdomains which do not in-

tersect are selected (shown shaded) and the remainder of
the graph – the unshaded part of Figure 1(c) – is reparti-
tioned. Crossover seeks to exploit locality - the fact that
graphs needing to be partitioned often only have vertices
with low degree, showing local connectivity. This property
holds for unstructured meshes which in their spatial embed-
ding of physical origin only have short range connections,
reflecting the locality of the physical systems they model.
Locality allows subdomains from one individual to be suc-
cessfully recombined with those from another when they
are well separated.

Mutation takes a set of subdomains from an individual that
constitute a cycle in the subdomain graph. The subgraph
defined by this cycle is then repartitioned so as to exploit
local translational symmetry; new partition boundaries are
sought close to existing boundaries where they should have
similar and so sometimes less cut edges. Another desirable
property of mutations is that they are compatible or com-
mute [14], i.e. their result does not depend on the order of
their application. Our mutations will tend to have this prop-
erty, either because their defining cycles don’t intersect,or
when they do because local translational symmetry, pro-
vides sufficient variations of common, partition boundaries
to accommodate the balance constraint with a very similar
number of cut edges.

In summary crossovers are constructed by producing cuts
in the subdomain graphs of two individuals and mutations
by constructing cycles in the subdomain graph of one indi-
vidual. Figure 2 shows a case where a partially translated
boundary has exactly the same number of cut edges.

Selection of subdomains for crossover: The number of
subdomains selected from the first parent was chosen ran-
domly and uniformly from the range(P=4)�1 to (P=2)�

1, which choice prevented a parent from producing an off-
spring mostly identical to itself. The first subdomain was
chosen randomly, then the second from its neighbours, the
third from neighbours of both these subdomains, with prob-
ability proportional to the number of chosen neighbours (1
or 2), and so on. Thus there is a bias to choosing sets of sub-
domains with more internal or common partition bound-

(a) (b)

Figure 2: A translated boundary fragment with the same number of cut edges

aries. The choice of a more compact structure increases
the chances of successful recombination; the extreme op-
posite a collection of scattered non-neighbouring subdo-
mains would effectively prevent any substantial change in
the parent.

Subdomains are selected from the second parent by a pro-
cess of elimination. First delete subdomains from this par-
ent which have any vertices in common with the subdo-
mains selected from the first. Then delete those that have
more than two fifths of their vertices in common with the
neighbours of the subdomains selected from the first par-
ent. The remaining subdomains are included in the off-
spring. The heuristic provides a balance between the com-
peting demands of information transfer, i.e. copy more sub-
domains and their bordering cut edges into the offspring,
and the need to allow successful recombination, i.e. is the
remainder of the graph capable of being partitioned with a
small enough number of cut edges?

In general, the crossover offspring partition will not be of
sufficiently high quality to be accepted into the succeeding
generation of the genetic algorithm, therefore it is immedi-
ately subject to a hill-climbing sequence of mutations.

In some cases during crossover, it is possible for the sub-
domains selected from the two parents to be such that the
remaining subgraph cannot be partitioned within the imbal-
ance constraint since it contains too many vertices. Such
situations turn out to be rare however and the crossover is
abandoned.

Selection of cycles of subdomains for mutations: Rather
than selecting a cycle independently for each mutation, sets
of mutations are carried out together in a hill-climbing se-
quence, the result of a mutation being the starting point of
the next if it produces a better or equally good partition
with respect to the number of cut edges. If the partition is
worse, the mutation is ignored.

A random spanning tree of the subdomain graph is gener-
ated, and then the fundamental cycles with respect to this
are recorded. Of these, cycles with lengths less than 4 and
greater than 8 are discarded; small cycles because they al-
low little variation and larger cycles since it is more difficult

for the partitioner to simultaneously improve more bound-
aries. When a cycle of subdomains is selected borders be-
tween subdomains are also targets for improvement, so that
very small cycles tend to be included in the optimisation
process already. Variations over longer cycles are provided
by the joint effect of crossover and mutation - they will tend
to be cut on crossover, and the resulting parts improved as
part of other smaller cycles.

Thus a hill-climbing sequence is the set of mutations as-
sociated with the remaining fundamental cycles. These se-
quences are used since they are more efficient to implement
than producing the mutations individually and their cycles
will include most subdomain boundaries.

3.2 Partitioning Subgraphs

The implementation of the new partitions of subgraphs
needed for both crossover and mutation are based on pre-
vious work, [16]. We use a multilevel technique as an ef-
ficient and effective partitioner. In fact the multilevel par-
titioner used is known as JOSTLE and we shall henceforth
refer to it as such, although any graph partitioning heuristic
which can deal with real (non-integer) edge weights could
be used. JOSTLE is fully described in [18].

Both crossover and mutation require that some edges of
the graph be made more likely to appear as cut edges un-
der the action of JOSTLE. This is achieved by biasing the
costs of the edges: the cost of an edge becomes unity plus
a positive number and JOSTLE takes account of these ad-
ditional costs when seeking low cost partitions. Mutations
are implemented by making existing cut edges and their
neighbours much less costly and crossover by making the
cut edges of both parents occurring in the subgraph being
repartitioned slightly less costly. New biases are explicitly
and partially randomly constructed from the parent(s) for
each operation.

3.3 The CHC adaptive search algorithm

The genetic algorithm framework chosen was Eshelman’s
CHC adaptive search algorithm, [6]. It has been shown
to work successfully on a wide range of problems (e.g.

[13, 17]) with the same parameter settings and, importantly
for partitioning large graphs, it uses a small population of
50 individuals. This allowed the simulations to run in a
computer’s memory. Its main features are: an elitist selec-
tion strategy, a highly explorative crossover operator, incest
prevention and partial randomisations or restarts.

We adapted CHC as follows: Since the crossover provides
less variation than that used in the original version of CHC,
we also allow mutations. When a pair of parents are se-
lected for mating and pass the incest test, they crossover
with probability 0.3 and suffer mutation the rest of the time.
When mutation only is applied, a separate offspring is not
produced, rather, provided an improved partition or one of
equal quality results (compared to the parent), it is over-
written. This procedure helps maintain diversity within the
population.

When preventing incest, the distance between any two in-
dividual partitions was defined to be the number of vertices
in the graph minus the number of edge vertices that they
have in common. This measure clearly takes common cut
edges into account, but also any nearby borders. The dis-
tance threshold is initialised, both when starting the genetic
algorithm and on restarts, to the average distance apart of
some randomly sampled pairs in the population. Clearly
the distance between individuals is never zero, so that a
distance threshold to initiate restarts has to be set. This is
taken to be the distance of the best individual from itself,
the expected distance apart of individuals in the population
when it has converged. The distance threshold was decre-
mented by 10 whenever no new offspring were accepted.
This number need not be tuned to any great accuracy, since
a small value will produce earlier subsequent decrements
and vice-versa. However the value should be large enough
to allow more parents to mate on average; a decrement of
10 allowed this.

At a restart the best individual is randomised by mutating
the whole partition as described above, but with a heavier
bias supplied to non-border vertices in order to retain ap-
proximately 65% of the border vertices. Three restarts are
allowed after which the genetic algorithm is reinitialised.

The fitness of an individual was defined to be minus
the product of the number of cut edges times the imbal-
ance. JOSTLE occasionally produces partitions violating
the balance constraint which are strongly penalised by this
scheme.

The initial population was produced by repeatedly parti-
tioning the graph with JOSTLE using random but small bi-
ases, of the order of 0.1.

4 EXPERIMENTAL RESULTS AND
DISCUSSION

We have implemented the algorithms described here within
the framework of JOSTLE, a mesh partitioning software
tool developed at the University of Greenwich and freely
available for academic and research purposes under a li-
censing agreement2. The experiments were carried out on
a variety of different machines; with its very long runtimes
(of several days in the case of the larger graphs), the evo-
lutionary search approach can soak up CPU cycles and the
tests were run so as to use up any spare capacity in the sys-
tem. As a result we have not measured runtimes.

4.1 Results on unstructured meshes

Table 1: A summary of the test graphs

size degree
graph V E � � avg type
data 2851 15093 17 3 10.6 3D nodal
3elt 4720 13722 9 3 5.8 2D nodal
uk 4824 6837 3 1 2.8 2D dual
ukerbe1 5981 7852 8 2 2.6 2D nodal
add32 4960 9462 31 1 3.8 circuit
crack 10240 30380 9 3 5.9 2D nodal
4elt 15606 45878 10 3 5.9 2D nodal

The test graphs have been chosen to be a representative
sample of small to medium scale real-life problems and in-
clude mostly 2D (and one small 3D) examples of nodal
graphs (where the mesh nodes are partitioned) and dual
graphs (where the mesh elements are partitioned). The test
suite also includes one non mesh-based graph, add32.

Table 1 gives a list of the graphs, their sizes, the maximum,
minimum & average degree of the vertices and a short de-
scription. The degree information (the degree of a vertex
is the number of vertices adjacent to it) gives some idea of
the character of the graphs. These range from the relatively
homogeneous dual graphs, where every vertex represents a
mesh element, in these cases a triangle and so every vertex
has at most 3 or 4 neighbours respectively, to the non mesh-
based graph such as add32 which has vertices of degree 31.
As the graphs are not weighted, the number of vertices in
V is the same as the total vertex weightjV j and similarly
for the edgesE.

Graph partitioning algorithms can usually find higher qual-
ity partitions if the balancing constraint is relaxed slightly.
Indeed some of the public domain graph partitioning pack-
ages such as JOSTLE & METIS have an in-built, although
adjustable, imbalance tolerance of 3% (i.e. the largest sub-
domain is allowed to be up 1.03 times the size of the maxi-

2available fromhttp://www.gre.ac.uk/jostle

mum allowed for perfect balance). We therefore tested the
evolutionary algorithm with various tolerances and Table 2
shows a comparison of the cut-weight results with 0% and
3% imbalance tolerances,C0

E

andC3

E

respectively, for four
values ofP (the number of processors/subdomains). For
each value ofP , the first & second columns show the cut-
weight with the allowed imbalance, while the third column
shows the ratio of cut-weight for 3% imbalance scaled by
that for 0% imbalance,C3

E

=C

0

E

. Thus the figure of 0.98
for the data graph andP = 8 means that the algorithm was
able to find a partition 2% better if allowed a 3% imbalance
tolerance. As can be seen, the improvement in quality for
these tests is up to 7% and on average is around 3%.

To demonstrate the quality of the partitions, we have com-
pared the results in Table 2 with those produced by a pub-
lic domain partitioning package JOSTLE (JOSTLE 2.2,
March 2000), [18]. Firstly Table 3 shows a comparison of
the cut-weight results for the public domain version of JOS-
TLE compared to the evolutionary search algorithm. These
results are an improvement on our previous evolutionary
search implementation, [16]. The average difference in the
quality ranges from 23% to 20% asP increases and can be
as bad as 75%. Note that differences in quality tend to di-
minish asP increases. It is tempting to speculate that this
is because the margins for difference decrease as the num-
ber of vertices per subdomain (� V=P) decreases. Indeed
in the limit whereV = P the only balanced partition (for
an unweighted graph at least) is to put one vertex in each
subdomain and so the differences vanish altogether.

4.2 Comparison with the results of Kang & Moon

In this section we compare our results against a recent
benchmark of Kang & Moon, [10]. Some of these graphs
have similar structure to meshes, but some less structured
examples are included, [5, 9].

Three types of graph were tested: Un.d, random geometric
graphs ofn vertices that lie in the unit square and whose
co-ordinates are chosen uniformly from the unit interval;
Gridn.b, a grid graph ofn vertices whose optimal bisec-
tion size is known to beb and W-gridn.b, the same graph
with wrapped boundaries; Bregn.b, a random regular graph
of n vertices each of which has degree 3, and the optimal
bisection size isb with probability1� o(1), [3].

We expect the random geometric graphs and grid graphs
to be suitable for the crossover and mutation operators
because of their geometric origin – they both arise from
the embedding of graph vertices in a low dimensional Eu-
clidean space, with only local connections between points
giving rise to edges. The randomly generated Bregn.b
graphs, with edges possible between any pairs of vertices
do not exhibit the structure required by the heuristic bias

of the genetic algorithm. Caterpillar graphs were not used
since they have a very different structure altogether.

Kang & Moon’s benchmarks were produced by running
their genetic algorithm 50 times on each problem graph,
with each run given an allotted CPU time and keeping
the best. The objectives of our experiments were twofold.
Firstly to test whether our genetic algorithm was robust –
could it find partitions as good as those of Kang & Moon
without requiring repeated runs (or equivalently the re-
peated full reinitialisations after 3 restarts) within broadly
similar total time budgets. This is a good test of the heuris-
tic bias given to the crossover and mutation operators, since
if insufficient very fit offspring are produced, the popula-
tion will converge and the quota of 3 restarts soon used
up. Secondly to support, improve and extend their bench-
marks. For 32-way partitioning the number of vertices in
the graphs did not divide exactly by 32, so that some parti-
tions will have more vertices than others. We use a less re-
strictive constraint than theirs, which requires that the par-
titions differ by no more than one vertex, since we only
constrain the maximum allowed number of vertices, so for
32-way partitioning we are extending the benchmark. For
8-way partitioning the number of vertices divides exactly,
so our constraint is the same and hence we can justly claim
to support and improve on their results.

The same parameters were used on all experiments except
that for the W-grid5000.100 and U1000.40 graphs, the ra-
tio of crossover to mutation was increased from 3::7 to
7::3. This slowed the rate of convergence of the popula-
tion, allowing a more thorough search and providing evi-
dence for the effectiveness of the crossover operator. Ta-
ble 4 shows our results, giving the minimum number of cut
edges found (with the change relative to those of Kang &
Moon in brackets) and the number of subgraph evaluations
taken to find the result.

For 8-way partitioning the results support or improve on
those of Kang & Moon, except for the graph Breg5000.16.
Even though improved results were found for the remaining
examples of the Breg graphs, they required substantially
more subgraph evaluations to find results as good as those
of Kang & Moon, in agreement with our expectations of
performance on this type of graph.

For 32-way partitioning, because of our less exacting con-
straint on the imbalance, we expected to find less cuts than
the previous benchmark. This turned out to be the case,
except for the Breg graphs. More evaluations were al-
lowed for these graphs, since the genetic algorithm con-
verged very slowly, showing further potential. Breg5000.0,
the most suitable for our algorithm given its construction,
eventually yielded less cut edges than the more constrained
partition of Kang & Moon. Our genetic algorithm made
much slower progress towards partitions of similar quality

to their benchmark on the Breg graphs.

The robustness of our genetic algorithm was confirmed by
its requiring only one run to match the benchmark in almost
all cases.

5 SUMMARY & FUTURE WORK

We have described and tested an evolutionary search al-
gorithm for partitioning graphs and reported new bench-
mark partitions that it found. Distinctive features are the
transmission and modification of whole subdomains (the
partitioned units) that act as genes, and the use of a multi-
level heuristic algorithm to effect the crossover and muta-
tions. These features implement an heuristic bias suitable
for graphs such as unstructured CFD meshes and their ef-
fectiveness is demonstrated by improvements on previously
established benchmarks.

In future we aim to look at the integration of the evolution-
ary search procedure more fully into the multilevel frame-
work. We also intend to study more carefully the param-
eters which govern the interaction between the multilevel
scheme and the evolutionary algorithm.

References

[1] L. Altenberg. The Schema Theorem and Price’s The-
orem. In L. D. Whitley and M. D. Vose, editors,Foun-
dations of Genetic Algorithms 3, pages 23–49. Mor-
gan Kaufmann, San Mateo, 1995.

[2] S. T. Barnard and H. D. Simon. A Fast Multilevel Im-
plementation of Recursive Spectral Bisection for Par-
titioning Unstructured Problems.Concurrency: Prac-
tice & Experience, 6(2):101–117, 1994.

[3] T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser.
Graph Bisection Algorithms with Good Average Case
Behavior.Combinatorica, 7(2):841–855, 1987.

[4] T. N. Bui and C. Jones. A Heuristic for Reducing Fill-
In in Sparse Matrix Factorization. In R. F. Sincovec
et al., editor,Parallel Processing for Scientific Com-
puting, pages 445–452. SIAM, Philadelphia, 1993.

[5] T. N. Bui and B. R. Moon. Genetic Algorithms and
Graph Partitioning.IEEE Trans. Comput., 45(7):841–
855, 1996.

[6] L. J. Eshelman. The CHC adaptive search algorithm:
How to have safe search when engaging in non-
traditional genetic recombination. In G. J. E. Rawl-
ins, editor,Foundations of Genetic Algorithms, pages
265–283. Morgan Kaufmann, San Mateo, 1991.

[7] B. Hendrickson and T. G. Kolda. Graph Partition-
ing Models for Parallel Computing.Parallel Comput.,
26(12):1519–1534, 2000.

[8] B. Hendrickson and R. Leland. A Multilevel Algo-
rithm for Partitioning Graphs. In S. Karin, editor,
Proc. Supercomputing ’95, San Diego. ACM Press,
New York, NY 10036, 1995.

[9] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and
C. Schevon. Optimization by Simulated Annealing:
Part I, Graph Partitioning.Oper. Res., 37(6):865–892,
1989.

[10] S. Kang and B. R. Moon. A Hybrid Genetic Algo-
rithm for Multiway Graph Partitioning. In D. Whit-
ley et al., editor,Proc. Genetic & Evolutionary Comp.
Conf. (GECCO-2000), pages 159–166. Morgan Kauf-
mann, San Francisco, CA 94104, 2000.

[11] G. Karypis and V. Kumar. A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs.
SIAM J. Sci. Comput., 20(1):359–392, 1998.

[12] B. W. Kernighan and S. Lin. An Efficient Heuristic
for Partitioning Graphs.Bell Syst. Tech. J., 49:291–
308, 1970.

[13] K. Mathias, L. Eshelman, J. D. Schaffer, L. Au-
gusteijn, P. Hoogendijk, and R. van de Wiel. Code
Compaction Using Genetic Algorithms. In D. Whit-
ley et al., editor,Proc. Genetic & Evolutionary Comp.
Conf. (GECCO-2000), pages 710–717. Morgan Kauf-
mann, San Francisco, CA 94104, 2000.

[14] N. J. Nilsson. Principles of Artificial Intelligence.
Springer-Verlag, Berlin, 1982.

[15] H. D. Simon and S.-H. Teng. How Good is Recursive
Bisection? SIAM J. Sci. Comput., 18(5):1436–1445,
1997.

[16] A. J. Soper, C. Walshaw, and M. Cross. A Com-
bined Evolutionary Search and Multilevel Approach
to Graph Partitioning. In D. Whitleyet al., editor,
Proc. Genetic & Evolutionary Comp. Conf. (GECCO-
2000), pages 674–681. Morgan Kaufmann, San Fran-
cisco, CA 94104, 2000.

[17] M. Vazquez and D. Whitley. A Hybrid Genetic Al-
gorithm for the Quadratic Assignment Problem. In
D. Whitley et al., editor,Proc. Genetic & Evolution-
ary Comp. Conf. (GECCO-2000), pages 135–142.
Morgan Kaufmann, San Francisco, CA 94104, 2000.

[18] C. Walshaw and M. Cross. Mesh Partitioning: a Mul-
tilevel Balancing and Refinement Algorithm.SIAM
J. Sci. Comput., 22(1):63–80, 2000. (originally pub-
lished as Univ. Greenwich Tech. Rep. 98/IM/35).

Table 2: A comparison of cut-weight results for the evolutionary search algorithm with 0% and 3% imbalance tolerances,
C

0

E

andC3

E

respectively

P = 8 P = 16 P = 32 P = 64

graph C

0

E

C

3

E

C

3

E

C

0

E

C

0

E

C

3

E

C

3

E

C

0

E

C

0

E

C

3

E

C

3

E

C

0

E

C

0

E

C

3

E

C

3

E

C

0

E

data 671 656 0.98 1135 1118 0.99 1811 1783 0.98 2859 2795 0.98
3elt 348 336 0.97 596 565 0.95 963 949 0.99 1553 1524 0.98
uk 91 86 0.95 152 144 0.95 263 249 0.95 419 412 0.98
ukerbe1 113 111 0.98 201 196 0.98 338 334 0.99 548 542 0.99
add32 71 68 0.96 126 117 0.93 218 212 0.97 544 520 0.96
crack 683 683 1.00 1091 1076 0.99 1703 1662 0.98 2603 2519 0.97
4elt 552 529 0.96 946 909 0.96 1571 1530 0.97 2618 2552 0.97
Average 0.97 0.96 0.98 0.98

Table 3: A comparison of cut-weight results for JOSTLE,C

3

J

, against those of the evolutionary search algorithm,C

3

E

, both
with 3% imbalance tolerance

P = 8 P = 16 P = 32 P = 64

graph C

3

J

C

3

J

C

3

E

C

3

J

C

3

J

C

3

E

C

3

J

C

3

J

C

3

E

C

3

J

C

3

J

C

3

E

data 756 1.15 1263 1.13 2106 1.18 3140 1.12
3elt 418 1.24 603 1.07 1020 1.07 1666 1.09
uk 106 1.23 180 1.25 315 1.27 490 1.19
ukerbe1 121 1.09 233 1.19 378 1.13 593 1.09
add32 106 1.56 180 1.54 257 1.21 909 1.75
crack 751 1.10 1191 1.11 1804 1.09 2733 1.08
4elt 656 1.24 1012 1.11 1687 1.10 2772 1.09
Average 1.23 1.20 1.15 1.20

Table 4: The results of the evolutionary search algorithm with a 0% imbalance tolerance on the partitioning benchmark
graphs showing the cut-weight,jE

j, and the number of subgraph partitions required to find it

P = 8 P = 32

graph jE

j # evals jE

j # evals
Grid1000.20 114 (-0) 6932 302 (-12) 52183
Grid5000.100 250 (-0) 19639 658 (-1) 437063
W-grid1000.40 172 (-4) 4566 372 (-12) 246908
W-grid5000.100 400 (-0) 215090 811 (-9) 1342821
U1000.10 180 (-7) 57350 559 (-18) 463057
U1000.20 812 (-0) 10411 2325 (-42) 327932
U1000.40 2562 (-0) 70147 7241 (-88) 280541
Breg5000.0 1079 (-17) 457009 1675 (-45) 4991004
Breg5000.4 1081 (-12) 498954 1779 (+54) 2915867
Breg5000.8 1079 (-19) 450115 1786 (+49) 2814953
Breg5000.16 1180 (+103) 1148758 1755 (+62) 2941382

