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Abstract

We discuss the load-balancing issues arising in parallel mesh based compu-
tational mechanics codes for which the processor loading changes during the
run. We briefly touch on geometric repartitioning ideas and then focus on dif-
ferent ways of using a graph both to solve the load-balancingproblem and the
optimisation problem, both locally and globally. We also briefly discuss whether
repartitioning is always valid. Sample illustrative results are presented and we
conclude that repartitioning is an attractive option if theload changes are not
too dramatic and that there is a certain trade-off between partition quality and
volume of data that the underlying application needs to migrate.

Key words. graph partitioning, mesh partitioning, load-balancing, multilevel algo-
rithms.

1 Introduction

Mesh partitioning has been developed recently as an important enabling technology
for mapping unstructured meshes arising from applicationssuch as Computational
Fluid Dynamics (CFD) and Computational Mechanics (CM) ontoparallel machines.
Typically the aim is to distribute the mesh so that each processor has an equal share
of the computational load whilst ensuring that communication overhead is kept to
a minimum. Much attention has been focused on developing suitable heuristics, and
some powerful methods, many based on a graph corresponding to the communication
requirements of the mesh, have been devised, e.g. [2].

�Invited lecture. In: Proc. Parallel & Distributed Computing for Computational Mechanics,
Weimar, Germany, 1999
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An increasingly important area for mesh partitioning, however, arises from problems
in which the computational load varies throughout the evolution of the solution. For
example, heterogeneity in either the computing resources (e.g. processors which are
unevenly matched or not dedicated to single users) or in the solver (e.g. solving for
flow or stress in different regions, the size & shape of which change, in a multi-
physics casting simulation, [22]) can result in load-imbalance and poor performance.
Alternatively, time-dependent unstructured mesh codes which use adaptive refine-
ment can give rise to a series of meshes in which the position and density of the data
points varies dramatically over the course of an integration and which may need to
be frequently repartitioned for maximum parallel efficiency. This dynamic partition-
ing problem has not been nearly as thoroughly studied as the static problem but an
interesting overview can be found in [11].

The dynamic evolution of load has three major influences on possible partitioning
techniques; cost, reuse and parallelism. Firstly, frequent load-balancing may be re-
quired and so must have a low cost relative to that of the solution algorithm in be-
tween. This could potentially restrict the use of high quality partitioning algorithms
but fortunately, if the mesh has not changed too much, it is a simple matter to inter-
polate the existing partition from the old mesh to the new anduse this as the starting
point for repartitioning, [34]. In fact, not only is the load-balancing likely to be un-
necessarily computationally expensive if it fails to use this information, but also the
mesh elements will be redistributed without any reference to their previous ‘home
processor’ and heavy data migration may result. Finally, the data is distributed and
so should be repartitionedin situ rather than incurring the expense of transferring it
back to some host processor for load-balancing and some powerful arguments have
been advanced in support of this proposition, [20]. Collectively these issues call for
parallel load-balancing and, if a high quality partition isdesired, a parallel partition
optimisation algorithm.

For the purposes of this paper, particularly with regard to the results, we tend to
concentrate on situations where the changes in load are at discrete points during
the evolution of the solution. In particular this is likely to happen when either the
mesh changes (as is the case for adaptive refinement) or the computational resources
change. However, the techniques discussed apply equally tosituations where the load
changes are continuous (or at least quasi-continuous) suchas the casting simulation
mentioned above. In this sort of problem, a further issue iswhento rebalance, the
decision being based on a trade-off between the additional overhead for carrying out
the repartitioning and resultant data migration, as against the inefficiency of continu-
ing the simulation with an unbalanced solver. We do not address that issue here but
an algorithm for determining whether or not a rebalance is likely to be profitable (and
thus for deciding the frequency of repartitioning) can be found in [1].
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1.1 Overview

In this paper we discuss several aspects of the load-balancing problem in the context
of (re)partitioning unstructured meshes and consider several competing and comple-
mentary approaches. In Section 2 we briefly look at geometricapproaches, but the
main focus of this paper is graph based algorithms and so in Section 3 we discuss the
use of graphs both to solve the specific load-balancing problem of how much load
to move between any two processors (x3.2) and also to optimise the partition at the
same time as balancing both in a local sense (x3.3) and in a global sense (x3.4). In
Section 4 we briefly discuss the relevance of the existing partition and how it can
sometimes be more beneficial to simply ignore it. In Section 5we illustrate some of
the issues raised with experimental results and finally in Section 6 we summarise the
paper and present some conclusions.

2 Geometric repartitioning

data to

(b) subsequent geometric repartition(a) initial geometric partition

migrate

Figure 1: Geometric repartitioning: (a) initial recursivecoordinate bisection; (b) sub-
sequent recursive coordinate bisection.

Although the primary focus of this paper is graph based optimisation approaches, ge-
ometric algorithms for partitioning can also be attractivefor dynamic repartitioning.
As discussed in [30], the most common algorithms for geometric partitioning involve
the recursive generation of a series of cutting planes whichbisect the mesh (for ex-
ample Recursive Coordinate Bisection, [28]). Each pair of planes is often orthogonal
to the previous one (see for example Figure 1(a) where the first bisection is vertical
and the second pair of bisections are horizontal) and the algorithm can be fairly easily
implemented in parallel using a parallel sorting algorithm. One distinct advantage in
terms of repartitioning is that the same algorithm (using the same orientation for all
the cutting places) will implicitly minimise the amount of data to migrate (as in Fig-
ure 1(b) where the shaded area represents regions of the meshthat need to migrate).
The disadvantages of this approach are that it cannot guarantee the same quality par-
titions as graph based algorithms and, in particular, complex domain shapes can lead
to subdomains which are long and thin or which are split into multiple disconnected
components (both resulting in increased communications costs). However it is easy
to implement and has been used with some success by Jones & Plassmann, [16].
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3 Repartitioning via graph based optimisation

In this section we consider some graph based repartitioningapproaches, in particular
by considering the load-balancing problem (x3.2) and how this is integrated into a
partition optimisation algorithm (x3.3). We also look at how the optimality of the
partition (in a global sense) can be ensured by using multilevel techniques (x3.4).
Finally we look at the difference between embedded and library based repartitioners
and discuss their relative merits (x3.5). Firstly we establish some notation.

3.1 Notation and definitions

LetG = G(V;E) be an undirected graph of verticesV with edgesE which represent
the data dependencies in the mesh. We assume that both vertices and edges can be
weighted (with positive integer values) and thatjvj denotes the weight of a vertexv
and similarly for edges and sets of vertices and edges. Giventhat the mesh needs
to be distributed toP processors, define a partition� to be a mapping ofV into P

disjoint subdomainsS
p

such that
S

P

S

p

= V . The partition� induces asubdomain
graph,G

�
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assigned to processorp) and edges or links(S
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. The weight of a subdomain is just the
sum of the weights of the vertices in the subdomain,jS

p

j =

P

v2S

p

jvj. We denote the
set of inter-subdomain or cut edges (i.e. edges cut by the partition) by E




(note that
the total weight of cut edgesjE




j = jLj the total weight of edges in the subdomain
graph). Finally, note that we use the words subdomain and processor more or less
interchangeably: the mesh is partitioned intoP subdomains; each subdomainS

p

is
assigned to a processorp and each processorp owns a subdomainS

p

.

The definition of the graph partitioning problem is to find a partition which evenly
balances the load (i.e. vertex weight) in each subdomain whilst minimising the com-
munications cost. To evenly balance the load, the optimal subdomain weight is given
by S := djV j=P e (where the ceiling functiondxe returns the smallest integer greater
thanx) and theimbalance, �, is then defined as the maximum subdomain weight di-
vided by the optimal (since the computational speed of the underlying application is
determined by the most heavily weighted processor). Note that� � 1 and perfect bal-
ance is given by� = 1. As is usual, throughout this paper the communications cost
will be estimated byjE




j, the weight of cut edges or cut-weight (although see [30] for
further discussion on this point). A more precise definitionof the graph partitioning
problem is therefore to find� such thatjS

p

j � S and such thatjE



j is minimised. The
additional objective for dynamic repartitioning is to minimise the amount of data that
the underlying application will have to transfer.
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3.2 Load-balancing: calculating the flow

Given a graph partitioned into unequal sized subdomains, weneed some mechanism
for distributing the load equally. To do this we solve the load-balancing problem on
the subdomain graph,G

�

, (seex3.1) in order to determine abalancing flow, a flow
along the edges ofG

�

which balances the weight of the subdomains. By keeping the
flow localised in this way, vertices are not migrated betweennon adjacent subdomains
and hence (hopefully) the partition quality is not degraded, as it almost certainly
would be if vertices were migrated to non-adjacent subdomains.

This load-balancing problem, i.e. how to distributeN tasks over a network ofP pro-
cessors so that none have more thandN=P e, is a very important area for research
in its own right with a vast range of applications. The topic is introduced in [27]
and some common strategies described. Much work has been carried out on paral-
lel or distributed algorithms and, in particular, on diffusive algorithms, e.g. [5, 10];
here we use an elegant diffusive technique developed by Hu & Blake, [15], with fast
convergence. This particular method was derived to minimise the Euclidean norm of
the transferred weight although it has recently been shown that all diffusion methods
minimise this quantity, [6, 14]. Note that these algorithmsare referred to as diffusive
because the amount of load transferred between any two adjacent processors at each
iteration is a linear function of the difference in their loading much in the same way
that in the discretised heat equation, the amount of heat which diffuses between any
two adjacent discretisation points is a linear function of the difference in temperature
of those two points.

The algorithm simply involves solving the systemLx = b whereL is the Laplacian
of the subdomain graph:

L

pq

=

8

>

<

>

:

degree(S
p

) if p = q

�1 if p 6= q andS
p

is adjacent toS
q

0 otherwise

where degree(S
p

) is the degree of (or number of edges incident on) the vertexS

p

and
whereb

p

= jS

p

j � S (the weight ofS
p

less the optimal subdomain weight). The
weight to be transferred across edge(S

p

; S

q

) is then given byx
p

� x

q

. The algorithm
is employed as suggested in [15], solving iteratively with aconjugate gradient solver;
it is solved for a real solution and the (integer) flow is determined by rounding. How-
ever, whilst this is an algorithm which is easily parallelised, we have found it more
cost effective, for the numbers of processors which we used for testing (up to 128), to
broadcast a copy of the subdomain graph around the parallel machine and duplicate
the (serial) solution of the problem on every processor. Clearly for large numbers
of processors this will not scale and so we have also implemented a fully parallel
version (although it is not used for the tests here). Note finally that the Laplacian of
any undirected graph contains a zero eigenvalue with the corresponding eigenvector
[1; 1; : : : ; 1℄ and the solution iterates are orthogonalised against this,[15]. If any other
singularities are detected (for example if the graph is disconnected) the software will
switch to another method, an intuitive and entirely localised parallel load-balancing
algorithm due to Song, [29].
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The load-balancing algorithm generates a balancing flow across edges of the subdo-
main graph, i.e.F

pq

along the edge(S
p

; S

q

), which is stored in memory. However,
the optimisation algorithms which actually decide which vertices to move may not be
able to satisfy the required flow instantly (because they arelimited in the amount of
weight they can transfer in one iteration) and thus decrement the values forF

pq

by
any weight that is actually transferred. Indeed for variousreasons, the optimisation
may exceed the required flow in which case the appropriate flowin the opposite di-
rection is recorded (e.g. ifF

pq

= 10 but processorp actually transfers a weight of
15 thenF

pq

is set to 0 andF
qp

set to 5). In this way a legitimate balancing flow is
always maintained even if it takes many iterations to realise it. Note that in the fol-
lowing we require that flow is positive (F

pq

� 0 andF
qp

� 0) and unidirectional;
i.e. eitherF

pq

= 0 or F
qp

= 0 (or both). If either of these requirements are false
then the flow can be adjusted to meet them by settingF

pq

= F

pq

�min(F
pq

; F

qp

) and
F

qp

= F

qp

� min(F
pq

; F

qp

).

Occasionally whilst optimisation is taking place vertex migration can cause the sub-
domain graph to change (e.g. two non-adjacent subdomains may become adjacent). If
an edge disappears over which flow is scheduled to move the subdomain graph must
be rebalanced although we speed this process up by adding theextraneous flow back
into its source subdomain and rebalancing the graph from that point. The number of
possible rebalances on any graph is restricted to avoid cyclic behaviour.

3.3 Integrating balancing flow & optimisation

In the companion paper to this, [30], three iterative optimisation techniques are out-
lined for refining in parallel the quality of a partition (essentially by treating each
inter-subdomain interface as a separate problem and then using a bisection optimisa-
tion algorithm such as that of Kernighan & Lin, [19], within each interface region).
Such algorithms are not difficult to combine with a balancingflow by, at each itera-
tion, simply satisfying (as far as possible) any required flow of vertex weight prior to
swapping vertices back and forth for refinement purposes, [31]. Indeed if the load-
balancing algorithm is iterative (as above), the two algorithms can be interleaved.
This sort of combination of load-balancing and refinement forms the basis for several
parallel optimisation implementations (e.g. [7, 25, 32]).

Schloegelet al. have also extended the technique for dynamic repartitioning purposes
by choosing vertices for migration not just on the basis of minimising cut-weight, but
also to minimise data migration, [25]. Although they describe it in terms of ‘dirty’
and ‘clean’ vertices, it is perhaps easiest to understand inabstract terms by thinking of
each vertex having an additional edge between it and the processor it started on. So-
calleddirty vertices, which have migrated away from their original ‘home’ processor,
then result in an additional contribution to the cost function (because of the cut edge).
In this sense it is similar to other graph manipulation techniques such as those found
in [13, 23, 33, 34] where additional vertices are included inthe graph to represent
processors. Schloegelet al. experiment with the trade-off between minimising data
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migration and optimisation (essentially by changing the weighting of the additional
vertex-processor edges relative to that of the original graph edges).

3.4 Using multilevel techniques

The combination of flow & optimisation algorithms can be an effective solution for
the dynamic load-balancing and repartitioning of unstructured meshes, however re-
peated application of these localised algorithms can, after some time, result in serious
degradation of the partition quality. In recent years it hasbeen recognised that an
effective way of both speeding up partition refinement and, perhaps more importantly
giving it a global perspective is to use multilevel techniques. The idea is to group ver-
tices together to formclusters, use the clusters to define a new graph and recursively
iterate this procedure to create a series of increasingly coarse graphs until the size of
the coarsest graph falls below some threshold. A fast and possibly crude initial par-
tition of the coarsest graph is calculated and then successively interpolated onto and
optimised on each of the graphs in reverse order. This sequence of contraction fol-
lowed by repeated expansion/refinement loops is known as themultilevel paradigm
and has been successfully developed as a strategy for overcoming the localised na-
ture of the Kernighan-Lin, [19], (and other) algorithms. The multilevel idea was first
proposed by Barnard & Simon, [2], as a method of speeding up spectral bisection
and improved by both Hendrickson & Leland, [12] and Bui & Jones, [4], who gener-
alised it to encompass local refinement algorithms. The implementation of a parallel
graph contraction algorithm is fully described in [32] and some sample results inx5.1
demonstrate the benefits of the technique.

One caveat about using the multilevel ideas is that to simplycontract the graph down
to P vertices, one for each processor (as in [30, 31]) can be counter-productive in
terms of finding a new partition which minimises the amount ofdata migration. The
reason for this is simple; each vertex in the coarsest graphsmay represent hundreds or
even thousands of vertices in the original graph and so moving them from subdomain
to subdomain may give rise to very high data migration in the application. We address
this issue by experimentally looking for a suitable contraction threshold inx5.2.

3.5 Embedded and library based repartitioners

It should be mentioned at this point that there are several existing implementations of
combined load-balancing and optimisation techniques, typically ‘in-house’ subrou-
tines embedded within parallel adaptive mesh codes (e.g. [9, 20]). In general such
repartitioning subroutines never actually construct a graph, since they normally work
directly with the mesh data structures and thus have the advantage of no memory
overhead. Nevertheless the techniques used are identical in essence to graph based
optimisation techniques and it is instructive to abstract the algorithms using graph
partitioning terminology. In this sense they can be seen as equivalent to single-level
graph partitioning techniques (even though the graph is never physically realised).
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In contrast there are at least two public domain parallel multilevel (re)partitioning li-
braries, JOSTLE, [31], and ParMETIS, [17]. These ‘plug and play’ solutions have the
disadvantage that the relevant mesh data must be copied and passed into subroutines
as arrays with an additional memory overhead, however, for repeated KL type opti-
misation, where a graph vertex may be swapped back and forth several times between
processors, their dedicated light-weight graph structures may be more efficient than
moving mesh nodes & elements plus all the attendant solutioncomponents (although
the final repartitioning solution must then be realised within the mesh afterwards).
They can also use recent ideas more easily (such as the multilevel strategy) and save
development time. Clearly however, the choice of which to use is very application
dependent (see for example [21, 24] for some typical costs) and possibly the best
long-term strategy would be to use a library for developmentpurposes and then, if
appropriate and the additional development time is warranted, switch to a dedicated
special-purpose repartitioner for production versions.

4 Scratch remapping

The previous sections of the paper have an implicit assumption that the mesh or com-
putational load has not changed ‘too much’ since the previous (re)partitioning and
that it therefore makes sense to repartition by diffusing load from overloaded proces-
sors to underloaded ones. In cases where the load has changeddramatically, empirical
evidence suggests that there are in fact some advantages to simply ignoring any ex-
isting distribution and partitioning from scratch. The reasons behind this are that
the diffusion of load from extremely overloaded processorscan significantly distort
the partition quality (essentially the optimisation process is unable to compensate for
large amounts of load being transferred across the system).In addition, by utilising
heuristics for mapping subdomains to processors (based on the existing placement
of data), the data migration can even be less when partitioning from scratch as com-
pared with diffusive repartitioning. This area has been investigated by Biswas &
Oliker, [3], who devised appropriate mapping heuristics and is often referred to as
scratch-remapping.

During this work, Biswas & Oliker tended to use partitionersas ‘black box’ software,
carrying out a partition from scratch and then using their remapping techniques to
assign new subdomains to processors. However, in an extension of the technique,
Schloegelet al., [26], modified the strategy to use the same remapping heuristics
on the coarsest graphs of the multilevel process (rather than the final partition) and
reported that it minimised the data migration still furtherover the ‘black-box’ version.
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5 Experimental results

The software tool written at Greenwich and which we use to illustrate some of the
issues is known as JOSTLE1. For the purposes of this paper it is run in three config-
urations, dynamic (JOSTLE-D), multilevel-dynamic (JOSTLE-MD) and multilevel-
static (JOSTLE-MS). The dynamic configuration, JOSTLE-D, reads in an existing
partition and uses a single-level algorithm as suggested inx3.3 (and fully described in
[32]) to balance and optimise the partition. The multilevel-dynamic, JOSTLE-MD,
uses the same procedure but additionally uses graph contraction (x3.4) to improve the
partition quality. The static version, JOSTLE-MS, carriesout graph contraction on
the unpartitioned graph, and a serial refinement algorithm to optimise the partition on
each of the multilevel graphs, [32].

The test meshes have been taken from an example contained in the DIME (distributed
irregular mesh environment) software package, [35]. The particular application solves
Laplace’s equation with Dirichelet boundary conditions ona square domain with an
S-shaped hole and using a triangular finite element discretisation. The problem is
repeatedly solved by Jacobi iteration, refined based on thissolution and then load-
balanced. A very similar set of meshes has previously been used for testing mesh
partitioning algorithms and details about the solver, the domain and DIME can be
found in [36]. The particular series of ten meshes and the resulting graphs that we
used range in size from the first one which contains 23,787 vertices and 35,281 edges
to the final one which contains 224,843 vertices and 336,024 edges.

5.1 Comparison results

In order to demonstrate the quality of the partitions we havecompared the method
with three popular partitioning schemes, METIS, GREEDY andMultilevel Recur-
sive Spectral Bisection (MRSB). Of the three METIS, [18], isthe most similar to
JOSTLE, employing multilevel iterative optimisation. TheGREEDY algorithm, [8],
is fast but not particularly good at minimisingjE




j. MRSB, on the other hand, is a
highly sophisticated method, good at minimisingjE




j but suffering from relatively
high runtimes, [2].

The following experiments were carried out in serial on a SunSPARC Ultra with
a 140 MHz CPU and 64 Mbytes of memory. We use three metrics to measure the
performance of the algorithms – the total weight of cut edges, jE




j, the execution
time in seconds of each algorithm,t(s), and the percentage of vertices which need
to be migrated,M . The experiments are run in serial to compare run-times but the
JOSTLE configurations and METIS can all be run in parallel and, at least in the case
of JOSTLE, achieve the same partition qualities.

For the two dynamic configurations, the initial mesh is partitioned with the static
version – JOSTLE-MS. Subsequently at each refinement, the existing partition is in-

1available fromhttp://www.gre.ac.uk/jostle
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terpolated onto the new mesh using the techniques describedin [34] (essentially, new
elements are owned by the processor which owns their parent)and the new partition
is then optimised and balanced.

P = 16 P = 32 P = 64

method jE




j t(s) M % jE




j t(s) M % jE




j t(s) M %
JOSTLE-D 942 0.51 0.54 1551 0.64 1.80 2598 0.85 3.76
JOSTLE-MD 846 2.39 4.92 1447 2.60 6.26 2410 3.02 8.82
JOSTLE-MS 879 3.96 93.96 1488 4.19 92.77 2417 4.95 99.00
METIS 913 4.83 94.36 1543 4.91 95.94 2427 5.15 97.95
MRSB 939 55.85 83.54 1577 71.42 90.01 2520 87.34 95.07
GREEDY 1816 0.77 81.62 2897 0.83 90.64 4300 1.00 94.42

Table 1: Average results over the 9 meshes

Table 1 compares the six different partitioning methods forP = 16, 32 and 64 with
the results averaged over the last 9 meshes (i.e. not including the static partitioning
results for the first mesh). The high quality partitioners – both JOSTLE multilevel
configurations, METIS and MRSB – all give similar values forjE




j with MRSB
giving marginally the worst results and JOSTLE-MD giving the best. In general,
JOSTLE-D, without the benefit of the multilevel approach, provides slightly lower
quality partitions but approximately equivalent to those of MRSB. In terms of execu-
tion time, JOSTLE-D is slightly faster than GREEDY with bothof them being much
faster than any of the multilevel algorithms. Of these multilevel algorithms, how-
ever, JOSTLE-MD is considerably faster than JOSTLE-MS and METIS, and MRSB
is by far the slowest. It is the final column which is perhaps the most telling though.
Because the static partitioners take no account of the existing distribution they re-
sult in a vast amount of data migration. The dynamic configurations, JOSTLE-D and
JOSTLE-MD, on the other hand, migrate very few of the vertices. As could be ex-
pected JOSTLE-MD migrates somewhat more than JOSTLE-D since it does a more
thorough optimisation.

Taking the results as a whole, the multilevel-dynamic configuration, JOSTLE-MD,
provides the best partitions very rapidly and with very little vertex migration. If a
slight degradation in partition quality can be tolerated however, the JOSTLE-D con-
figuration load-balances and optimises even more rapidly, faster than the GREEDY
algorithm, with even less vertex migration.

5.2 Effect of the multilevel techniques

To further compare the JOSTLE-D and JOSTLE-MD configurations, we can look
at how the results compare as the contraction threshold changes. The contraction
threshold determines at what level the graph contraction procedure terminates and
thus JOSTLE-D can be seen as the same configuration as JOSTLE-MD only with a
very large threshold (so that the contraction never starts).
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Figure 2: The effects of varying the contraction threshold on the cut-edge weight
(top) and data migrated (bottom)

Figure 2 shows the effects of varying the contraction threshold for the final mesh of
the adaptive series given a reasonably good fixed initial partition. Here the threshold
refers to the number of graph vertices per processor below which the contraction
process terminates. As can be seen (despite the noise in the results) the quality of
the partition (as measured by the cut-edge weight) gradually falls off as the threshold
increases (i.e. as the partitioner tends towards the JOSTLE-D configuration). Again,
this is to be expected as the multilevel strategy tends to give a more global quality to
the optimisation. Perhaps more interesting, however, is the way the volume of data
migrated drops off very rapidly as the threshold increases.In fact the graph is even
more exponential than shown as the intervals chosen for the threshold are multiples
of 100. This suggests that, in terms of the data migrated, it is of no great benefit to
choose a high threshold and that reasonably good performance can be achieved with
a relatively low setting. It is for this reason that we have chosen a default setting of
20 for JOSTLE-MD as it is felt that this gives a good balance between high partition
quality and low data migration.
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5.3 Parallel timings

JOSTLE-D JOSTLE-MD
V E P = 16 P = 32 P = 64 P = 16 P = 32 P = 64

31172 46309 0.06 0.06 0.07 0.35 0.26 0.25
40851 60753 0.07 0.07 0.08 0.40 0.32 0.32
53338 79415 0.06 0.08 0.11 0.97 0.30 0.32
69813 104034 0.10 0.09 0.13 0.48 0.32 0.33
88743 132329 0.13 0.10 0.09 0.49 0.40 0.38

115110 171782 0.11 0.11 0.11 0.61 0.44 0.39
146014 218014 0.16 0.13 0.13 0.75 0.56 0.55
185761 277510 0.21 0.15 0.16 0.87 0.63 0.55
224843 336024 0.19 0.18 0.14 0.95 0.67 0.59

Table 2: Parallel timings for the JOSTLE-D & JOSTLE-MD configurations

As discussed in [30], achieving high parallel performance for parallel partitioning
codes such as JOSTLE is not as easy as, say, a typical CFD or CM code. However,
Table 2 gives parallel timings in seconds for the JOSTLE-D and JOSTLE-MD config-
urations on the 512 node Cray T3E at HLRS, the High Performance Computer Centre
at the University of Stuttgart. The parallel version uses the MPI communications li-
brary although we are working on ashmem version which could be expected to show
even faster timings. These demonstrate extremely low overheads (always less than
a second) for the parallel partitioning and, since in this case each initial partition is
of high quality, confirm the conclusions in [30] that the partitioning time is strongly
dependent on the quality of the initial partition.

6 Summary

We have discussed the load-balancing issues arising for parallel mesh based compu-
tational mechanics codes for which the processor loading changes during the run. In
particular we have focussed on different ways of using a graph both to solve the load-
balancing problems and the optimisation problem, both locally and globally. We have
also briefly discussed whether repartitioning is always valid; sometimes, when there
have been very dramatic load changes, it is better to simply repartition from scratch.
We have looked at some sample illustrative results and seen that, for some adaptive
refinement situations, the graph partitioning task can be very efficiently addressed by
reoptimising the existing partition, rather than startingthe partitioning from afresh.
For the experiments reported in this paper, the dynamic procedures are much faster
than static techniques, provide partitions of similar or higher quality and, in compar-
ison, involve the migration of a fraction of the data. We havealso seen that there is a
certain amount of trade-off between partition quality and volume of data migration.

Finally, the dynamic repartitioning area is still very mucha field of active research
and in the near future we hope to address theverychallenging problems which arise in
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a dynamic multiphase problem (similar to [33] only with the additional complication
of changing processor loading).
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