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Abstract

We discuss the load-balancing issues arising in parallshrbased compu-
tational mechanics codes for which the processor loadirgngés during the
run. We briefly touch on geometric repartitioning ideas dmhtfocus on dif-
ferent ways of using a graph both to solve the load-balanpioplem and the
optimisation problem, both locally and globally. We als@By discuss whether
repartitioning is always valid. Sample illustrative résudre presented and we
conclude that repartitioning is an attractive option if thad changes are not
too dramatic and that there is a certain trade-off betweetitipa quality and
volume of data that the underlying application needs to atégr

Key words. graph partitioning, mesh partitioning, load-balancingjltitevel algo-
rithms.

1 Introduction

Mesh partitioning has been developed recently as an impioegtaabling technology
for mapping unstructured meshes arising from applicatsath as Computational
Fluid Dynamics (CFD) and Computational Mechanics (CM) gmaallel machines.
Typically the aim is to distribute the mesh so that each msoehas an equal share
of the computational load whilst ensuring that communaatbverhead is kept to
a minimum. Much attention has been focused on developirigtsgiheuristics, and
some powerful methods, many based on a graph correspordimg tommunication
requirements of the mesh, have been devised, e.g. [2].
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An increasingly important area for mesh partitioning, hegrearises from problems
in which the computational load varies throughout the etotuof the solution. For
example, heterogeneity in either the computing resoukegs frocessors which are
unevenly matched or not dedicated to single users) or indghers(e.g. solving for
flow or stress in different regions, the size & shape of whibange, in a multi-
physics casting simulation, [22]) can result in load-indwele and poor performance.
Alternatively, time-dependent unstructured mesh codegtwhse adaptive refine-
ment can give rise to a series of meshes in which the positidrdansity of the data
points varies dramatically over the course of an integnaéind which may need to
be frequently repartitioned for maximum parallel efficign€his dynamic partition-
ing problem has not been nearly as thoroughly studied astdtie problem but an
interesting overview can be found in [11].

The dynamic evolution of load has three major influences asipte partitioning
techniques; cost, reuse and parallelism. Firstly, freglead-balancing may be re-
quired and so must have a low cost relative to that of the isolwigorithm in be-
tween. This could potentially restrict the use of high quabiartitioning algorithms
but fortunately, if the mesh has not changed too much, it isnple matter to inter-
polate the existing partition from the old mesh to the new @selthis as the starting
point for repartitioning, [34]. In fact, not only is the lodmhalancing likely to be un-
necessarily computationally expensive if it fails to usis thformation, but also the
mesh elements will be redistributed without any referemcéneir previous ‘home
processor’ and heavy data migration may result. Finally,data is distributed and
so should be repartitionad situ rather than incurring the expense of transferring it
back to some host processor for load-balancing and somerfudw@eguments have
been advanced in support of this proposition, [20]. CoNety these issues call for
parallel load-balancing and, if a high quality partitiordissired, a parallel partition
optimisation algorithm.

For the purposes of this paper, particularly with regardhi® tesults, we tend to
concentrate on situations where the changes in load aresettete points during

the evolution of the solution. In particular this is likely happen when either the
mesh changes (as is the case for adaptive refinement) orrigutational resources
change. However, the techniques discussed apply equdaiiuttions where the load
changes are continuous (or at least quasi-continuous)asitte casting simulation
mentioned above. In this sort of problem, a further issughsnto rebalance, the

decision being based on a trade-off between the additiorgathead for carrying out
the repartitioning and resultant data migration, as agé#nesinefficiency of continu-

ing the simulation with an unbalanced solver. We do not askitieat issue here but
an algorithm for determining whether or not a rebalanceedyito be profitable (and

thus for deciding the frequency of repartitioning) can beniin [1].



1.1 Overview

In this paper we discuss several aspects of the load-batapcoblem in the context
of (re)partitioning unstructured meshes and considerraégempeting and comple-
mentary approaches. In Section 2 we briefly look at geomapproaches, but the
main focus of this paper is graph based algorithms and soatid®e3 we discuss the
use of graphs both to solve the specific load-balancing proldf how much load
to move between any two processo§3.2) and also to optimise the partition at the
same time as balancing both in a local seri&e3) and in a global sensé3 4). In
Section 4 we briefly discuss the relevance of the existingjtjpar and how it can
sometimes be more beneficial to simply ignore it. In SectioveSllustrate some of
the issues raised with experimental results and finally oti&e 6 we summarise the
paper and present some conclusions.

2 Geometric repartitioning
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(a) initial geometric partition (b) subsequent geometric repartition

Figure 1: Geometric repartitioning: (a) initial recurss@ordinate bisection; (b) sub-
sequent recursive coordinate bisection.

Although the primary focus of this paper is graph based aptition approaches, ge-
ometric algorithms for partitioning can also be attracfimedynamic repartitioning.
As discussed in [30], the most common algorithms for geampartitioning involve
the recursive generation of a series of cutting planes whiséct the mesh (for ex-
ample Recursive Coordinate Bisection, [28]). Each paidahes is often orthogonal
to the previous one (see for example Figure 1(a) where thebfgsction is vertical
and the second pair of bisections are horizontal) and ttegithign can be fairly easily
implemented in parallel using a parallel sorting algoriti@me distinct advantage in
terms of repartitioning is that the same algorithm (usirgghme orientation for all
the cutting places) will implicitly minimise the amount odité to migrate (as in Fig-
ure 1(b) where the shaded area represents regions of thethatsteed to migrate).
The disadvantages of this approach are that it cannot giegrfme same quality par-
titions as graph based algorithms and, in particular, cesngbmain shapes can lead
to subdomains which are long and thin or which are split intdtiple disconnected
components (both resulting in increased communicatiostsgoHowever it is easy
to implement and has been used with some success by Joness&falan, [16].
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3 Repartitioning via graph based optimisation

In this section we consider some graph based repatrtiticappgoaches, in particular
by considering the load-balancing problef®.@) and how this is integrated into a
partition optimisation algorithm§@.3). We also look at how the optimality of the
partition (in a global sense) can be ensured by using maiileechniques§3.4).
Finally we look at the difference between embedded andritivased repartitioners
and discuss their relative merit3(5). Firstly we establish some notation.

3.1 Notation and definitions

LetG = G(V, E) be an undirected graph of verticEswith edgesF which represent
the data dependencies in the mesh. We assume that botheseatid edges can be
weighted (with positive integer values) and thadtdenotes the weight of a vertex
and similarly for edges and sets of vertices and edges. Ghatnthe mesh needs
to be distributed taP processors, define a partitianto be a mapping o’ into P
disjoint subdomains), such thatJr S, = V. The partitionr induces asubdomain
graph G.(S, L), onG with verticesS, representing subdomains (the sets of vertices
assigned to processpy and edges or link§S,, S,) € L if there are vertices,, v, €

V with (v, v9) € E andv; € S, andv, € S,. The weight of a subdomain is just the
sum of the weights of the vertices in the subdomghi, = >~ |v[. We denote the
set of inter-subdomain or cut edges (i.e. edges cut by théipay by E. (note that
the total weight of cut edgel#’.| = |L| the total weight of edges in the subdomain
graph). Finally, note that we use the words subdomain andegsmr more or less
interchangeably: the mesh is partitioned iftcsubdomains; each subdoméip is
assigned to a processeand each processprowns a subdomaify,,.

The definition of the graph partitioning problem is to find atjien which evenly
balances the load (i.e. vertex weight) in each subdomaitstuininimising the com-
munications cost. To evenly balance the load, the optimadsmain weight is given
by S := [|V|/P] (where the ceiling functiofz| returns the smallest integer greater
thanz) and theimbalance 0, is then defined as the maximum subdomain weight di-
vided by the optimal (since the computational speed of tletying application is
determined by the most heavily weighted processor). Nat&thr 1 and perfect bal-
ance is given by = 1. As is usual, throughout this paper the communications cost
will be estimated byF., |, the weight of cut edges or cut-weight (although see [30] for
further discussion on this point). A more precise definitddnthe graph partitioning
problem is therefore to find such thatS,| < S and such thatF. | is minimised. The
additional objective for dynamic repartitioning is to nimse the amount of data that
the underlying application will have to transfer.
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3.2 Load-balancing: calculating the flow

Given a graph partitioned into unequal sized subdomains)eee some mechanism
for distributing the load equally. To do this we solve theddaalancing problem on
the subdomain graplty ., (see§3.1) in order to determine laalancing flow a flow
along the edges a¥, which balances the weight of the subdomains. By keeping the
flow localised in this way, vertices are not migrated betwsamadjacent subdomains
and hence (hopefully) the partition quality is not degradasl it almost certainly
would be if vertices were migrated to non-adjacent subdomai

This load-balancing problem, i.e. how to distribuNetasks over a network aP pro-
cessors so that none have more thaf P], is a very important area for research
in its own right with a vast range of applications. The tomadntroduced in [27]
and some common strategies described. Much work has beeedcaut on paral-
lel or distributed algorithms and, in particular, on difftesalgorithms, e.g. [5, 10];
here we use an elegant diffusive technique developed by Hila&eB [15], with fast
convergence. This particular method was derived to mirerthe Euclidean norm of
the transferred weight although it has recently been shbatall diffusion methods
minimise this quantity, [6, 14]. Note that these algorithems referred to as diffusive
because the amount of load transferred between any twoesdjpmcessors at each
iteration is a linear function of the difference in their ¢iiag much in the same way
that in the discretised heat equation, the amount of heathwdhiffuses between any
two adjacent discretisation points is a linear functionhaf difference in temperature
of those two points.

The algorithm simply involves solving the systdime = b whereL is the Laplacian
of the subdomain graph:

degreésS,) if p=gq
Ly, =< — if p # ¢ andS, is adjacent t&h,
0 otherwise

pg —

where degregs,) is the degree of (or number of edges incident on) the veffeand
whereb, = |S,| — S (the weight ofS, less the optimal subdomain weight). The
weight to be transferred across edgg, S, ) is then given by, — z,. The algorithm
is employed as suggested in [15], solving iteratively wittoajugate gradient solver;
it is solved for a real solution and the (integer) flow is detiered by rounding. How-
ever, whilst this is an algorithm which is easily paralletis we have found it more
cost effective, for the numbers of processors which we usegk$ting (up to 128), to
broadcast a copy of the subdomain graph around the paradiehime and duplicate
the (serial) solution of the problem on every processor.af@}efor large numbers
of processors this will not scale and so we have also implésdea fully parallel
version (although it is not used for the tests here). Notdlfirtaat the Laplacian of
any undirected graph contains a zero eigenvalue with thregjeonding eigenvector
[1,1,...,1] and the solution iterates are orthogonalised agains{fs}, If any other
singularities are detected (for example if the graph isahsected) the software will
switch to another method, an intuitive and entirely loaadiparallel load-balancing
algorithm due to Song, [29].



The load-balancing algorithm generates a balancing floasscedges of the subdo-
main graph, i.eF),, along the edgés,, S,), which is stored in memory. However,
the optimisation algorithms which actually decide whichties to move may not be
able to satisfy the required flow instantly (because theyiaméed in the amount of
weight they can transfer in one iteration) and thus decrertmenvalues forF),, by
any weight that is actually transferred. Indeed for varimesons, the optimisation
may exceed the required flow in which case the appropriateifiaiwe opposite di-
rection is recorded (e.g. if,;, = 10 but processop actually transfers a weight of
15 thenF}, is set to 0 andF;, set to 5). In this way a legitimate balancing flow is
always maintained even if it takes many iterations to reatisNote that in the fol-
lowing we require that flow is positiveFf,, > 0 and F;, > 0) and unidirectional;
i.e. eitherF),, = 0 or Fy, = 0 (or both). If either of these requirements are false
then the flow can be adjusted to meet them by setfigg= F,, — min(F,,, F,,) and
Fop = Fyp — Min(Fq, Fyp).

Occasionally whilst optimisation is taking place vertexgnaition can cause the sub-
domain graph to change (e.g. two non-adjacent subdomainbetame adjacent). If
an edge disappears over which flow is scheduled to move tltoswdin graph must
be rebalanced although we speed this process up by addiegttia@eous flow back
into its source subdomain and rebalancing the graph frotpthiat. The number of
possible rebalances on any graph is restricted to avoidcdyehaviour.

3.3 Integrating balancing flow & optimisation

In the companion paper to this, [30], three iterative optaion techniques are out-
lined for refining in parallel the quality of a partition (esgially by treating each
inter-subdomain interface as a separate problem and theg aibisection optimisa-
tion algorithm such as that of Kernighan & Lin, [19], withiaeh interface region).
Such algorithms are not difficult to combine with a balandiog by, at each itera-
tion, simply satisfying (as far as possible) any required id vertex weight prior to
swapping vertices back and forth for refinement purposdy, [[Bdeed if the load-
balancing algorithm is iterative (as above), the two alfpons can be interleaved.
This sort of combination of load-balancing and refinementi®the basis for several
parallel optimisation implementations (e.g. [7, 25, 32]).

Schloegekt al. have also extended the technique for dynamic repartitgoppurposes
by choosing vertices for migration not just on the basis afimising cut-weight, but
also to minimise data migration, [25]. Although they delserit in terms of ‘dirty’
and ‘clean’ vertices, it is perhaps easiest to understaaldsiract terms by thinking of
each vertex having an additional edge between it and theepsoc it started on. So-
calleddirty vertices, which have migrated away from their original ‘re@mprocessor,
then result in an additional contribution to the cost fumetibecause of the cut edge).
In this sense it is similar to other graph manipulation teghes such as those found
in [13, 23, 33, 34] where additional vertices are includedhi@& graph to represent
processors. Schloeget al. experiment with the trade-off between minimising data
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migration and optimisation (essentially by changing thégivng of the additional
vertex-processor edges relative to that of the origingblgedges).

3.4 Using multilevel techniques

The combination of flow & optimisation algorithms can be afeetive solution for
the dynamic load-balancing and repartitioning of unstricedd meshes, however re-
peated application of these localised algorithms cani, aftae time, result in serious
degradation of the partition quality. In recent years it basn recognised that an
effective way of both speeding up partition refinement ardhaps more importantly
giving it a global perspective is to use multilevel techr@guThe idea is to group ver-
tices together to fornslusters use the clusters to define a new graph and recursively
iterate this procedure to create a series of increasinglyseographs until the size of
the coarsest graph falls below some threshold. A fast ansifggscrude initial par-
tition of the coarsest graph is calculated and then suaadgsnterpolated onto and
optimised on each of the graphs in reverse order. This seguaincontraction fol-
lowed by repeated expansion/refinement loops is known amthilevel paradigm
and has been successfully developed as a strategy for ovieigohe localised na-
ture of the Kernighan-Lin, [19], (and other) algorithms.€eliultilevel idea was first
proposed by Barnard & Simon, [2], as a method of speeding eptsg bisection
and improved by both Hendrickson & Leland, [12] and Bui & Jerd], who gener-
alised it to encompass local refinement algorithms. Theemphtation of a parallel
graph contraction algorithm is fully described in [32] amaree sample results §b.1
demonstrate the benefits of the technique.

One caveat about using the multilevel ideas is that to sirophtract the graph down
to P vertices, one for each processor (as in [30, 31]) can be eognbductive in
terms of finding a new partition which minimises the amoundatia migration. The
reason for this is simple; each vertex in the coarsest gnayalysepresent hundreds or
even thousands of vertices in the original graph and so ngatiem from subdomain
to subdomain may give rise to very high data migration in {hy@iaation. We address
this issue by experimentally looking for a suitable contitacthreshold ir5.2.

3.5 Embedded and library based repartitioners

It should be mentioned at this point that there are seversiieg implementations of
combined load-balancing and optimisation techniquesc#ly ‘in-house’ subrou-
tines embedded within parallel adaptive mesh codes (e.@0P. In general such
repartitioning subroutines never actually construct glgraince they normally work
directly with the mesh data structures and thus have thenéalya of no memory
overhead. Nevertheless the techniques used are idemtieabence to graph based
optimisation techniques and it is instructive to abstraet algorithms using graph
partitioning terminology. In this sense they can be seergas/alent to single-level
graph partitioning techniques (even though the graph ismghrysically realised).
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In contrast there are at least two public domain parallekibeukl (re)partitioning li-
braries, JOSTLE, [31], and ParMETIS, [17]. These ‘plug alay’solutions have the
disadvantage that the relevant mesh data must be copiedagrddginto subroutines
as arrays with an additional memory overhead, however gpeated KL type opti-
misation, where a graph vertex may be swapped back and fréhna times between
processors, their dedicated light-weight graph strustanay be more efficient than
moving mesh nodes & elements plus all the attendant solatarponents (although
the final repartitioning solution must then be realised initthe mesh afterwards).
They can also use recent ideas more easily (such as theaveltstrategy) and save
development time. Clearly however, the choice of which te issvery application
dependent (see for example [21, 24] for some typical costd)pmssibly the best
long-term strategy would be to use a library for developnpmposes and then, if
appropriate and the additional development time is wagdrgwitch to a dedicated
special-purpose repartitioner for production versions.

4  Scratch remapping

The previous sections of the paper have an implicit asswmitiat the mesh or com-
putational load has not changed ‘too much’ since the prev{og)partitioning and
that it therefore makes sense to repartition by diffusirsgllcom overloaded proces-
sors to underloaded ones. In cases where the load has clanageatically, empirical
evidence suggests that there are in fact some advantagespy gynoring any ex-
isting distribution and partitioning from scratch. The geas behind this are that
the diffusion of load from extremely overloaded processans significantly distort
the partition quality (essentially the optimisation presés unable to compensate for
large amounts of load being transferred across the systenaddition, by utilising
heuristics for mapping subdomains to processors (basetieexisting placement
of data), the data migration can even be less when partitipinom scratch as com-
pared with diffusive repartitioning. This area has beerestigated by Biswas &
Oliker, [3], who devised appropriate mapping heuristicd @&noften referred to as
scratch-remapping

During this work, Biswas & Oliker tended to use partitionassblack box’ software,
carrying out a partition from scratch and then using themapping techniques to
assign new subdomains to processors. However, in an eatensithe technique,
Schloegelet al, [26], modified the strategy to use the same remapping Hegris
on the coarsest graphs of the multilevel process (rather ttha final partition) and
reported that it minimised the data migration still furtibger the ‘black-box’ version.
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5 Experimental results

The software tool written at Greenwich and which we use tesilate some of the
issues is known as JOSTEH-or the purposes of this paper it is run in three config-
urations, dynamic (JOSTLE-D), multilevel-dynamic (JOEFMD) and multilevel-
static (JOSTLE-MS). The dynamic configuration, JOSTLE-8ads in an existing
partition and uses a single-level algorithm as suggestg8l.$(and fully described in
[32]) to balance and optimise the partition. The multilesighamic, JOSTLE-MD,
uses the same procedure but additionally uses graph cbotr#3.4) to improve the
partition quality. The static version, JOSTLE-MS, carrgeg graph contraction on
the unpartitioned graph, and a serial refinement algorithaptimise the partition on
each of the multilevel graphs, [32].

The test meshes have been taken from an example contairresdiNIE (distributed
irregular mesh environment) software package, [35]. Theqaar application solves
Laplace’s equation with Dirichelet boundary conditionssosquare domain with an
S-shaped hole and using a triangular finite element disat&in. The problem is
repeatedly solved by Jacobi iteration, refined based onstiligion and then load-
balanced. A very similar set of meshes has previously beed fts testing mesh
partitioning algorithms and details about the solver, tbendin and DIME can be
found in [36]. The particular series of ten meshes and theltreg graphs that we
used range in size from the first one which contains 23,78cesrand 35,281 edges
to the final one which contains 224,843 vertices and 336,084%

5.1 Comparison results

In order to demonstrate the quality of the partitions we hew@pared the method
with three popular partitioning schemes, METIS, GREEDY &hdltilevel Recur-
sive Spectral Bisection (MRSB). Of the three METIS, [18]the most similar to
JOSTLE, employing multilevel iterative optimisation. TG&REEDY algorithm, [8],
is fast but not particularly good at minimising.|. MRSB, on the other hand, is a
highly sophisticated method, good at minimisiffg.| but suffering from relatively
high runtimes, [2].

The following experiments were carried out in serial on a SIARC Ultra with

a 140 MHz CPU and 64 Mbytes of memory. We use three metrics &sure the
performance of the algorithms — the total weight of cut edggs|, the execution
time in seconds of each algorithrt{s), and the percentage of vertices which need
to be migratedM. The experiments are run in serial to compare run-timesHhaut t
JOSTLE configurations and METIS can all be run in parallel, atdeast in the case
of JOSTLE, achieve the same partition qualities.

For the two dynamic configurations, the initial mesh is pamied with the static
version — JOSTLE-MS. Subsequently at each refinement, tlsgrexpartition is in-

lavailable fromht t p: / / www. gr e. ac. uk/j ostl e
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terpolated onto the new mesh using the techniques desanjad] (essentially, new
elements are owned by the processor which owns their paaedt)he new partition
is then optimised and balanced.

P =16 P =32 P =064

method B i(s) M%| B (s) M%| B t(s) M%
JOSTLE-D 942 051 054 1551 0.64 1.802598 0.85 3.76
JOSTLE-MD| 846 2.39 4.92 1447 2.60 6.26§2410 3.02 8.87
JOSTLE-MS| 879 3.96 93.96 1488 4.19 92.772417 4.95 99.0(
METIS 913 4.83 94.36 1543 491 95.94 2427 5.15 97.95
MRSB 939 55.85 83.54 1577 71.42 90.01 2520 87.34 95.07
GREEDY |1816 0.77 81.622897 0.83 90.64 4300 1.00 94.42

Table 1: Average results over the 9 meshes

Table 1 compares the six different partitioning methodsHoe 16, 32 and 64 with
the results averaged over the last 9 meshes (i.e. not imglutle static partitioning
results for the first mesh). The high quality partitionerscthbJOSTLE multilevel
configurations, METIS and MRSB - all give similar values féf.| with MRSB
giving marginally the worst results and JOSTLE-MD givingethest. In general,
JOSTLE-D, without the benefit of the multilevel approachpvpdes slightly lower
guality partitions but approximately equivalent to tho§®&&RSB. In terms of execu-
tion time, JOSTLE-D is slightly faster than GREEDY with baththem being much
faster than any of the multilevel algorithms. Of these nhenil algorithms, how-
ever, JOSTLE-MD is considerably faster than JOSTLE-MS aitiThMs, and MRSB
is by far the slowest. It is the final column which is perhapsiiost telling though.
Because the static partitioners take no account of theimegislistribution they re-
sult in a vast amount of data migration. The dynamic configoma, JOSTLE-D and
JOSTLE-MD, on the other hand, migrate very few of the vegicas could be ex-
pected JOSTLE-MD migrates somewhat more than JOSTLE-[esirdnes a more
thorough optimisation.

Taking the results as a whole, the multilevel-dynamic camgon, JOSTLE-MD,

provides the best partitions very rapidly and with venydittertex migration. If a

slight degradation in partition quality can be tolerateavbeer, the JOSTLE-D con-
figuration load-balances and optimises even more rapidsgef than the GREEDY
algorithm, with even less vertex migration.

5.2 Effect of the multilevel techniques

To further compare the JOSTLE-D and JOSTLE-MD configuratjome can look
at how the results compare as the contraction thresholdgelsanThe contraction
threshold determines at what level the graph contractioeguture terminates and
thus JOSTLE-D can be seen as the same configuration as JOEMDL&nRIlY with a
very large threshold (so that the contraction never starts)
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Figure 2: The effects of varying the contraction threshahdtioe cut-edge weight
(top) and data migrated (bottom)

Figure 2 shows the effects of varying the contraction thosfor the final mesh of
the adaptive series given a reasonably good fixed initiditgar. Here the threshold
refers to the number of graph vertices per processor belowhathe contraction

process terminates. As can be seen (despite the noise ieghks) the quality of
the partition (as measured by the cut-edge weight) gragteal$ off as the threshold
increases (i.e. as the partitioner tends towards the JOSTY ténfiguration). Again,

this is to be expected as the multilevel strategy tends te gimore global quality to
the optimisation. Perhaps more interesting, however,asatty the volume of data
migrated drops off very rapidly as the threshold increasedact the graph is even
more exponential than shown as the intervals chosen fohtlestiold are multiples
of 100. This suggests that, in terms of the data migrated,af no great benefit to
choose a high threshold and that reasonably good perfoer@cbe achieved with
a relatively low setting. It is for this reason that we haves#n a default setting of
20 for JOSTLE-MD as it is felt that this gives a good balanceveen high partition

guality and low data migration.
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5.3 Parallel timings

JOSTLE-D JOSTLE-MD
V E|\P=16 P=32 P=64|P=16 P=32 P=64
31172 46309 0.06 0.06 0.04 0.35 0.26 0.25
40851 60753  0.07 0.07 0.08§ 0.40 0.32 0.32
53338 79415 0.06 0.08 0.11 0.97 0.30 0.32
69813 104034 0.10 0.09 0.13 048 0.32 0.33
88743 132329 0.13 0.10 0.09 049 0.40 0.38
115110 171782 0.11 0.11 0.11 0.61 0.44 0.39
146014 218014 0.16 0.13 0.13 0.75 0.56 0.55
185761 277510 0.21 0.15 0.1 0.87 0.63 0.55
224843 336024 0.19 0.18 0.14 0.95 0.67 0.59

Table 2: Parallel timings for the JOSTLE-D & JOSTLE-MD configtions

As discussed in [30], achieving high parallel performanmedarallel partitioning
codes such as JOSTLE is not as easy as, say, a typical CFD oo@#1 elowever,
Table 2 gives parallel timings in seconds for the JOSTLE-®HDSTLE-MD config-
urations on the 512 node Cray T3E at HLRS, the High Perforem&unputer Centre
at the University of Stuttgart. The parallel version usesMPl communications li-
brary although we are working ornsdnmemversion which could be expected to show
even faster timings. These demonstrate extremely low eagh (always less than
a second) for the parallel partitioning and, since in thisecaach initial partition is
of high quality, confirm the conclusions in [30] that the tashing time is strongly
dependent on the quality of the initial partition.

6 Summary

We have discussed the load-balancing issues arising fallglanesh based compu-
tational mechanics codes for which the processor loadiaggés during the run. In
particular we have focussed on different ways of using algheyth to solve the load-
balancing problems and the optimisation problem, bothllpead globally. We have
also briefly discussed whether repartitioning is alwaysyalometimes, when there
have been very dramatic load changes, it is better to singplgtrtition from scratch.
We have looked at some sample illustrative results and $egnfor some adaptive
refinement situations, the graph partitioning task can log efficiently addressed by
reoptimising the existing partition, rather than startthg partitioning from afresh.
For the experiments reported in this paper, the dynamicgohaes are much faster
than static techniques, provide partitions of similar @tt@r quality and, in compar-
ison, involve the migration of a fraction of the data. We hais® seen that there is a
certain amount of trade-off between partition quality antuwme of data migration.

Finally, the dynamic repartitioning area is still very mugliield of active research
and in the near future we hope to address#mg challenging problems which arise in

12



a dynamic multiphase problem (similar to [33] only with trdel@ional complication
of changing processor loading).
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