
76

Parallel Unstructured Mesh

Partitioning

C. Walshaw, M. Cross, and M. G. Everett

1 Introduction

The use of unstructured mesh codes on parallel machines can be one of the most

e�cient ways to solve large Computational Fluid Dynamics (CFD) and Computational

Mechanics (CM) problems. Completely general geometries and complex behaviour can

readily be modelled and, in principle, the inherent sparsity of many such problems

can be exploited to obtain excellent parallel e�ciencies. An important consideration,

however, is the problem of distributing the mesh across the memory of the machine

at runtime so that the computational load is evenly balanced and the amount of

interprocessor communication is minimised. It is well known that this problem is NP

complete, so in recent years much attention has been focused on developing suitable

heuristics, and some powerful methods, many based on a graph corresponding to

the communication requirements of the mesh, have been devised, e.g. [FS93]. Closely

related to this graph partitioning problem is the problem of optimising existing mesh

partitions and in this paper we discuss the partition optimisation problem and its

bearing on the graph partitioning problem.

In particular, the algorithms outlined in this paper are designed to address the three

problems that arise in partitioning of unstructured �nite element and �nite volume

meshes. Speci�cally the:

(i) static partitioning problem (the classical problem) which arises in

trying to distribute a mesh amongst a set of processors;

(ii) static load-balancing problem which arises from a mesh that has been

generated in parallel;

(iii) dynamic load-balancing/partitioning problem which arises from

either adaptively re�ned meshes or meshes in which the computational

workload for each cell can vary with time. It can also arise from computing

resources with changing patterns of external load (e.g. a network of

workstations).

In the latter two cases, (ii) & (iii), the initial data is a distributed graph which may

Ninth International Conference on Domain Decomposition Methods

Editor Petter E. Bj�rstad, Magne S. Espedal and David E. Keyes

c


1998 DDM.org



648 C. WALSHAW, M. CROSS AND M. G. EVERETT

be neither load-balanced nor optimally partitioned. One way of dealing with this is to

ship the graph back to some host processor, run a serial static partitioning algorithm

on it and redistribute. However, this is unattractive for many reasons. Firstly, an O(N)

overhead for the mesh partitioning is simply not scalable if the solver is running at

O(N=P ). Indeed the graph may not even �t into the memory of the host machine and

may thus incur enormous delays through memory paging. In addition, a partition of

the graph (which may even be optimal) already exists, so it makes sense to reuse this as

a starting point for repartitioning [WB95]. In fact, not only is the load-balancing likely

to be unnecessarily computationally expensive if it fails to use this information, but

also the mesh elements will be redistributed without any reference to their previous

`home processor' and heavy data migration may result. Thus, because the graph is

already distributed, it is a natural strategy to repartition it in situ.

The algorithms developed here are therefore designed to iteratively optimise and

if necessary load-balance an existing partition in parallel. In the �rst case, (i) above,

an initial partition is generated using a fast but suboptimal partitioner such as the

greedy algorithm and then the data is distributed.

2 Optimisation

In this section we present two complementary iterative algorithms which combined

together form a powerful and 
exible technique for optimising unstructured mesh

partitions. Initially the subdomain heuristic attempts to `improve' the `shape' of

the subdomains. However, this heuristic cannot guarantee load-balance and so a

second heuristic, a parallel version of the Kernighan-Lin algorithm, [KL70], which

also incorporates load-balancing is applied to share the workload equally between all

subdomains and to carry out local re�nement.

The subdomain heuristic

The idea behind the subdomain heuristic is to minimise the surface energy of the

subdomains (in some graph sense). This is achieved by each processor determining

the centre of its subdomain and then measuring the radial distance from the centre to

the border of the subdomain and attempting to minimise this by migrating vertices

which are furthest away.

Determining the `centre' of a subdomain is relatively easy and can be achieved by

moving in level sets inwards from the subdomain border until all the vertices in the

subdomain have been visited. The �nal set de�nes the centre of the subdomain and, if

the graph is connected (assumed), the level sets will completely cover the subdomain,

although the centre may not be a connected set of vertices. The reverse of this process

can then be used to determine the radial distance.

Having derived these sets each vertex can be marked by its radial distance. Nodes

that are not connected to the centre are not marked and this is useful for migrating

small disconnected parts of a subdomain to more appropriate processors. Neighbouring

processors are informed of the radial distances of vertices on their borders and the

vertices are migrated according to a combination of load-imbalance, radial distance

and the change in cut-edges. This decision process is fully described in [WCE95a].



PARALLEL UNSTRUCTURED MESH PARTITIONING 649

Local re�nement & load-balancing

Having achieved approximate load-balance and good global subdomain shapes, a

process of local re�nement and exact load-balancing takes place.

The gain and preference functions. A key concept in the method is the idea of

gain and preference functions. Loosely, the gain g(v; q) of a vertex v in subdomain S

p

can be calculated for every other subdomain, S

q

, q 6= p, and expresses some `estimate'

of how much the partition would be `improved' were v to migrate to S

q

. The preference

f(v) is then just the value of q which maximises the gain { i.e. f(v) = q where q attains

max

r2P

g(v; r).

The gain is usually directly related to some cost function which measures the quality

of the partition and which we aim to minimise. Typically the cost function used is

simply the total weight of cut edges, jE

c

j, and then the gain expresses the change in

jE

c

j. More recently, however, there has been some debate about the most important

quantity to minimise and in [VK95], Vanderstraeten et al. demonstrate that it can

be extremely e�ective to vary the cost function based on a knowledge of the solver.

Meanwhile, in [WCE

+

95c] we show that the architecture of the parallel machine and

how the partition is mapped down onto its communications network can also play

an important role. Whichever cost function is chosen, however, the idea of gains is

generic. For the purposes of this paper, however, we shall assume that the gain g(v; q)

just expresses the reduction in the cut-edge weight, jE

c

j.

Load-balancing. The load-balancing problem, i.e. how to distribute N tasks over

a network of P processors so that none have more than dN=P e, is a very important

area for research in its own right with a vast range of applications. Here we use an

elegant technique recently developed by Hu & Blake, [HB95], related to, but with

faster convergence than the commonly used di�usive methods, e.g. [GMS95], and

which minimises the Euclidean norm of the transferred weight.

This algorithm (or, in principle, any other distributed load-balancing algorithm)

de�nes how much weight to transfer across edges of the subdomain graph and we then

use the local re�nement mechanism to decide which vertices to move.

The parallel local re�nement mechanism. An algorithm which comes to mind

for local re�nement purposes is the Kernighan-Lin (KL) heuristic, [KL70], and in

particular a linear-time variant proposed by Fiduccia & Mattheyses (FM), [FM82].

We use an algorithm largely inspired by the KL/FM algorithms but with several

modi�cations to better suit our purposes. In particular, only boundary vertices are

allowed to migrate and only to neighbouring processors.

The algorithm, which is fully described in [WCE97b, WCE95b], is thus run in the

boundary regions of the subdomains and at each iteration a processor, p, calculates

the preference and gain of its own border vertices and the desired 
ow across each p-q

interface with neighbouring processors q and a halo update is carried out. Next, for

each interface, the processor to which it has been assigned, p say, creates a bucket list

structure (as in the FM algorithm) for border vertices v owned by itself which have

preference f(v) = q and halo vertices u owned by q which have preference f(u) = p.

Vertices are then iteratively selected from either subdomain so as to �rstly satisfy the


ow as far as possible and secondly maximise the gain as much as possible.



650 C. WALSHAW, M. CROSS AND M. G. EVERETT

3 Graph Reduction

For coarse granularity partitions it is ine�cient to apply the optimisation techniques

to every graph vertex as most will be internal to the subdomains. A simple technique

to speed up the optimisation process, therefore, is to group vertices together to form

clusters, use the clusters to de�ne a new graph, recursively iterate this procedure until

the graph size falls below some threshold and then apply the partitioning algorithm

to these reduced size graphs. This is quite a common technique and has been used

by several authors in various ways { for example, in a multilevel way analogous to

multigrid techniques [BS94, HL95], and in an adaptive way analogous to dynamic

re�nement techniques, [WB95].

Reduction

To create a coarser graph G

0

(V

0

; E

0

) from G(V;E) we use a variant of the edge

contraction algorithm proposed by Hendrickson & Leland, [HL95]. The idea is to

�nd a maximal independent subset of graph edges and then collapse them. The set

is independent because no two edges in the set are incident on the same vertex (so

no two edges in the set are adjacent), and maximal because no more edges can be

added to the set without breaking the independence criterion. Having found such a

set, each selected edge is collapsed and the vertices, u

1

; u

2

2 V say, at either end

of it are merged to form a new vertex v 2 V

0

with weight jvj = ju

1

j + ju

2

j. Edges

which have not been collapsed are inherited by the reduced graph and, where they

become duplicated, are merged with their weight summed. This occurs if, for example,

the edges (u

1

; u

3

) and (u

2

; u

3

) exist when edge (u

1

; u

2

) is collapsed. Because of the

inheritance properties of this algorithm, it is easy to see that the total graph weight

remains the same, jV j = jV

0

j. The total edge weight is reduced (by an amount equal to

the weight of the collapsed edges), but the weight of the cut edges remains the same,

jE

c

j = jE

0

c

j.

Parallel matching

A simple way to construct a maximal independent subset of edges is to visit the

vertices of the graph in a random order and pair up or match unmatched vertices with

a random unmatched neighbour. For the parallel version we use more or less the same

procedure; each processor visiting in parallel the vertices that it owns. We modify the

matching algorithm, however, by always matching with a local vertex in preference

to a vertex owned by another processor. The local matching can take place entirely

in parallel but usually leaves a few boundary vertices who have no unmatched local

neighbours but possibly some unmatched non-local neighbours.

The simplest solution would be to terminate the matching at this point. However, in

the worst-case scenario if the initial partition is particularly bad and most vertices have

no local neighbours (for example a random partition), little or no matching may have

taken place. We therefore continue the matching with an parallel iterative procedure

which �nishes only when there are no vertices unmatched. Nodes which are matched

across interprocessor boundaries are migrated to one of the two owning processors

and then the construction of the reduced graph can take place entirely in parallel.



PARALLEL UNSTRUCTURED MESH PARTITIONING 651

The algorithm is fully described in [WCE97b].

4 Results

The software tool written at Greenwich to implement the optimisation techniques

is known as JOSTLE. This software has been previously demonstrated to provide

partitions of higher quality than MRSB, [WCE95a], and here, due to space constraints,

we concentrate on parallel timings and the e�ect of the initial partition. Results which

demonstrate the optimisation techniques applied to adaptively re�ned meshes can be

found in [WCE97a] and the use of JOSTLE for mapping partitions onto machine

topologies can be found in [WCE

+

95c].

Metrics

We use two metrics to measure the performance of the algorithms, the total weight of

cut edges, jE

c

j and t(s), the execution time in seconds. The best measurement of the

partition quality, and ultimately the only important one, is the parallel e�ciency of the

application from which the graph arises on a given machine. Unfortunately, however,

this e�ciency will depend on many things { typically the machine (size, architecture,

latency, bandwidth and 
op rate), the solution algorithm (explicit, implicit with direct

linear solution, implicit with iterative linear solution) and the problem itself (size, no.

of iterations) all play a part (see also Section 2). As a result it is impossible to fully

assess a partitioning method independent of the solver and the machine to be employed

and to do so goes beyond the scope of this paper. Here, therefore, we use jE

c

j to give

a rough indication of the volume of communication tra�c.

Parallel timings

Achieving high parallel performance for parallel partitioning codes such as JOSTLE

is not as easy as, say, a typical CFD or CM code. For a start the algorithms use only

integer operations and so there are no MFlops to `hide behind'. In addition, most

of the work is carried out on the subdomain boundaries so very little of the actual

graph is used. Also the partitioner itself may not necessarily be well load-balanced and

the communications cost may dominate on the coarsest reduced graphs. On the other

hand, as was explained in Section 1, partitioning on the host may be impossible or at

least much more expensive and if the cost of partitioning is regarded (as it should be)

as a parallel overhead, it usually extremely inexpensive relative to the overall solution

time of the problem.

Tables 1 and 2 give some typical results for 2D (tri60k) and 3D (brack2) meshes

on the Edinburgh Cray T3D with up to 128 processors. These demonstrate very good

speedups for this sort of code and more importantly, very low overheads (of the order

of a few seconds) for the parallel partitioning. Note that the jE

c

j results obtained for

the parallel version of JOSTLE may not be exactly the same as those of the serial

version, due to di�erent orderings of linked lists, but that, since these are random

orderings, there are no consistent di�erences in quality.



652 C. WALSHAW, M. CROSS AND M. G. EVERETT

Table 1 Results for tri60k mesh: N = 60005, E = 89440

serial parallel

P jE

c

j t(s) jE

c

j t(s) speed up

16 1104 14.64 1093 2.65 5.52

32 1669 15.67 1668 1.88 8.33

64 2530 19.79 2572 1.66 11.92

128 3698 24.32 3721 1.29 18.85

Table 2 Results for brack2 mesh: N = 62032, E = 121544

serial parallel

P jE

c

j t(s) jE

c

j t(s) speed up

16 13717 35.19 13442 7.13 4.93

32 21098 40.85 21004 4.90 8.34

64 30407 54.21 30276 4.33 12.52

128 43109 59.40 42959 2.65 22.41

The initial partition

We have tested the optimisation techniques with a variety of initial partitioning

algorithms. Two crude techniques are random partitioning which assigns the vertices

randomly and block partitioning which assigns the �rst N=P vertices to processor 0,

the next N=P to processor 1, etc. These are attractive as the data can, in principle,

be input in parallel. However, random partitioning gives something close to a worst-

case initial partition and block partitioning can be very poor, particularly in the case

of an advancing front mesh generator (as used for the whitaker3 mesh) where the

mesh elements spiral in towards the centre. A slightly more e�ective technique is

geometric sorting where the elements are sorted according to their x; y (and z for 3D)

coordinates and each dimension is partitioned in a strip-wise fashion. This too can be

carried out in parallel (using a parallel sorting algorithm) but can create long thin

and sometimes multiply connected domains. The �nal algorithm we have tested is the

Greedy algorithm [Far88]. This is clearly seen to be the fastest graph-based method as

it only visits each graph edge once, but can only be applied in serial.

Table 3 Di�erent initial partitions for whitaker3: N = 9800, E = 28989, P = 32

initial algorithm initial jE

c

j optimised jE

c

j t(s)

random 28083 1848 3.61

loop 11571 1882 2.02

geosort 1854 1818 2.26

greedy 2143 1805 2.12

Tables 3 & 4 show the results obtained from a Sun 20 with a 75 MHz CPU and 128

Mbytes of memory. As can be seen, the quality of the �nal optimised partition does



PARALLEL UNSTRUCTURED MESH PARTITIONING 653

Table 4 Di�erent initial partitions for barth5: N = 15606, E = 45878, P = 64

initial algorithm initial jE

c

j optimised jE

c

j t(s)

random 45174 3096 7.38

loop 10643 2930 4.04

geosort 5416 2905 4.20

greedy 4046 2970 3.88

not vary signi�cantly with the initial partitioner chosen (except for a little noise) and

thus the optimisation techniques are demonstrated to be very powerful, in particular

for the worst-case random partition. What is a�ected however is the partitioning time

and in general, as might be expected, the poorer the quality of the initial partition,

the longer it takes to optimise it.

5 Conclusion

We have outlined a new method for optimising graph partitions with a speci�c focus

on its application to the mapping of unstructured meshes onto parallel computers.

In this context the static graph-partitioning task can be very e�ciently addressed

through a two-stage procedure { one to yield a legal initial partition and the second

to improve its quality with respect to interprocessor communication and load-balance.

The method is further enhanced through the use of a clustering technique. For the

experiments reported in this paper the cost of parallel partitioning is shown to be of

the order of a few seconds even for relatively large graphs. In addition, the partition

quality is shown to be reasonably independent of the initial partition.

Acknowledgement

We would like thank the Edinburgh Parallel Computer Centre and the Engineering

and Physical Sciences Research Council for access to the Cray T3D.

REFERENCES

[BS94] Barnard S. T. and Simon H. D. (1994) A Fast Multilevel Implementation of

Recursive Spectral Bisection for Partitioning Unstructured Problems. Concurrency:

Practice & Experience 6(2): 101{117.

[Far88] Farhat C. (1988) A Simple and E�cient Automatic FEM Domain Decomposer.

Comp. & Struct. 28(5): 579{602.

[FM82] Fiduccia C. M. and Mattheyses R. M. (1982) A Linear Time Heuristic for

Improving Network Partitions. In Proc. 19th IEEE Design Automation Conf., pages

175{181. IEEE, Piscataway, NJ.

[FS93] Farhat C. and Simon H. D. (1993) TOP/DOMDEC { a Software Tool for Mesh

Partitioning and Parallel Processing. Tech. Rep. RNR-93-011, NASA Ames, Mo�at

Field, CA.



654 C. WALSHAW, M. CROSS AND M. G. EVERETT

[GMS95] Ghosh B., Muthukrishnan S., and Schultz M. H. (1995) Faster Schedules for

Di�usive Load Balancing via Over-Relaxation. TR 1065, Department of Computer

Science, Yale University, New Haven, CT 06520, USA.

[HB95] Hu Y. F. and Blake R. J. (1995) An optimal dynamic load balancing algorithm.

Preprint DL-P-95-011, Daresbury Laboratory, Warrington, WA4 4AD, UK.

[HL95] Hendrickson B. and Leland R. (1995) A Multilevel Algorithm for Partitioning

Graphs. In Proc. Supercomputing '95.

[KL70] Kernighan B. W. and Lin S. (February 1970) An E�cient Heuristic for

Partitioning Graphs. Bell Systems Tech. J. 49: 291{308.

[VK95] Vanderstraeten D. and Keunings R. (1995) Optimized Partitioning of

Unstructured Computational Grids. Int. J. Num. Meth. Engng. 38: 433{450.

[WB95] Walshaw C. H. and Berzins M. (1995) Dynamic load-balancing for PDE solvers

on adaptive unstructured meshes. Concurrency: Practice & Experience 7(1): 17{28.

[WCE95a] Walshaw C., Cross M., and Everett M. (1995) A Localised Algorithm for

Optimising Unstructured Mesh Partitions. Int. J. Supercomput. Applics. 9(4): 280{

295.

[WCE95b] Walshaw C., Cross M., and Everett M. (1995) Dynamic mesh partitioning: a

uni�ed optimisation and load-balancing algorithm. Tech. Rep. 95/IM/06, University

of Greenwich, London SE18 6PF, UK.

[WCE

+

95c] Walshaw C., Cross M., Everett M., Johnson S., and McManus K. (1995)

Partitioning & Mapping of Unstructured Meshes to Parallel Machine Topologies. In

Ferreira A. and Rolim J. (eds) Proc. Irregular '95: Parallel Algorithms for Irregularly

Structured Problems, volume 980 of LNCS, pages 121{126. Springer.

[WCE97a] Walshaw C., Cross M., and Everett M. (1997) Dynamic load-balancing for

parallel adaptive unstructured meshes. In Heath et al M. (ed) Parallel Processing

for Scienti�c Computing. SIAM, Philadelphia.

[WCE97b] Walshaw C., Cross M., and Everett M. (1997) Parallel Unstructured Mesh

Partitioning. (in preparation).


