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Abstract

We consider the load-balancing problems which arise from parallel scienti®c codes containing multiple computa-

tional phases, or loops over subsets of the data, which are separated by global synchronisation points. We motivate,

derive and describe the implementation of an approach which we refer to as the multiphase mesh partitioning strategy

to address such issues. The technique is tested on several examples of meshes, both real and arti®cial, containing

multiple computational phases and it is demonstrated that our method can achieve high quality partitions where a

standard mesh partitioning approach fails. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

The need for mesh partitioning arises naturally in many ®nite element (FE) and ®nite volume
(FV) computational mechanics (CM) applications. Meshes composed of elements such as trian-
gles or tetrahedra are often better suited than regularly structured grids for representing com-
pletely general geometries and resolving wide variations in behaviour via variable mesh densities.
Meanwhile, the modelling of complex behaviour patterns means that the problems are often too
large to ®t onto serial computers, either because of memory limitations or computational de-
mands, or both. Distributing the mesh across a parallel computer so that the computational load
is evenly balanced and the data locality maximised is known as mesh partitioning. It is well known
that this problem is NP-complete, so in recent years much attention has been focused on de-
veloping heuristic methods, many of which are based on a graph corresponding to the commu-
nication requirements of the mesh, e.g. [12].

1.1. Multiphase partitioning ± motivation

Typically, the load-balance constraint ± that the computational load is evenly balanced ± is
simply satis®ed by ensuring that each processor has an approximately equal share of the mesh
entities (e.g. the mesh elements, such as triangles or tetrahedra, or the mesh nodes). Even in the
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case where di�erent mesh entities require di�erent computational solution time (e.g. boundary
nodes and internal nodes) the balancing problem can still be addressed by weighting the corre-
sponding graph vertices and distributing the graph weight equally. Unfortunately, for some real
applications the processor load can also depend on many other factors such as data access pat-
terns; since these are a function of the ®nal partition, it is not possible to estimate such costs a
priori and we do not address this issue here.

We therefore consider only those applications for which a reasonably accurate weighting of the
graph, related to computational cost, can be realised. However even for such applications, as
increasingly complex solution methods are developed, there is a class of solvers for which such
simple models of computational cost break down. Consider the example shown in Fig. 1(a) with a
partition for two processors indicated by dotted line. This partition might normally be considered
of good quality but for the solution algorithm in Fig. 1(b) it is completely unsuitable. As Fig. 1(c)
shows, during the ¯uid/¯ow phase of the calculation, processor 1 has relatively little work to do
and indeed during the solid/stress phase processor 0 has no work at all. Furthermore, processor 1
is not able to start the solid/stress calculation until the ¯uid/¯ow part has terminated because of
the global convergence check, a global synchronisation point (when all the processors commu-
nicate as a group).

In fact it is these multiple loops over subsets of the mesh entities interspersed by global com-
munications that characterise this modi®ed mesh partitioning problem. If, for example, all the
loops in Fig. 1(b) were over all the mesh entities (as sometimes happens in codes of this nature
when variables are set to zero in regions where a given phenomenon does not occur, e.g. ¯ow in a
solid) such balancing problems would not arise. Similarly, if in Fig. 1(b) there were no global
convergence checks, so that a processor could commence on the stress solution immediately after
the ¯ow solution had converged locally, the problem would be removed, although the ¯ow and
stress regions might need to be weighted di�erently. In the simple example in Fig. 1 an obvious
(and relatively good) load-balancing strategy, therefore, is simply to partition each region (i.e.
liquid and solid) of the domain separately so that each processor has an equal number of entities

Fig. 1. An example of a multiphysics problem.
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from each region. However, in more complex examples, for example where the regions relating to
di�erent computational phases overlap, this may no longer provide a good solution and a more
advanced strategy is required.

We refer to this modi®ed mesh partitioning problem as the multiphase mesh partitioning
problem (MMPP) because the underlying solver has multiple distinct computational subphases,
each of which must be balanced separately. Typically MMPPs arise from multiphysics or mul-
tiphase modelling (e.g. [22,23]) where di�erent parts of the computational domain exhibit di�erent
physical behaviour and/or material properties. They can also arise in contact±impact modelling,
e.g. [20], which usually involves the solution of localised stress±strain ®nite element calculations
over the entire mesh together with a much more complex contact±impact detection phase over
areas of possible penetration.

1.2. Overview

In this paper, we discuss strategies for dealing with MMPPs, primarily by extending existing
single-phase mesh partitioning algorithms. A particularly popular and successful class of algo-
rithms which address the standard or single-phase mesh partitioning problem are known as
multilevel algorithms. They usually combine a graph contraction algorithm which creates a series
of progressively smaller and coarser graphs together with a local optimisation method which,
starting with the coarsest graph, re®nes the partition at each graph level. In Section 2 we outline
such an algorithm and discuss the salient features. We aim to address the MMPP by using this
multilevel algorithm as a `black box' solver, partitioning the problem phase by phase, based on
the partitions of the previous phases. The details of this approach are described in Section 3, in
particular the necessary vertex classi®cation scheme (Section 3.1), an overview of the strategy
(Section 3.2) and modi®cations to the multilevel algorithm (Section 3.3). Also, note that although
we describe a serial version of the multilevel algorithm, the same strategy can be used to enable
parallel solution of the MMPP and in Section 3.4 we discuss a parallel implementation. Related
work is discussed in Section 3.6. In Section 4 we present results for the techniques on a number of
both arti®cial and genuine (drawn from industrial simulation) MMPPs. Finally, in Section 5 we
discuss the work, present some conclusions and list some suggestions for further research.

The principal innovation described in this paper is the multiphase mesh partitioning strategy,
its motivation, derivation and implementation.

2. Multilevel mesh partitioning

In this section, we discuss the single-phase mesh partitioning problem (the classical mesh
partitioning problem) and outline our multilevel algorithm, described in [29], for addressing it.
The modi®cations to the algorithm for use in the multiphase partitioning problem are deferred to
Section 3.3 following the discussion of the multiphase mesh partitioning paradigm.

2.1. Notation and de®nitions

Let G � G�V ;E� be an undirected graph of vertices V , with edges E which represent the data
dependencies in the mesh. The graph vertices can either represent mesh nodes (the nodal graph),
mesh elements (the dual graph), a combination of both (the full or combined graph) or some
special purpose representation to model the data dependencies in the mesh. We assume that both
vertices and edges can be weighted (with non-negative integer values) and that jvj denotes the
weight of a vertex v and similarly for edges and sets of vertices and edges (although it is often the
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case that vertices and edges are given unit weights, jvj � 1 for all v 2 V and jej � 1 for all e 2 E).
Given that the mesh needs to be distributed to P processors, de®ne a partition p to be a mapping
of V into P disjoint subdomains Sp such that

S
P Sp � V . The partition p induces a subdomain

graph on G which we shall refer to as Gp � Gp�S;L�. There is an edge or link (Sp; Sq) in L if there
are adjacent vertices v1; v2 2 V (i.e. there is an edge (v1; v2 2 E) and v1 2 Sp and v2 2 Sq and the
weight of a subdomain is just the sum of the weights of the vertices in the subdomain,
jSpj �

P
v2Sp
jvj. We denote the set of inter-subdomain or cut edges (i.e. edges cut by the partition)

by Ec (note that jEcj � jLj). Vertices which have an edge in Ec (i.e. those which are adjacent to
vertices in another subdomain) are referred to as border vertices. Finally, note that we use the
words subdomain and processor more or less interchangeably: the mesh is partitioned into P
subdomains; each subdomain Sp is assigned to a processor p and each processor p is assigned a
subdomain Sp.

The de®nition of the graph partitioning problem is to ®nd a partition which evenly balances the
load or vertex weight in each subdomain whilst minimising the communications cost. To evenly
balance the load, the optimal subdomain weight is given by S :� djV j=Pe 1 and the imbalance is
then de®ned as the maximum subdomain weight divided by the optimal (since the computational
speed of the underlying application is determined by the most heavily weighted processor). It is
normal practice in graph partitioning to approximate the communications cost by jEcj, the weight
of cut edges or cut-weight and the usual (although not universal) de®nition of the graph parti-
tioning problem is therefore to ®nd p such that Sp6 S and such that jEcj is minimised. Note that
perfect balance is not always possible for graphs with non-unitary vertex weights.

2.2. The multilevel paradigm

In recent years it has been recognised that an e�ective way of both speeding up mesh parti-
tioning techniques and/or, perhaps more importantly, giving them a global perspective is to use
multilevel techniques.

The idea is to match pairs of vertices to form clusters, use the clusters to de®ne a new graph and
recursively iterate this procedure until the graph size falls below some threshold. The coarsest
graph is then partitioned (possibly with a crude algorithm) and the partition is successively op-
timised on all the graphs starting with the coarsest and ending with the original. This sequence of
contraction followed by repeated expansion/optimisation loops is known as the multilevel par-
adigm and has been successfully developed as a strategy for overcoming the localised nature of the
Kernighan±Lin (KL) [17], and other optimisation algorithms. The multilevel idea was ®rst pro-
posed by Barnard and Simon [2], as a method of speeding up spectral bisection and improved by
both Hendrickson and Leland [11] and Bui and Jones [4], who generalised it to encompass local
re®nement algorithms. Several algorithms for carrying out the matching have been devised by
Karypis and Kumar [15], while Walshaw and Cross [29] describe a method for utilising imbalance
in the coarsest graphs to enhance the ®nal partition quality.

2.2.1. Graph contraction
To create a coarser graph Gl�1�Vl�1;El�1� from Gl�Vl;El� we use a variant of the edge con-

traction algorithm proposed by Hendrickson and Leland [11]. The idea is to ®nd a maximal in-
dependent subset of graph edges, or a matching of vertices, and then collapse them. The set is
independent if no two edges in the set are incident on the same vertex (so no two edges in the set
are adjacent), and maximal if no more edges can be added to the set without breaking the

1 Where the ceiling function dxe returns the smallest integer greater than x.
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independence criterion. Having found such a set, each selected edge is collapsed and the vertices,
u1; u2 2 Vl say, at either end of it are merged to form a new vertex v 2 Vl�1 with weight
jvj � ju1j � ju2j.

A simple way to construct a maximal independent subset of edges is to create a randomly
ordered list of the vertices and visit them in turn, matching each unmatched vertex with an un-
matched neighbouring vertex (or with itself if no unmatched neighbours exist). Matched vertices
are removed from the list. If there are several unmatched neighbours the choice of which to match
with can be random, but it has been shown by Karypis and Kumar [15], that it can be bene®cial to
the optimisation to collapse the most heavily weighted edges and our matching algorithm uses this
heuristic.

2.2.2. The initial partition
Having constructed the series of graphs until the number of vertices in the coarsest graph is

smaller than some threshold, the normal practice of the multilevel strategy is to carry out an
initial partition. Here, following the idea of Gupta [10], we contract until the number of vertices in
the coarsest graph is the same as the number of subdomains, P, and then simply assign vertex i to
subdomain Si. Unlike Gupta, however, we do not carry out repeated expansion/contraction cycles
of the coarsest graphs to ®nd a well balanced initial partition but instead, since our optimisation
algorithm incorporates balancing, we commence on the expansion/optimisation sequence im-
mediately.

2.2.3. Partition expansion
Having optimised the partition on a graph Gl, the partition must be interpolated onto its

parent Glÿ1. The interpolation itself is a trivial matter; if a vertex v 2 Vl is in subdomain Sp then
the matched pair of vertices that it represents, v1; v2 2 Vlÿ1, will be in Sp.

2.3. The iterative optimisation algorithm

The iterative optimisation algorithm that we use at each graph level is a variant of the KL
bisection optimisation algorithm which includes a hill-climbing mechanism to enable it to escape
from local minima. Our implementation uses bucket sorting, the linear time complexity im-
provement of Fiduccia and Mattheyses [8], and is a partition optimisation formulation; in other
words it optimises a partition of P subdomains rather than a bisection. It is fully described in [29].

The algorithm, as is typical for KL type algorithms, has inner and outer iterative loops with the
outer loop terminating when no migration takes place during an inner loop. It uses two bucket
sorting structures or bucket trees and is initialised by calculating the gain ± the potential im-
provement in the cost function (in this context the cut-weight) ± for all border vertices and in-
serting them into one of the bucket trees. These vertices are referred to as candidate vertices and
the tree containing them as the candidate tree.

The inner loop proceeds by examining candidate vertices, highest gain ®rst (by always picking
vertices from the highest ranked bucket), testing whether the vertex is acceptable for migration
and then transferring it to the other bucket tree (the tree of examined vertices). If the candidate
vertex is found acceptable, it is migrated, its neighbours have their gains updated and those which
are not already in the examined tree are relocated in the candidate tree according to this updated
gain. This inner loop terminates when the candidate tree is empty although it may terminate early
if the partition cost rises too far above the cost of the best partition found so far. Once the inner
loop has terminated, any vertices remaining in the candidate tree are transferred to the examined
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tree and ®nally pointers to the two trees are swapped ready for the next pass through the inner
loop.

The algorithm also uses a KL type hill-climbing strategy; in other words vertex migration from
subdomain to subdomain can be accepted even if it degrades the partition quality and later, based
on the subsequent evolution of the partition, either rejected or con®rmed. During each pass
through the inner loop, a record of the optimal partition achieved by migration within that loop is
maintained together with a list of vertices which have migrated since that value was attained. If
subsequent migration ®nds a `better' partition then the migration is con®rmed and the list is reset.
Note that it is possible to ®nd better partitions despite selecting some vertices with negative gain
because, as the optimiser runs, the gains of adjacent vertices will change and so the migration of a
group of vertices some or all of which start with negative gain can in fact decrease the overall cost
(i.e. produce a net positive gain). Once the inner loop is terminated, any vertices remaining in the
list (vertices whose migration has not been con®rmed) are migrated back to the subdomains they
came from when the optimal cost was attained.

The algorithm, together with conditions for vertex migration acceptance and con®rmation is
fully described in [29].

2.4. Parallel multilevel graph partitioning

The parallel implementation of the multilevel graph partitioning strategy involves a number of
fairly complex issues and coding di�culties [28]. However, the techniques are very similar in
outline to the serial version and for the purposes of this paper, where the multilevel partitioner is
used as a black box solver, the description above should give a su�cient overview of the multilevel
paradigm. Both parallel and serial algorithms are implemented in a mesh partitioning tool known
as JOSTLE which is freely available for academic and research purposes under a licensing
agreement. 2

3. Multiphase partitioning

In this section, we describe a strategy which addresses the multiphase partitioning problem, the
principle of which is to partition each phase separately, phase by phase, but use the results of the
previous phase to in¯uence the partition of the current one. The partitioner which we use to carry
out the partitioning of each phase is that described in Section 2 with a few minor modi®cations
described in Section 3.3. However, in principle any partition optimisation algorithm could be
used.

3.1. Vertex classi®cation

To talk about multiphase partitioning and more speci®cally our methods for addressing the
problem we need to ®rst classify the graph vertices according to phase. For certain applications
the mesh entities (e.g. nodes or elements) will each belong to one phase only (see for example
Fig. 2(a) and also Section 4.1). However it is quite possible for a mesh entity, and hence the graph
vertex representing it, to belong to more than one phase (see for example the application in
Section 4.3, a contact±impact calculation where some mesh elements are involved in both contact
and shell deformation phases). For this reason, if F is the number of phases, we require for each

2 Available from http://www.gre.ac.uk/jostle
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vertex v that the input graph includes a vector of length F, containing non-negative integer
weights that represent the contribution of that vertex to the computational load in each phase.
Thus if jvji represents the contribution of vertex v to phase i then the weight vector for a vertex v is
given by w � �jvj1; jvj2; . . . ; jvjF � (this is exactly the same as for the multi-constraint paradigm of
[16], see Section 3.6.3). For the example in Fig. 2(a) then, the phase 1 mesh nodes would be input
with the vector �1; 0� while the phase 2 nodes would be input with the vector �0; 1� (assuming each
node contributes a weight of 1 to their respective phases). We then de®ne the vertex type to be the
lowest value of i for which jvji > 0, i.e.

type�v� � min i such that jvji > 0 for i � 1; . . . ; F ;
0 if jvji � 0 for i � 1; . . . ; F :

�
�1�

Thus in the case when the mesh phases are distinct (e.g. Fig. 2) the vertex type is simply the phase
of the mesh entity that it represents; when the mesh entities belong to more than one phase then
the vertex type is the ®rst phase in which its mesh entity is active. Note that it is entirely possible
that jvji � 0 for all i � 1; . . . ; F , (although this might appear to be unlikely it did in fact occur in
the very ®rst tests of the technique that we tried with a real application, see Section 4.3) and we
refer to such vertices as type zero vertices. For clari®cation then, a mesh entity can belong to
multiple phases, but the graph vertex which represents it can only be of one type t � 0; . . . ; F ,
where F is the number of phases.

3.2. Multiphase partitioning strategy

To explain the multiphase partitioning strategy, consider the example mesh shown in Fig. 2(a)
which has two phases and which we require to partition into four subdomains. The basis of the
strategy is to ®rst partition the type 1 vertices, shown partitioned in Fig. 2(b) and then partition

Fig. 2. Multiphase partitioning of a simple two phase mesh: (a) the two phases; (b) the partition of the type 1 vertices;

(c) the input graph for the type 2 vertices; (d) the same input graph with stationary vertices condensed.
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the type 2 vertices. However, we do not simply partition the type 2 vertices independent of the
type 1 partition; to enhance data locality it makes sense to include the partitioned type 1 vertices
in the calculation and use the graph shown in Fig. 2(c) as input for the type 2 partitioning. We
retain the type 1 partition by requiring that the partitioner may not change the processor as-
signment of any type 1 vertex. We thus refer to those vertices which are not allowed to migrate
(i.e. those which have already been partitioned in a previous phase) as stationary vertices. Vertices
which belong to the current phase (non stationary ones) are referred to as active.

3.2.1. Vertex condensation
Because a large proportion of the vertices may be `stationary' (i.e. the partitioner is not allowed

to migrate them) it is rather ine�cient to include all such vertices in the calculation. For this
reason we condense all stationary vertices assigned to a processor p down to a single stationary
super-vertex as shown in Fig. 2(d). This can considerably reduce the size of the input graph.

3.2.2. Graph edges
Edges between stationary and active vertices are retained to enhance the interphase data lo-

cality, however, as can be seen in Fig. 2(d), edges between the condensed stationary vertices are
left out of the input graph. There is a good reason for this; our partitioner includes an integral
load-balancing algorithm (to remove imbalance arising either from an existing partition of the
input graph or internally as part of the multilevel process) which schedules load to be migrated
along the edges of the subdomain graph. If the edges between stationary vertices are left in the
input graph, then corresponding edges appear in the subdomain graph and hence the load-
balancer may schedule load to migrate between these subdomains. However, if these inter
subdomain edges arise solely because of the edges between stationary vertices then there may be
no active vertices to realise this scheduled migration and the balancing may fail.

3.2.3. Summary
Although we have illustrated the multiphase partitioning algorithm with a two phase example,

the technique can clearly be extended to arbitrary numbers of phases. Fig. 3 shows a pseudo-code
description of the algorithm. Here the partition phase graph line is a call to the multilevel

Fig. 3. The multiphase partitioning algorithm.
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single-phase partitioner and hence we can see that the multiphase mesh partitioning paradigm
consists of a wrapper around a black box mesh partitioner. As the wrapper simply constructs a
series of F subgraphs, one for each phase, implementation is straightforward.

3.3. Modi®cations to the multilevel partitioner

The modi®cations we need to make to the multilevel partitioner are relatively minor and simple
to implement. Consider ®rst of all the optimisation; all that we require is that the condensed
stationary vertices do not migrate and we simply restrict them from doing so by not including
them in the bucket sorting so that they cannot be considered for migration. This in turn leads to
the modi®cation for the graph contraction; since we do not allow stationary vertices to migrate, a
cluster consisting of an active vertex matched with a stationary vertex will be prevented from
migrating. Therefore, since we wish the active vertices to have total freedom to migrate, we do not
allow them to match with stationary vertices. Furthermore stationary vertices are not allowed to
match with each other since this would result in a cluster containing vertices in di�erent sub-
domains. These modi®cations are easily achieved within the graph partitioner at each graph level
by just matching each stationary vertex with itself ± as if it had no unmatched neighbours ± before
any other matching takes place. Finally for the initial partition, the result of the matching graph
contraction means that the coarsest graph consists of P stationary vertices each assigned to one
processor and P (or more) unassigned active vertices. At this point we assign the active vertices
with a simple greedy approach which takes account of gain, the aim being that if an active vertex
is adjacent to one or more stationary vertices it should be assigned such that the cut-weight is
minimised (i.e. assigned to the same processor as the stationary vertex with which it shares the
heaviest edge).

3.4. Parallel issues

The parallel implementation of these techniques is relatively straight forward, if complex to
code; once again, the wrapper around the black box multilevel partitioner is simply required to
classify the vertices and construct a subgraph for each phase and this can be done in parallel. One
major di�erence from the serial version, however, is that to execute in parallel the multiphase
partitioner will already have a partitioned graph (because each processor will own a subset of the
graph vertices) and the initial distribution can be very crude, e.g. [28], and bear no relation to the
multiple computational phases. Indeed, for a dynamic version of the technique (not tested here),
where the partitioner may be required to reuse an existing partition in order to minimise data
migration, this issue arises even for the serial multiphase partitioner and results in extra re-
quirements discussed in the next section.

3.5. Extensions to the multilevel partitioner

In order to function correctly on multiple phase based subgraphs the black box multilevel
partitioner does require some additional functionality. In particular the partitioner needs to be
able to correctly handle disconnected graphs (and, as a special case, isolated vertices) and it re-
quires a mechanism for seeding empty subdomains (for example if one of the existing subdomains
initially has no type 1 vertices). In fact, all of the required functionality has been part of the
JOSTLE partitioning tool for some time; we omit the implementation details here for brevity but
a full description can be found in [31].
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3.6. Related work

3.6.1. Graph manipulation approaches
Although, as far as we are aware, the techniques described in this paper are novel, they do

resemble in certain respects approaches used to address some other mesh/graph partitioning
problems. In particular, the strategy of modifying the graph and then using standard partitioning
techniques has been successfully employed previously. For example, Walshaw and Berzins [32]
condensed graph vertices together to form `super-vertices', one per subdomain and then employed
the standard recursive spectral bisection algorithm, [27], in order to prevent excessive data mi-
gration for dynamic repartitioning of adaptive meshes. In a similar vein, both Hendrickson and
Leland [13], and Pellegrini and Roman [25], used additional graph vertices, essentially repre-
senting processors/subdomains in order to enhance data locality when mapping onto parallel
machines with non-uniform interconnection architectures (e.g. a grid of processors or a meta-
computer). The multiphase partitioning strategy is another in this broad class of graph manip-
ulation approaches.

3.6.2. Contact±impact simulations
One of the particular areas of interest driving the development of multiphase partitioning al-

gorithms has been the use of contact±impact algorithms (for example in the automotive industry
for simulating crashes, e.g. [5]). Typically the simulation will involve localised stress±strain ®nite
element calculations over the entire mesh together with a much more complex contact±impact
detection phase over the restricted areas of possible penetration, [20]. It is usually the imbalance
introduced during this contact phase which is responsible for serious deterioration in the overall
scalability of the code and several approaches to overcome it have been tried.

Vertex weighting. One strategy arising from crashworthiness simulations and designed by
Clinckemaillie, Lonsdale et al. [5,20], to address this problem, is to use a static partition of the
mesh but to add contact-related weights to the partitioning cost function for vertices that are part
of a contact surface. Although this approach does not directly address the two-phase nature of the
problem, a signi®cant improvement was reported over the version which simply partitioned the
stress±strain mesh.

Overpartitioning. Another technique arising from crashworthiness simulations and again in-
volving a static partition of the mesh, is that employed by Galbas and Kolp [9], and known as
overpartitioning. In this approach the mesh is split into many more subdomains than there are
processors (typically 4 or 8 times as many) with the aim that parts of the mesh that will be in-
volved in contact are split into su�cient numbers of subdomains to achieve balance. Dynamic
load-balance is attained by (re)assigning subdomains to processors such that each processor has
an equal share of workload from each phase. A disadvantage is that the communications cost will
rise due to the increased number of interface mesh nodes, but the authors report performance
improvements of up to 50% over a version of the code which does not use overpartitioning.

Multiple partitions. A third strategy, proposed by Hendrickson et al. [14,26], is to use two
di�erent partitions of the mesh, one for the contact detection and the other for the ®nite element
calculation. Indeed the contact detection part uses the rapid recursive coordinate bisection al-
gorithm in a dynamic sense (in that the partition is generated anew each time-step). A disad-
vantage of this approach is that information must be communicated between the two partitions at
every time-step and that some memory is duplicated, however the authors report that the ad-
vantage of achieving load-balance in both phases greatly outweighs the cost of maintaining two
partitions.
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3.6.3. The multi-constraint partitioning problem
Most closely related to the work presented here is the multi-constraint partitioning method of

Karypis and Kumar [16], a di�erent and in some ways more general approach that can be applied
to the multiphase partitioning problem. The idea is to view the problem as a graph partitioning
problem with multiple constraints (in this case load-balancing constraints). Once again the ver-
tices of the graph have a vector of weights, in this case representing the contribution to each
balancing constraint. However, in contrast to the methods presented here, Karypis and Kumar
solve the problem in a single multilevel computation (rather than on a phase by phase basis). The
multilevel methods are then modi®ed in a number of ways. Firstly, during the contraction pro-
cedure the matching is driven by trying to create vertex clusters with balanced weights in each
phase. Thus a vertex with weight vector �1; 0� would match with an adjacent vertex with weight
vector �0; 1� in preference to vertices with weights �1; 0� or �1; 1� in order to create a balanced
cluster. The re®nement phase meanwhile uses greedy re®nement which migrates vertices between
subdomains if the movement improves the partition quality subject to the balancing constraints
or improves the balance without worsening the quality (in this context the cut-weight). The initial
partitioning is done with recursive multilevel bisection (once the coarsened graph is smaller than
50P vertices) and uses multiple queues to satisfy the constraints.

The results presented in [16] suggest that this approach is well able to handle the multiple
constraints and provides partition qualities around 20±70% worse than a single constraint al-
gorithm (acting on the same graph without multiple weights) and the partition takes around 1.5±3
times longer to compute. These are not unreasonable overheads given the additional complexity
of the problem. However, the problems on which Karypis and Kumar test their algorithms are
somewhat arti®cial and so is it di�cult to draw any meaningful conclusions (for example they do
not test a simple two-phase problem, e.g. see Section 4.1).

This multi-constraint paradigm is a more general approach than the multiphase strategy
presented here since it could, for example, be applied to the problem of trying to balance com-
putational and memory requirements where, say, the weight vector for vertex v; �jvj1; jvj2� has
entries jvj1 which represents the computational cost and jvj2 which represents the memory re-
quirement. Our approach, on the other hand, requires that jvji � 0 for at least some
v 2 V and i � 1; . . . ; F . However the results in Section 4 suggest that our more focussed approach
can work well on the (large) subset of multiphase problems for which it is designed. Also the
multiphase approach is somewhat simpler to implement since it merely involves a wrapper around
the multilevel partitioner and can, in principle, reuse existing software features and components
such as, for example, dynamic load-balancing techniques, [30].

3.6.4. Separator theory for graphs with multiple weights
A separator for a graph is a small set of vertices or edges whose removal divides the graph into

disjoint pieces of approximately equal size. A class of graphs is said to satisfy an f �N� vertex
separator theorem if there are constants a < 1 and b > 0 such that every graph of N vertices in the
class has a separator of at most bf �N� vertices whose removal leaves no connected component
with more than aN vertices. Several useful classes of graphs can be shown to satisfy separator
theorems; for example, Lipton and Tarjan showed, [18], that planar graphs have an O�N 1=2�
vertex separator which partitions the graph into two sets whose size is at least N=3. In [6,7],
Djidjev and Gilbert extended the result to show that graphs which satisfy an N k vertex separator
theorem also satisfy the same theorem if multiple weights are attached to each vertex. Karypis and
Kumar have also investigated the same issue, [16], although not achieving such a strong result.

In the context of this paper we are interested in edge separators (the cut-edges can be referred
to as an edge separator). Of course it is possible to ®nd an edge separator for a graph G�V ;E� by
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®nding a vertex separator of the dual graph G0�E;E0� where each edge e 2 E of G is represented by
a vertex in G0 and there are dual edges e0 2 E0 for every pair of edges e1; e2 2 E incident on the
same vertex v 2 V (i.e. e1 � �v; u1� and e2 � �v; u2� for some vertices u1; u2 2 V with u1 6� u2).
However, such dual graphs, even if derived from simple 2D planar FE and FV meshes, are not
themselves planar and so the separator theory, although of interest, is of limited use here.

4. Experimental results

In this section, we test the multiphase partitioning strategy on three di�erent sorts of multi-
phase mesh partitioning problems (MMPPs). We do not test the algorithms exhaustively; it is not
too di�cult to derive MMPPs, pathological and otherwise, for which the multiphase partitioning
strategy will fail (e.g. for the same reasons that the multiconstraint paradigm is more general, see
above Section 3.6.3). However, we do attempt to demonstrate that there is a fairly large class of
problems for which standard mesh partitioning techniques will completely fail to balance indi-
vidual computational phases, but for which the multiphase approach can achieve high quality
partitions.

4.1. Distinct phase results

The ®rst set of experiments are performed on a set of arti®cial but not unrealistic examples of
distinct two-phase problems. By distinct we mean that the computational phase regions do not
overlap and are separated by a relatively small interface. Such problems are typical of many
multiphysics computational mechanics applications such as solidi®cation, e.g. [1].

The problems are constructed by taking a set of 2D and 3D meshes, some regular grids and
some with irregular (or unstructured) adjacencies and geometrically bisecting them so that one
half is assigned to phase 1 and the other half to phase 2. Table 1 gives a summary of the mesh sizes
and classi®cation, where V1 and V2 represent the number of type 1 and type 2 vertices, respectively,
and E is the number of edges. These are possibly the simplest form of two-phase problems and
provide a clear demonstration of the need for multiphase mesh partitioning.

We have tested the meshes with three di�erent partitioners for three di�erent values of P, the
number of sub-domains/processors. The ®rst of these partitioners, JOSTLE-S, is simply the
standard multilevel mesh partitioner JOSTLE, [29], which takes no account of the di�erent
phases. The multiphase version of jostle, JOSTLE-M and the parallel multiphase version,
PJOSTLE-M, incorporate the multiphase partitioning paradigm as described in this paper.

The results in Table 2 show for each mesh and value of P the proportion of cut edges, jEcj=jEj,
(which gives an indication of the partition quality in terms of communication overhead) and the
imbalance for the two phases, k1 and k2, respectively. These three quality metrics are then av-
eraged for each partitioner and value of P.

Table 1

Distinct phase meshes

Name V1 V2 E Description

512� 256 65 536 65 536 261 376 2D Regular grid

crack 4195 6045 30 380 2D Nodal mesh

dime20 114 832 110 011 336 024 2D Dual mesh

64� 32� 32 32 768 32 768 191 488 3D Regular grid

brack2 33 079 29 556 366 559 3D Nodal mesh

mesh100 51 549 51 532 200 976 3D Dual mesh
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As suggested, JOSTLE-S, whilst achieving the best minimisation of cut-weight, completely fails
to balance the two phases (since it takes no account of them). On average (and as one might
expect from the construction of the problem) the imbalance is approximately two, i.e. the largest
subdomain is twice the size that it should be and so the application might be expected to run twice
as slowly as a well partitioned version (neglecting any communication overhead). This is because
the single phase partitioner ignores the di�erent graph regions and (approximately) partitions
each phase between half of the processors. Both the multiphase partitioners, however, manage to
achieve good balance, although note that all the partitioners have an imbalance tolerance, set at
run-time, of 1.03, i.e. any imbalance below this is considered negligible. This is particularly no-
ticeable for the serial version, JOSTLE-M, which, because of its global nature is able to utilise the
imbalance tolerance to achieve higher partition quality (see [29]) and thus results in imbalances
close to (but not exceeding) the threshold of 1.03. The parallel partitioner, PJOSTLE-M, on the
other hand, produces imbalances much closer to 1.0 (perfect balance).

In terms of the cut-weight, JOSTLE-M produces partitions about 28% worse on average than
JOSTLE-S and those of PJOSTLE-M are about 35% worse. These are to be expected as a result of
the more complex partitioning problem and are in line with the 20±70% deterioration reported by
Karypis and Kumar [16] for their multi-constraint algorithm.

We do not show run time results here and indeed the multiphase algorithm is not particularly
time-optimised but, for example, for `mesh100' and P � 16, the run times on a DEC Alpha
workstation were 3.30 s for JOSTLE-M and 2.22 s for JOSTLE-S. For the same mesh in parallel
on a Cray T3E (with slower processors) the run times were 5.65 s for PJOSTLE-M and 3.27 for

Table 2

Distinct phase results

Mesh P � 4 P � 8 P � 16

jEcj=jEj k1 k2 jEcj=jEj k1 k2 jEcj=jEj k1 k2

JOSTLE-S: jostle single-phase

512� 256 0.004 2.000 2.000 0.006 2.000 2.000 0.011 2.000 2.000

crack 0.015 1.906 1.614 0.026 2.434 1.692 0.041 2.445 1.709

dime20 0.001 1.881 1.726 0.003 1.986 2.036 0.004 1.972 2.049

64� 32� 32 0.023 2.000 2.000 0.038 2.000 2.000 0.052 2.000 2.000

brack2 0.008 1.932 2.096 0.023 1.937 2.138 0.037 1.949 2.145

mesh100 0.008 2.012 1.987 0.016 2.011 2.015 0.025 2.034 2.005

Average 0.010 1.955 1.904 0.019 2.061 1.980 0.028 2.067 1.985

JOSTLE-M: jostle multiphase

512� 256 0.004 1.025 1.026 0.009 1.028 1.019 0.013 1.028 1.026

crack 0.016 1.025 1.027 0.030 1.025 1.028 0.055 1.027 1.029

dime20 0.002 1.027 1.015 0.003 1.020 1.025 0.006 1.016 1.018

64� 32� 32 0.027 1.026 1.029 0.041 1.030 1.029 0.063 1.026 1.030

brack2 0.021 1.010 1.014 0.034 1.030 1.030 0.052 1.029 1.026

mesh100 0.011 1.023 1.021 0.020 1.022 1.029 0.034 1.023 1.029

Average 0.013 1.023 1.022 0.023 1.026 1.027 0.037 1.025 1.026

PJOSTLE-M: parallel jostle multiphase

512� 256 0.006 1.000 1.000 0.010 1.000 1.000 0.016 1.000 1.001

crack 0.016 1.000 1.000 0.036 1.000 1.001 0.055 1.000 1.000

dime20 0.002 1.000 1.000 0.004 1.000 1.000 0.007 1.001 1.001

64� 32� 32 0.029 1.000 1.000 0.046 1.000 1.002 0.066 1.002 1.013

brack2 0.020 1.000 1.001 0.033 1.000 1.002 0.052 1.001 1.005

mesh100 0.011 1.000 1.000 0.021 1.000 1.000 0.033 1.002 1.001

Average 0.014 1.000 1.000 0.025 1.000 1.001 0.038 1.001 1.004
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PJOSTLE-S (the standard single-phase parallel version described in [28]). On average the JOS-
TLE-M results were about 1.5 times slower than those of JOSTLE-S and PJOSTLE-M was about
two times slower than PJOSTLE-S. This is well in line with the 1.5±3 times performance de-
gradation suggested for the multi-constraint algorithm, [16].

4.2. Multiple mesh entities

The second set of test examples arise again from two phase problems but in this set of ex-
periments the phases are not well separated with a small interface as above, but highly integrated
and very interconnected. This type of multiphase problem can easily arise for a solver in which
di�erent calculations take place on mesh nodes from those taking place on mesh elements and the
two calculations are separated by global synchronisation points in the solver. This issue is dis-
cussed in [24] and we simulate it taking a set of meshes and assigning the elements to phase 1 and
the nodes to phase 2 (although similar results, not shown here, are achieved if the assignment is
reversed).

The set of four meshes are summarised in Table 3 with V1 representing the number of mesh
elements and V2 the number of mesh nodes. Again E is the number of edges.

Table 4 shows the partitioning results in the same form as Table 2. Interestingly, the single
phase algorithm, JOSTLE-S, actually does a very good job for the 2D meshes, balancing both

Table 3

Node/element meshes

Name V1 V2 E Description

4elt 30 269 15 606 181 614 2D Triangular mesh

t60k 60 005 30 570 360 030 2D Triangular mesh

cs4 22 499 4083 161 574 3D Tetrahedral mesh

mesh100 103 081 20 596 742 162 3D Tetrahedral mesh

Table 4

Node/element results

Mesh P � 4 P � 8 P � 16

jEcj=jEj k1 k2 jEcj=jEj k1 k2 jEcj=jEj k1 k2

JOSTLE-S: jostle single-phase

4elt 0.008 1.000 1.001 0.010 1.003 1.007 0.016 1.012 1.018

t60k 0.003 1.001 1.003 0.008 1.002 1.004 0.014 1.005 1.014

mesh100 0.015 1.030 1.036 0.029 1.019 1.042 0.044 1.013 1.079

cs4 0.051 1.008 1.076 0.073 1.021 1.084 0.105 1.018 1.086

Average 0.019 1.010 1.029 0.030 1.011 1.034 0.045 1.012 1.049

JOSTLE-S: jostle multiphase

4elt 0.007 1.018 1.016 0.010 1.019 1.028 0.017 1.021 1.025

t60k 0.003 1.004 1.003 0.008 1.014 1.019 0.015 1.020 1.024

mesh100 0.015 1.029 1.029 0.029 1.028 1.030 0.049 1.026 1.029

cs4 0.057 1.028 1.029 0.077 1.028 1.027 0.119 1.016 1.023

Average 0.021 1.020 1.019 0.031 1.022 1.026 0.050 1.021 1.025

PJOSTLE-M: parallel jostle multiphase

4elt 0.006 1.000 1.000 0.011 1.000 1.000 0.019 1.001 1.005

t60k 0.004 1.000 1.000 0.008 1.000 1.000 0.016 1.000 1.003

mesh100 0.019 1.000 1.000 0.034 1.000 1.009 0.054 1.000 1.014

cs4 0.054 1.000 1.008 0.081 1.000 1.016 0.114 1.000 1.023

Average 0.021 1.000 1.002 0.033 1.000 1.006 0.051 1.000 1.011
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mesh elements and nodes well. This is not too surprising since the type 1 and type 2 graph vertices
(the mesh elements and nodes) are closely integrated and any reasonably compact subdomain is
likely to contain an equal share of both. However for the 3D meshes, with their more complex
distribution patterns and relatively much smaller proportion of nodes to elements, this coinci-
dence starts to break down and although the elements are well balanced, the mesh nodes are not
that well balanced (e.g. 8.6% imbalance for mesh `cs4', P � 16), con®rming the issues raised in [24].

The multiphase results again bear out the trends seen in Table 2; the multiphase partitioners
balance both phases well with the parallel version, PJOSTLE-M achieving the best balances.
Meanwhile the cut-weight is even closer to that attained by the single-phase algorithm and, re-
spectively, the results of JOSTLE-M and PJOSTLE-M are just 8.5% and 11.7% worse than
JOSTLE-S. This relative closeness is a function of the fairly even distribution of the nodes and
elements throughout the mesh.

Again, we do not show run time results here but, for example, for `t60k' and P � 16, the run
times on a DEC Alpha workstation were 2.65 s for JOSTLE-M and 1.88 s for JOSTLE-S. For the
same mesh in parallel on a Cray T3E (with slower processors) the run times were 4.39 s for
PJOSTLE-M and 3.62 for PJOSTLE-S. On average the JOSTLE-M results were about 1.25 times
slower than those of JOSTLE-S and PJOSTLE-M was about 1.1 times slower than PJOSTLE-S.
This is better than the 1.5±3 times performance degradation suggested for the multi- constraint
algorithm, [16], although Karypis and Kumar did not test this type of problem there.

4.3. Contact±impact results

The third set of test meshes arise from an industrial application and are some examples of
contact±impact simulations. This sort of problem has been discussed in Section 3.6.2 and the
load-balancing issues and cost modelling have been investigated in detail by the DRAMA project,
[3,19,21].

The test meshes are summarised in Table 5, where V1 represents the number of graph vertices
involved in the contact phase and V2 the number involved in the stress±strain ®nite element
calculations (again see [3,19,21] for further details of how these graphs are constructed and
weighted). They were generated by the PAM-CRASH code, [5], shortly after contact had oc-
curred. As a result the areas of contact consist of many scattered penetration nodes (mesh nodes
where two di�erent parts of the mesh interpenetrate) as the metal shell under simulation starts to
buckle. Thus, the type 1 vertices are distributed between many disconnected regions (up to 244
regions in the case of the bmw mesh). This results in an extremely complex partitioning problem.

The partitioning results are shown in Table 6 and it can be seen that, with one exception
(PJOSTLE-M for the `box' mesh, P � 16), the multiphase partitioners achieve load-balance
within the tolerance of 1.03.

We are not entirely sure why the exception occurs with the box mesh but believe it to be as a
result of the size and nature of the single phase balancing problem for the type 1 vertices rather
than anything inherent in the multiphase strategy. In fact this unrealistically small example (just

Table 5

Contact±impact meshes

Name V1 V2 E Description

box 488 3882 9242 3D Box beam crumpling simulation

audi 2750 53 071 112 597 3D AUDI car crash simulation

bmw 5508 95 534 208 157 3D BMW car crash simulation
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488 vertices distributed into 16 subdomains) is di�cult enough (though possible) for a parallel
partitioner in view of the ®ne granularity. However it is signi®cantly complicated by the fact that
the type 1 vertices are weighted with values ranging from 0 to 842 013 (these weights arising from
the cost modelling within DRAMA, [3]). In particular the zero weight vertices pose a challenge for
a di�usive style load-balancer (such as lies at the heart of JOSTLE) as no gain is accrued by
moving them and thus the balancing is `directionless'. Fortunately, however, such problems are
not encountered on the larger (and more realistic) meshes `audi' and `bmw'.

The single-phase version, JOSTLE-S, completely fails to achieve balance, particularly with the
contact nodes, which, although are scattered mainly occur in the front portion of each mesh
(where the impact has taken place). However the shell nodes are not well balanced either.

In terms of cut weight, JOSTLE-M and PJOSTLE-M achieve results which are about two
times worse than JOSTLE-S (82% and 87% worse respectively). Again, this re¯ects the highly
complex nature of the partitioning problem.

Again, we do not show run time results here but, for example, for the audi mesh and P � 16,
the run times on a DEC Alpha workstation were 1.80 s for JOSTLE-M and 1.02 s for JOSTLE-S.
For the same mesh in parallel on a Cray T3E (with slower processors) the run times were 2.98 s
for PJOSTLE-M and 2.33 for PJOSTLE-S. On average the JOSTLE-M results were about 1.9
times slower than those of JOSTLE-S and PJOSTLE-M was about 1.6 times slower than
PJOSTLE-S. This again compares well with the 1.5±3 times performance degradation suggested
for the multi-constraint algorithm, [16].

5. Summary and future research

We have described a new approach for addressing the load-balancing issues of CM codes
containing multiple computational phases. This approach, the multiphase mesh partitioning
strategy, consists of a graph manipulation wrapper around an almost unmodi®ed black box
multilevel mesh partitioner, JOSTLE, which is used to partition each phase individually. As such

Table 6

Contact±impact results

Mesh P � 4 P � 8 P � 16

jEcj=jEj k1 k2 jEcj=jEj k1 k2 jEcj=jEj k1 k2

JOSTLE-S: jostle single-phase

box 0.026 2.038 1.047 0.039 3.985 1.082 0.059 4.175 1.117

audi 0.003 2.092 1.046 0.009 3.777 1.050 0.012 6.129 1.075

bmw 0.005 2.858 1.048 0.009 5.151 1.044 0.014 5.774 1.048

Average 0.011 2.329 1.047 0.019 4.304 1.059 0.028 5.359 1.080

JOSTLE-S: jostle multiphase

box 0.027 1.029 1.010 0.064 1.029 1.027 0.115 1.021 1.023

audi 0.012 1.027 1.027 0.017 1.022 1.029 0.028 1.025 1.029

bmw 0.010 1.019 1.026 0.019 1.029 1.030 0.027 1.029 1.030

Average 0.016 1.025 1.021 0.033 1.027 1.029 0.057 1.025 1.027

PJOSTLE-M: parallel jostle multiphase

box 0.028 1.013 1.000 0.070 1.036 1.012 0.107 1.265 1.016

audi 0.011 1.011 1.001 0.017 1.024 1.002 0.026 1.028 1.010

bmw 0.010 1.002 1.000 0.021 1.010 1.005 0.038 1.019 1.031

Average 0.016 1.009 1.000 0.036 1.023 1.006 0.057 1.104 1.019
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the strategy is relatively simple to implement and could, in principle, reuse existing features of the
partitioner, such as minimising data migration in dynamic repartitioning context.

We have tested the strategy on examples of MMPPs arising from three di�erent applications
and demonstrated that it can succeed in producing high quality, balanced partitions where a
standard mesh partitioner simply fails (as it takes no account of the di�erent phases). The mul-
tiphase partitioner does take somewhat longer than the single phase version, typically 1.5±2 times
as long. This corresponds to the general optimisation rule of thumb that harder problems take
longer to optimise (e.g. see [28]) however we do not believe that this relationship can be quanti®ed
in any meaningful way. We have not tested the strategy exhaustively and acknowledge that it is
not too di�cult to derive MMPPs for which it will not succeed. In fact, in this respect it is like
many other heuristics (including most mesh partitioners) which work for a broad class of
problems but for which counter examples to any conclusions can often be found.

Some examples of the multiphase mesh partitioning strategy in action for contact±impact
problems can be found in [3], but with regard to future work in this area, it would be useful to
investigate its performance in a variety of other genuine CM codes. In particular, it would be
useful to look at examples for which it does not work and either try and address the problems or
at least characterise what features it cannot cope with.

More speci®cally we are particularly interested in looking at better ways of joining discon-
nected regions and we believe that this would enhance the performance of the strategy for the
contact±impact problems (Sections 3.6.2 and 4.3). Currently this is achieved with a somewhat
random approach and we believe that this could be improved by incorporating geometric in-
formation.
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