
Parallel Mesh Partitioning on Distributed
Memory Systems �

C. Walshaw and M. Cross
Computing & Mathematical Sciences, University of Greenwich,

Park Row, Greenwich, London, SE10 9LS, UK.
C.Walshaw@gre.ac.uk; http://www.gre.ac.uk/˜c.walshaw

Abstract

We discuss the problem of deriving parallel mesh partitioning algorithms
for mapping unstructured meshes to parallel computers. In itself this raises a
paradox – we seek to find a high quality partition of the mesh, but to compute it
in parallel we require a partition of the mesh. In fact, we overcome this difficulty
by deriving an optimisation strategy which can find a high quality partition even
if the quality of the initial partition is very poor and then use a crude distribution
scheme for the initial partition. The basis of this strategy is to use a multilevel
approach combined with local refinement algorithms. Three such refinement
algorithms are outlined and some example results presented which show that
they can produce very high global quality partitions, very rapidly. The results
are also compared with a similar multilevel serial partitioner and shown to be
almost identical in quality. Finally we consider the impact of the initial partition
on the results and demonstrate that the final partition quality is, modulo a certain
amount of noise, independent of the initial partition.

Key words. graph partitioning, mesh partitioning, load-balancing, multilevel algo-
rithms.

1 Introduction

The need for mesh partitioning arises naturally in many computational fluid dynam-
ics (CFD) and computational mechanics (CM) applications. Meshes composed of
elements such as triangles or tetrahedra are often more suited than regularly struc-
tured grids for representing completely general geometries and variable mesh densi-
ties. Meanwhile, the modelling of complex behaviour patterns often renders problems

�Invited lecture. In: Proc. Parallel & Distributed Computing for Computational Mechanics,
Weimar, Germany, 1999

1



putational demands, or both. Such computational modelling challenges increasingly
require, therefore, the solution to be calculated as efficiently as possible in parallel on
an unstructured mesh.

1.1 Problem classification

Distributing an unstructured mesh across a parallel computer so that the computa-
tional load is evenly balanced and the parallel overhead minimised is known as mesh
partitioning. It is well known that this problem is NP-complete, e.g. [9], and in recent
years much attention has been focused on developing suitable heuristics, many based
on a graph corresponding to the communication requirements of the mesh. Typically,
such mesh partitioning problems arise in three different ways and can be characterised
as the:–

(i) static partitioning problem (the classical problem) which arises in trying to
distribute an existing mesh amongst a set of processors;

(ii) static load-balancing problem which arises from a mesh that has been gener-
ated in parallel;

(iii) dynamic load-balancing/partitioning problem which arises from either adap-
tively refined meshes, or from meshes in which the computational workload for
each mesh entity can vary with time or even from machines on which (due to
external user load) the computational resources may vary.

In the second two cases, (ii) & (iii), the initial data is a distributed mesh which may
be neither load-balanced nor optimally partitioned. One way of dealing with this is
to ship the mesh back to some host processor, run a serial partitioning algorithm on
it and redistribute. However, this is unattractive for many reasons. Firstly, an O(N)
overhead for the mesh partitioning is simply not scalable if the solver is running at
O(N=P ). Indeed the mesh may not even fit into the memory of the host machine and
thus incur enormous delays through memory paging. In addition, a partition of the
mesh (which may even be optimal) already exists, so it makes sense to reuse this as a
starting point for repartitioning, [23, 31]. In fact, not only is the load-balancing likely
to be unnecessarily computationally expensive if it fails to use this information, but
also the mesh elements will be redistributed without any reference to their previous
‘home processor’ and heavy data migration may result. Thus, because the mesh is
already distributed, it is a natural strategy to repartition it in situ.

On the other hand, it could be argued that case (i) can be best handled by a serial
partitioning algorithm (of which many exist). However, once again an O(N) start-up
cost for the mesh partitioning may not be acceptable and the same memory problems
can arise. Also, assuming that a parallel machine is available to run the solver, it
makes sense to use it for the initial partition as well.

2



With these issues in mind it seems to make sense to look for a partitioning framework
with the requirements that (apart from being as fast as possible) it:–

(a) works in parallel;

(b) can optimise an existing partition;

(c) can find a high quality partition independent of the existing partition;

(d) incorporates a load-balancing technique.

This of course raises a paradox for case (i): we seek to find a partition of a previously
unpartitioned mesh in parallel; however, to do it in parallel we must first distribute
the mesh sensibly amongst the processors and to distribute the mesh sensibly we
must first find a reasonable partition. In fact it is requirement (c) that, if met, can
answer this paradox. It is easy to distribute a mesh if there are no guarantees about
the partition quality (e.g. by assigning mesh entities to processors on a cyclic basis).
Thus if requirement (c) can be met, we can indeed solve problem (i) to high quality
by initially using a crude distribution of the mesh and then optimising it in parallel.

In this paper we shall outline a framework for a mesh partitioning strategy which can
satisfy all four requirements (a)-(d) and which thus aims to solve all three problems
(i)-(iii) using the same algorithm. In particular this paper will focus on the solution of
the static partitioning problem (i) and the requirements (a)-(c). The companion paper,
entitled ‘Dynamic Mesh Partitioning and Load-Balancing for Parallel Computational
Mechanics Codes’, [28], will focus on problem (iii) and requirement (d).

1.3 Notation and Definitions

(a) mesh (b) dual graph (c) nodal graph (d) combined graph

Figure 1: An example mesh and some possible graph representations.

In the context of mesh partitioning, it is normal to represent an unstructured mesh of
elements, nodes, faces, etc. as a graph of vertices & edges which represent units of
workload and data dependencies, respectively. In fact this is a useful abstraction to
measure partition quality, even if, as in the case of geometric partitioners (x2), the

3



ure 1(a), the graph vertices can either represent the mesh elements (the dual graph;
Figure 1(b)), mesh nodes (the nodal graph; Figure 1(c)), a combination of both (the
full or combined graph; Figure 1(d)) or some special purpose representation to model
more complicated interactions in the mesh. In each case the graph vertices repre-
sent units of workload that exist in the underlying solver and edges represent data
dependencies (e.g. the temperature in a given element will depend on (at least) its
immediate neighbouring elements).

Thus, let G = G(V;E) be an undirected graph of vertices V and edges E. We assume
that both vertices and edges can be weighted (with positive integer values) and that
jvj denotes the weight of a vertex v and similarly for edges and sets of vertices and
edges. Given that the mesh needs to be distributed to P processors, define a partition
� to be a mapping of V into P disjoint subdomains Sp such that

S
P Sp = V . The

partition � induces a subdomain graph, G�(S; L), on G with vertices Sp representing
subdomains (the sets of vertices assigned to processor p) and edges or links (Sp; Sq) 2
L if there are vertices v1; v2 2 V with (v1; v2) 2 E and v1 2 Sp and v2 2 Sq. The
weight of a subdomain is just the sum of the weights of the vertices in the subdomain,
jSpj =

P
v2Sp

jvj. We denote the set of inter-subdomain or cut edges (i.e. edges cut
by the partition) by Ec (note that the total weight of cut edges jEcj = jLj the total
weight of edges in the subdomain graph). Vertices which have an edge in Ec (i.e.
those which are adjacent to vertices in another subdomain) are referred to as border
vertices. Finally, note that we use the words subdomain and processor more or less
interchangeably: the mesh is partitioned into P subdomains; each subdomain Sp is
assigned to a processor p and each processor p owns a subdomain Sp.

The definition of the graph partitioning problem is to find a partition which evenly
balances the load (i.e. vertex weight) in each subdomain whilst minimising the com-
munications cost. To evenly balance the load, the optimal subdomain weight is given
by S := djV j=P e (where the ceiling function dxe returns the smallest integer greater
than x) and the imbalance, �, is then defined as the maximum subdomain weight di-
vided by the optimal (since the computational speed of the underlying application is
determined by the most heavily weighted processor). Note that � � 1 and perfect bal-
ance is given by � = 1. As is usual, throughout this paper the communications cost
will be estimated by jEcj, the weight of cut edges or cut-weight, although see x3.1 for
further discussion on this point. A more precise definition of the graph partitioning
problem is therefore to find � such that jSpj � S and such that jEcj is minimised.
Note that perfect balance is not always possible for graphs with non-unitary vertex
weights and in fact it is quite usual to tolerate a certain amount of imbalance (e.g. an
imbalance tolerance of 3% or � = 1:03) in order that higher quality partitions can be
found.

4



Although the aim of this paper is to focus on graph-based parallel partitioning strate-
gies, nonetheless it should be mentioned that a relatively simple solution to the prob-
lem is to utilise one of several geometric based sorting approaches. For example, if all
mesh entities are sorted by x-coordinate (and very rapid parallel sorting algorithms
exist) then the mesh can be easily partitioned by cutting it with planes orthogonal to
the x-axis and intuitively such a partition should (at least for well shaped meshes)
keep the volume of data to be communicated small. Such a strategy can also be com-
bined with a recursive bisection approach (by bisecting the region and then recursively
bisecting the resulting subregions) and this approach allows cutting planes orthogo-
nal to any of the axes (known as Recursive Coordinate Bisection, [24]) or orthogonal
to some feature of the region (such as Recursive Inertial Bisection where the cutting
planes are determined by the principle moment of inertial of the original geome-
try, [8]). Indeed, in an algorithm known as Unbalanced Recursive Bisection, Jones
& Plassmann, [16], even modified the technique to produce subdomains with good
aspect ratio by not requiring that the bisection split each domain into equal weight
portions but instead considering the resulting aspect ratios of the two subdomains.
Once again, all that these strategies require is the multiple application of a parallel
sorting algorithm rendering them very fast and simple to implement. However, the
quality of partitions is generally much poorer than that produced by graph-based al-
gorithms which consider the mesh data dependencies. The geometric approaches can
produce subdomains which are long and thin or which are split into multiple discon-
nected components. Moreover, the quality tends to get worse the more complicated
the geometry of the mesh becomes.

A more sophisticated geometric approach, developed by Miller et al., [21], uses cir-
cles or spheres rather than planes to cut the mesh. In addition mesh quality measures
(i.e. for most meshes, entities which have a data dependency are likely to be geomet-
rically close together) allow the authors to give theoretical bounds on the partition
quality. It is more complicated to implement than the cutting plane approaches but
has been parallelised in [15].

3 Parallel partition optimisation algorithms

In Section 1.2 we discussed the need for parallel algorithms which can optimise an ex-
isting partition and so in this section we discuss the problems which arise in trying to
develop such parallel iterative partition optimisation algorithms. Initially we describe
the concept of the gain & preference functions (x3.1) and then in x3.2 we discuss the
outer iterative loop of the optimisation and the difficulties arising in a parallelising the
inner vertex migration loop. Three possible solutions (detailed descriptions of which
can be found in [29]) are suggested in x3.3.

5



Key concepts for partition optimisation algorithms are the ideas of gain and prefer-
ence. Loosely, the gain, gain(v; q), of a vertex v in subdomain Sp can be calculated
for every other subdomain, Sq, q 6= p, and expresses some ‘estimate’ of how much
the partition would be ‘improved’ were v to migrate to Sq. The preference, pref(v),
is then just the preferred subdomain for v to migrate to and thus the value of q which
maximises the gain; i.e. pref(v) = q where gain(v; q) attains maxr2P gain(v; r).
Throughout the following vertices are only allowed to migrate to the subdomain to
which their preference is set.

Note that the gain is usually directly related to some cost function which measures
the quality of the partition and which we aim to minimise. Typically the cost function
used is simply the total weight of cut edges or cut-weight, jEcj, and then the gain ex-
presses the change in jEcj. More recently, there has been some debate about the most
important quantity to minimise (e.g. [11]) and, for example, in [26], Vanderstraeten
et al. demonstrate that it can be extremely effective to vary the cost function based
on a knowledge of the solver, ideas which, in [30], we have used to extend multilevel
techniques to optimise for subdomain shape or aspect ratio. Whichever cost function
is chosen, however, the idea of gains is generic.

For the purposes of this paper we shall assume that gain(v; q) just expresses the
reduction in the cut-weight, jEcj. Note that there can never be a reduction in the cut-
weight if a vertex v is transferred to a subdomain Sq to which it is not adjacent (since
there will be no cut edges between v and Sq). For this reason, we only calculate gains
for each border vertex to their adjacent subdomains and this in turn restricts the pref-
erence to such subdomains. Indeed, in a high quality partition, most border vertices
will only be adjacent to one other subdomain, Sq, and then the preference is simply
q. As a consequence processors only migrate vertices to neighbouring subdomains
along edges of the subdomain graph (see Section 1.3).

3.2 Parallelising a serial iterative optimisation algorithm

Consider the (partitioned) graph depicted in Figure 2. We can determine the gain and
preference for each border vertex as shown; for example as 2p for vertex v meaning
that it has a gain of 2 and a preference to migrate to Sp (or in other words, migrating
vertex v from subdomain Sr to subdomain Sp will reduce the cut-weight by 2). A
typical serial Kernighan-Lin (KL) type algorithm for optimising this partition (such
as described in [27]) would consist of inner and outer iterative loops. The inner
loop picks vertices (usually those with the highest gain) and migrates them from one
subdomain to another. It will not usually visit any vertex more than once during the
course of an inner loop in order to prevent cyclic behaviour and terminates when all
vertices have been visited or when there is little prospect of further improvement with
the unvisited vertices. The outer loop is simply repeated applications of the inner loop
and terminates when no migration takes place within an inner loop.

6



Sp
Sq

Sr

-2q

0q

-1r

-1r

-1r

-5r
-1r

2p
-1p

-3p -2q

-1q

2q

-2p

-2p

-3p

0r

-3r
-2r

0p

-1r

vertex v

-3q

Figure 2: An example graph with subdomains Sp, Sq & Sr.

while (optimising) {
optimising = 0;
calculate gain & preference of own border vertices;
halo update of gains & preferences;
determine which vertices to migrate (inner loop);
if (migration required) {

optimising = 1;
bulk migration of vertices;

}
global update (optimising);

}

Figure 3: The outer iterative loop.

The main problems in parallelising this procedure lie within the inner loop. Firstly,
if the graph is distributed, migrating one vertex at a time involves far too much com-
munication overhead (with most of the processors lying idle most of the time) and
for this reason we employ a bulk migration scheme where each processor finds as
many border vertices as possible to migrate and moves them once per iteration of the
outer loop. The outer loop (executed concurrently on each processor) is shown in
Figure 3. Note that it contains three communication steps, a halo update of the border
vertices gain and preference values, the migration of vertices to their neighbours and
the global update of the optimising flag (see Section 5).

The second and more difficult problem in parallelising the serial algorithm lies in
determining which vertices to migrate. In fact, the swapping of vertices between
two subdomains is an inherently non-parallel operation and hence there are some
difficulties in arriving at efficient parallel versions, [22]. Since all the processors
are acting in parallel on the vertices that they own, simply moving vertices with the

7



v1 v2 v3 v4

1 2 1

v1 v2 v3 v4

1 2 1

Figure 4: An example collision when vertices with postive gains migrated simultane-
ously result in an increase in cost.

highest gain is not a satisfactory solution as it means that adjacent vertices may be
swapped simultaneously (a non-optimal event often known as a collision) and this
may lead to an increase in the cost, particularly in graphs with weighted edges. For
example, given the situation in Figure 4 with edges weighted as shown, processor
p may wish to migrate vertex v2 to Sq (on the basis that it has a gain of 1) while
at the same time processor q wishes to migrate vertex v3 to Sp for the same reason.
Whilst the migration of either of these vertices individually will result in a reduction
in the cut-weight of 1, the migration of both at the same time will actually result in
an increase in cut-weight from 2 to 4.

Sr

Sq

Bpr

Bqr

Bpq

Iqr

Ipq

Ipr

Sp

Sq

Sr

Bpr

Brp

Brq

Bqr

BqpBpq

Sp

Sr

Sq

Sp

Sq

Sr

Sp

-2

-1

2.3

-1

0.51

-1.5

-7
-3

4.3
0

-2

1

-1.5
-1

3.7

2

-1

-3

-0.5

1 0.3

-5
-4

(a) (b)

(d)(c)

Figure 5: An example graph showing (a) subdomain faces; (b) interface regions for
independent optimisation; (c) one of each pair of faces selected of alternating optimi-
sation; and (d) relative gains as a ‘potential field’.

8



since every border vertex has a subdomain and a preference we can isolate border
regions and define subsets Bpq = fv 2 Bp : pref(v) = qg, or in other words, Bpq

is the set of vertices in the border Bp of subdomain Sp with a preference q. We will
refer to these sets as subdomain faces. Figure 5(a) shows the six subdomain faces
for the example graph in Figure 2. Each pair of subdomain faces, Bpq

S
Bqp then

forms an interface region Ipq. Note that since the preference of every border vertex is
fixed throughout each outer iteration (because it is only determined once during the
iteration) then these interfaces cannot change during that iteration. This allows us to
isolate regions of the graph which in turn helps to avoid collisions.

3.3 Outline algorithms

Full descriptions of three different algorithms for choosing, in parallel, vertices to
migrate whilst attempting to avoid collisions are given in [29]. Here, to motivate them
quickly without the somewhat intricate details, the algorithms can be summarised as:–

� Interface Optimisation. A serial optimisation algorithm is executed indepen-
dently in each of the interface regions Ipq by either one of the processors p or q.
Figure 5(b) shows the three interface regions for the example graph in Figure 2.

� Alternating Optimisation. One of each pair of subdomain faces is selected
and the owning processor chooses vertices from that face for migration (to its
opposite face). A certain amount of imbalance tolerance (see x1.3) is crucial
for this algorithm to work because the active processor is not allowed to create
serious imbalance and so if the tolerance is zero no vertices can be migrated.
In the following iteration of the outer loop the alternate face is selected. Fig-
ure 5(c) shows an example of the three selected regions in a given iteration of
the outer loop for the graph in Figure 2.

� Relative Gain Optimisation. If we think of the gain as a force or potential we
can imagine a relative gain for every border vertex according to the neighbour-
ing vertices in the opposite face. Intuitively, if the gain of the opposite vertices
is high they are likely to migrate and so v should not migrate; if the opposing
gain is low then there is little danger of a collision if v migrates and so the rel-
ative gain attempts to express this migration potential. Figure 5(d) shows the
relative gains of the border vertices for the graph in Figure 2. Each processor
then picks an ‘appropriate’ weight of vertices to migrate, highest relative gain
first. The fact that the gains of all vertices in the opposite face are taken into
account (in the relative gain calculation) helps to avoid most collisions.

In [29] these three approaches are compared (within the context of a multilevel parti-
tioner – see below x4); a summary of the results can be found in x6.1.

9



Returning to the requirements in x1.2, so far we have discussed in Section 3 algo-
rithms which (a) work in parallel and (b) can optimise an existing partition. In fact,
they also incorporate a load-balancing component (although not described here – see
[29]) and hence, in addition, satisfy requirement (d). However, the serial Kernighan-
Lin algorithm on which they are based is an inherently localised optimisation algo-
rithm. In other words, given a poor quality initial partition it can make local improve-
ments, but is unlikely to achieve a high global quality solution (because its limited
hill-climbing abilities will not always allow it to escape from local minima traps in
the solution space).

In recent years, therefore, it has been recognised that an effective way of both speed-
ing up partition optimisation algorithms and, perhaps more importantly giving them
a global perspective is to use multilevel techniques. The idea is to group vertices to-
gether to form clusters, use the clusters to define a new graph and recursively iterate
this procedure to create a series of increasingly coarse graph until the size of the coars-
est graph falls below some threshold. A fast and possibly crude initial partition of the
coarsest graph is calculated and then successively interpolated onto and optimised on
each of the graphs in reverse order. This sequence of contraction followed by repeated
interpolation/optimisation is known as the multilevel paradigm. The multilevel idea
was first proposed by Barnard & Simon, [2], as a method of speeding up spectral
bisection and improved by both Hendrickson & Leland, [14] and Bui & Jones, [4],
who generalised it to encompass local refinement algorithms.

4.1 Graph contraction

2
2

2

1

1

2
u1

u2

u3

v

(a) (b)

Figure 6: An example of graph contraction.

To create a coarser graph Gl+1(Vl+1; El+1) from Gl(Vl; El) we use a variant of the
edge contraction algorithm proposed by Hendrickson & Leland, [13]. The idea is to
find a maximal independent subset of graph edges (or matching of graph vertices) and
then collapse them. The set is independent if no two edges in the set are incident on
the same vertex (so no two edges in the set are adjacent), and maximal if no more
edges can be added to the set without breaking the independence criterion. Having
found such a set, each selected edge is collapsed and the vertices, u1; u2 2 Vl say, at

10



j j j j j j

Figure 6(a) shows an example of a matching with the thicker lines showing those
edges that have been selected for collapse and the dashed lines show the resulting
pairs of vertices which will be merged to form a new vertex in the coarser graph.
Figure 6(b) show the resulting coarsened graph with edge and vertex weights marked
(assuming unit weights in the original graph). Edges which have not been collapsed
are inherited by the child graph, Gl+1, and, where they become duplicated, are merged
with their weight summed. This occurs if, for example, the edges (u1; u3) and (u2; u3)
exist when edge (u1; u2) is collapsed. Because of the inheritance properties of this
algorithm, it is easy to see that the total graph weight remains the same, jV l+1j = jVlj,
and the total edge weight is reduced by an amount equal to the weight of the collapsed
edges. A full description of the parallel implementation of the matching techniques
and the construction of the coarsened graph can be found in [31].

4.2 The initial partition & the global graph

The normal practice of the serial multilevel strategy is to construct the series of graphs
until the number of vertices in the coarsest graph is smaller than some threshold and
then carry out an initial partition. In parallel, the graph is already distributed and
so an initial partition already exists. Here, following the idea of Gupta, [10], we
continue coarsening until the number of vertices in the coarsest graph is the same as
the number of subdomains, P , and this gives us automatically an initial partition with
one vertex per subdomain. However, although contraction down to a single vertex
per subdomain is rapid in serial (since at the coarsest levels the graphs become very
small indeed), in parallel it can be relatively inefficient since each contraction involves
several communication phases. For this reason, once the size of the graph falls below
a given threshold, each processor broadcasts its portion so that every processor has
a copy of the entire graph (which we refer to as the global graph). The contraction
and interpolation/optimisation process can then continue entirely in serial with every
processor duplicating the work. The serial algorithms used are described in full in
[27], although essentially the techniques are very similar to those discussed here.
The optimum threshold at which to construct the global graph is of course machine
dependent (based on the ratio of the cost of communication and computation) but
the default setting (which can be reset at run-time) for the results in this paper is 20
vertices per processor.

5 Parallel implementation

The software tool written at Greenwich to implement the optimisation techniques
outlined here is known as JOSTLE and is freely available for academic and research
purposes under a licensing agreement1. It is written in C for distributed memory par-

1available from http://www.gre.ac.uk/jostle

11



library MPI (although of course it will also run efficiently on shared memory archi-
tectures where MPI is installed). We work in the owner-computes single-program
multiple-data paradigm so that the vertices in each subdomain, Sp, are assigned to
processor p, which also holds a one deep halo or read-only copy of vertices adjacent
to Sp. We classify parallel operations as local, neighbourhood or global; local oper-
ations take place entirely on processor, neighbourhood operations involve communi-
cation with processors neighbouring in the subdomain graph and global operations
involve all of the processor communicating together. Here we employ three commu-
nication operations: global reduction, halo updates and vertex migration. Reduction
is a global operation on scalars (or short vectors) such as finding a maximum across
all the processors. Halo updating is a neighbourhood operation and involves each pro-
cessor, p, informing its neighbours of certain values assigned to its border vertices,
Bp.

v1 v2 v4 v5

v3
Sp

Sq

Sr

v1 v2 v4 v5

v3
Sp

Sq

Sr

Figure 7: An example of vertex migration.

Vertex migration, the transfer of vertices from one distributed memory processor to
another, is also a neighbourhood operation but is a non-trivial task to implement ef-
ficiently, [12], particularly matching up the pointer lists of vertices & edges and en-
suring consistency of halo information across the parallel system. Space limitations
prevent a full description but we give an overview of the technique which has been
implemented as a procedure with two communication subphases. In the first, vertices
marked for migration are packed into buffers together with any additional vertices
and edges required to complete the halo on the destination processor and not already
known to exist there. Consider for example the graph shown in Figure 7. If vertex
v2 migrates from Sp to Sq then a copy of vertex v1 must also be sent to complete the
halo on q, but a copy of v3 need not be sent because it already exists in the halo of Sq.
Vertices which are migrating also initiate messages to neighbouring processors which
are not their destination; e.g. if v4 migrates to Sr then processor p must be informed of
this move. Having sent all such messages each processor unpacks the corresponding
received messages and creates the new vertices and edges as instructed. The sec-
ond communication phase is required (unfortunately) to fully update the ownership
of halo vertices. In the example, when v4 migrates to Sr it takes a copy of v2 with
it as a halo vertex. However, in the meantime v2 has migrated to Sq and so q must
send another message to r to update this information. Finally halo vertices which are
no longer required are deleted; e.g. prior to the migration v5 is a halo vertex of Sq,
afterwards it is not required.

12



and vertex migration require some scheme for each processor to find local copy of a
vertex. A global array of pointers (of length V) would render the memory unscal-
able, so each processor maintains an array, of scalable size O(N=P ), of binary tree
structures which can be rapidly searched. Thus, given a global index, a processor can
locate the appropriate binary tree in the array (using a modulus function on the global
index) and search it for a pointer to the vertex. The use of such binary trees means
that pointers to vertices can be easily added or deleted as migration occurs; the use of
an array of them means that none of the trees should become too deep.

5.1 Related work

Whilst there has been a considerable amount of research into mesh partitioning re-
cently, little of it seems to be specifically on the parallel solution of the graph parti-
tioning problem. Nonetheless, a number of parallel methods do exist. The multilevel
recursive spectral bisection algorithm, [2], has been parallelised [1]; this greatly im-
proves the performance but the algorithm is still relatively slow (because of the need
to find eigenvectors of a graph and the resulting requirement for expensive floating
point linear algebra). A similar problem arises for HARP, [25], a parallel spectral
inertia bisection algorithm, although once the eigenvectors are calculated initially
(and possibly off-line) the algorithm can be repeatedly used for dynamically load-
balancing graphs where the graph weights change (providing the edge topology re-
mains fixed). A number of parallel single-level algorithms have also been developed,
such as [3, 5, 6, 20], however without the global view provided by the multilevel
techniques it is unclear whether such methods can achieve the highest quality parti-
tions and they are often more suited to incremental dynamic partitioning and load-
balancing where the existing partition may already be of high quality.

Most closely related to the work presented here is ParMETIS, the parallel graph parti-
tioner of Karypis & Kumar, [17, 23]. This uses an alternating tolerance-based optimi-
sation algorithm similar to the one suggested in x3.3 (although we have additionally
enhanced the algorithm by incorporating load-balancing directly into the optimisa-
tion process). Perhaps the major difference in strategy though is the approach to
vertex migration. ParMETIS uses virtual migration and so the graph distribution is
fixed throughout the optimisation and vertices which migrate from one subdomain
to another simply have their subdomain field changed and thus a processor may own
subsets of several (or even all) subdomains. In the algorithms described above, how-
ever, each subdomain is mapped to a single processor and vertices which migrate
from one subdomain to another are actually copied and recreated on the destination
processor.

13



The algorithms have been tested on a Cray T3E-900/512 at the University of Stuttgart.
For each test the mesh is read in parallel and distributed contiguously to the processors
(i.e. processor 0 is given the first jV j=P vertices, processor 1 the next jV j=P , etc.).
This means the initial partition can be of extremely poor quality (although see x6.3
for results on the impact of the initial distribution). The algorithm is allowed a 5%
final imbalance tolerance (set at run-time by the user).

mesh jV j jEj mesh type
4elt 15606 45878 2D nodal graph
t60k-n 30570 90575 2D nodal graph
t60k-d 60005 89440 2D dual graph
dime20 224843 336024 2D dual graph
t60k-f 90575 360030 2D full graph
fe-rotor 99617 662431 3D nodal graph
598a 110971 741934 3D nodal graph
mesh100 103081 200976 3D dual graph
cyl3 232362 457853 3D dual graph
fe-ocean 143437 409593 3D semi-structured graph

Table 1: Test meshes.

The test meshes have been chosen to be a representative sample of medium to large
scale real-life problems and include both 2D and 3D examples of nodal graphs (where
the mesh nodes are partitioned) and dual graphs (where the mesh elements are parti-
tioned). Table 1 gives a list of the meshes and their sizes; since none of the graphs are
weighted the number of vertices in V is the same as the total vertex weight jV j and
similarly for the edges E. Note that t60k-f is a combination of the t60k nodal graph
and t60k dual graph, with the addition of edges between vertices from t60k-d which
represent mesh elements and the vertices from t60k-n which represent their nodes.

6.1 Parallel results

The results of the parallel multilevel partitioning using the interface optimisation al-
gorithm outlined in x3.3 are shown in Table 2 for four values of P (the number of
processors/subdomains). The table shows the total weight of cut edges or cut-weight,
C, and the parallel run-time in seconds, t(s). In themselves the cut-weight results are
not very illuminating but the following sections demonstrate their quality relative to a
serial multilevel partitioner and the impact that the initial distribution has on the final
partition. We do not show the final imbalance in the partition, but on average it was
4.7% and never exceeded the allowed imbalance of 5%.

Achieving high parallel performance for parallel partitioning codes such as JOSTLE
is not as easy as, say, a typical CFD or CM code. For a start the algorithms use only

14



mesh C t(s) C t(s) C t(s) C t(s)

4elt 1070 0.49 1676 0.67 2728 0.84 4324 1.13
t60k-n 1753 0.87 2930 0.82 4378 0.79 6592 1.34
t60k-d 925 0.54 1573 0.52 2381 0.70 3525 1.31
dime20 1305 1.49 2256 1.17 3632 1.26 5374 1.97
t60k-f 5190 3.46 7931 3.33 12118 2.87 18200 3.20
fe-rotor 22789 8.36 36345 7.20 50580 6.58 70933 8.04
598a 27009 17.17 42172 12.63 59866 10.38 82292 10.54
mesh100 4662 2.85 6795 2.41 9993 2.61 13929 3.70
cyl3 9976 12.32 14639 7.98 20211 6.34 27628 6.77
fe-ocean 8546 6.52 14192 4.62 21845 3.60 31420 4.29

Table 2: The results of the parallel interface algorithm showing the cut-weight C and
parallel run-time in seconds t(s).

integer operations and so there are no MFlops2 to ‘hide behind’. In addition, most of
the work is carried out on the subdomain boundaries and so very little of the actual
graph is used. Also the partitioner itself may not necessarily be well load-balanced
and the communications cost may dominate on the coarsest reduced graphs since
at this stage there are very few vertices per processor. On the other hand, as was
explained in x1.1, partitioning on the host may be impossible or at least much more
expensive and if the cost of partitioning is regarded (as it should be) as a parallel
overhead, it is usually extremely inexpensive relative to the overall solution time of
the problem. With that in mind, the figures show good timings for this sort of code and
more importantly, very low overheads (always less than 20 seconds) for the parallel
partitioning. Indeed some of them could be substantially better if the mesh numbering
bore some relation to locality (see below x6.3). The timings generally decrease as P
increases although this is not so true on the smaller meshes and not for P = 128. We
believe that this is because there is so little computational work that these figures just
show parallel communication overhead.

We do not show here the results for the alternating and relative gain optimisation al-
gorithms, but a discussion of their relative merits can be found in [29]. To summarise
those results, the interface optimisation algorithm (see x3.3) generally produces very
high quality partitions, very rapidly and provides the best results in terms of cut-
weight. However, it does not completely remove imbalance in the final partition and
a hybrid algorithm, using relative gain (see x3.3) with a final clean-up step of inter-
face optimisation, produces very similar results (about 2.5% worse) equally rapidly
and removes most of the imbalance. This suggests that the hybrid approach is an
effective solution to the parallel partition optimisation problem and this is especially
true in the light of recent work which suggests that the scalability of a domain decom-
position based solver can be seriously affected by even small imbalances in processor
loading, [18, 19]. The results are also compared with another state-of-the-art parti-
tioning tool, ParMETIS, [17], and shown to be of higher quality (about 11% better)
although taking longer to compute.

2Mega-Flops or millions of floating point operations are a common measure of performance

15



P = 16 P = 32 P = 64 P = 128

mesh CS CS=CP CS CS=CP CS CS=CP CS CS=CP
4elt 993 0.93 1675 1.00 2707 0.99 4281 0.99
t60k-n 1817 1.04 2820 0.96 4379 1.00 6416 0.97
t60k-d 952 1.03 1560 0.99 2412 1.01 3581 1.02
dime20 1257 0.96 2400 1.06 3665 1.01 5548 1.03
t60k-f 4731 0.91 7780 0.98 12020 0.99 17970 0.99
fe-rotor 22050 0.97 36050 0.99 52764 1.04 72779 1.03
598a 28198 1.04 42248 1.00 60775 1.02 83385 1.01
mesh100 4420 0.95 7016 1.03 10478 1.05 14529 1.04
cyl3 10543 1.06 14915 1.02 21014 1.04 28106 1.02
fe-ocean 8904 1.04 14370 1.01 22867 1.05 32241 1.03
Average 0.99 1.01 1.02 1.01

Table 3: A comparison of cut-weight results for serial (S) and parallel (P) partitioners.

Table 3 shows a comparison of the cut-weight C between the serial (S) version of
JOSTLE (described in [27]) and the parallel (P) partitioning results shown in Table 2.
For each value of P , the first column shows the value of C for serial partitioning,
CS, while the second column shows the ratio of C for serial partitioning over that
for parallel partitioning, CS=CP . Thus the value 1.04 (t60k-n, P = 16) means that
the serial partitioning resulted in a cut-weight 1.04 times as large (or 4% larger) than
that of the parallel partitioning. As can be seen, the serial results are very similar to
the parallel ones, with a maximum of 9% difference (t60k-f, P = 16). The average
difference in the quality ranges between 1% better and 2% worse over the different
values of P with an overall average of just 0.77% depreciation for the serial results.
This demonstrates that the parallel partitioner produces results of more or less the
same quality as the serial partitioner, an impressive result considering the fact that the
serial version has access to all of the data whilst a processor running the parallel code
can only access its local portion of the mesh.

6.3 The impact of the initial distribution

We have suggested the requirement in x1.2 that the partitioner should be able to find
a high quality partition independent of the existing partition. It is of interest to ask,
therefore, whether this is possible and indeed what impact the initial distribution has
on the outcome of the final partition. In Table 4 we compare four different initial dis-
tribution schemes for the two example meshes chosen from the test set in Table 1. The
cyclic distribution assigns vertex i to processor p if i modulo P = p, i.e. vertex num-
bers 0; P; 2P; : : : are given to processor 0, vertices 1; P + 1; 2P + 1; : : : to processor
1, etc. The random distribution assigns them randomly (using the standard C library
random number generator drand48 which has a uniform distribution over the unit
interval). The block distribution is the one used for the results in Table 2 and assigns
the first V=P vertices to processor 0, etc., while the greedy algorithm is a (serial)

16



mesh distrib. C0 C t(s) C0 C t(s) C0 C t(s)

t60k-n cyclic 86929 1821 2.08 88210 2863 1.51 89586 4476 1.45
t60k-n random 84843 1737 2.06 87722 2863 1.55 89103 4385 1.43
t60k-n block 6639 1753 0.88 7998 2930 0.80 10536 4378 0.80
t60k-n greedy 2248 1758 0.44 3511 2908 0.48 5336 4476 0.61
cyl3 cyclic 432639 10299 14.71 445449 14796 9.07 451608 20564 6.86
cyl3 random 429109 10195 14.87 443501 14508 9.33 450678 20606 6.83
cyl3 block 351188 9976 12.31 375349 14639 7.91 388139 20211 6.34
cyl3 greedy 20014 10398 3.49 27858 14984 2.93 37442 20911 3.47

Table 4: Results showing the effect of different initial distributions (with cut-weight
C0) on the final partition quality (cut-weight C) and the parallel partitioning time, t.

graph-based implementation of Farhat’s algorithm, [7]. Note that the cyclic, random
and block distributions are all parallel input algorithms in the sense that the mesh can
be read in from file in parallel, while the greedy algorithm requires the execution of
a separate serial partitioner. The results show for each value of P the cut-weight of
the initial distribution, C0, the cut-weight of the final partition, C and the partitioning
time in seconds, t(s).

The results clearly demonstrate two things. Firstly, modulo a certain amount of
‘noise’ (inevitable for discrete optimisation algorithms such as these) with a max-
imum variation of 4.8% in the final cut-weight, the quality of the final partition is
independent of the quality of the initial distribution. Thus the partitioning techniques
are clearly seen to provide global rather than just local optimisation. Secondly, how-
ever, the partitioning time is strongly dependent on the initial distribution, with the
poorly distributed results taking much longer to partition.

Regarding the initial distribution schemes, note that the block distribution can lead
to a wide variation in initial cut-weight dependent on whether the mesh has been
numbered with some form of structure (i.e. as in t60k-n, vertices which are close in
index have a good chance of being neighbours in the graph) or not (i.e. as in cyl3,
where no such relation appears to exist). Finally note that the cyclic scheme almost
always (and always in Table 4) produces an initial cut-weight worse than the random
distribution for precisely the opposite reason; if such a relation exists in the numbering
it is destroyed by placing contiguous vertices on different processors.

7 Summary

We have discuss the problem of deriving and implementing parallel mesh partition-
ing algorithms for mapping unstructured meshes to parallel computers. We have also
addressed the paradox therein, that to find a high quality partition of the mesh in
parallel we require a partition of the mesh, and overcome it by using an optimisa-
tion strategy which can find a high quality partition even if the quality of the initial
distribution is very poor. The basis of this strategy is to use a multilevel approach

17



ment algorithms (x3.3). Some example results are presented in x6 which show that
the strategy can produce very high global quality partitions, very rapidly. The results
are also compared with a similar multilevel serial partitioner in x6.2 and shown to
be almost identical in quality. Finally, in x6.3, we have considered the impact of the
initial distribution and demonstrated the global quality of the results and that the final
partition quality is, modulo a certain amount of noise, independent of the initial dis-
tribution. However, as might be expected, the initial distribution strongly affects the
partitioning time.

Much work continues in the field of mesh partitioning, for example to optimise differ-
ent cost functions and it is of interest to ask how generic are the techniques described
here. In the near future we hope to provide further results using the algorithms to min-
imise alternative objective functions such as subdomain aspect ratio (a parallel for-
mulation of the ideas in [30]) or machine mapping (rather than just cut-edge weight).

References

[1] S. T. Barnard. PMRSB: Parallel Multilevel Recursive Spectral Bisection. Cray
Research Inc., 1996.

[2] S. T. Barnard and H. D. Simon. A Fast Multilevel Implementation of Recur-
sive Spectral Bisection for Partitioning Unstructured Problems. Concurrency:
Practice & Experience, 6(2):101–117, 1994.

[3] P. Buch, J. Sanghavi, and A. Sangiovanni-Vincentelli. A Parallel Graph Parti-
tioner on a Distributed Memory Multiprocessor. In Proc. 5th IEEE Symp. on
Frontiers of Massively Parallel Computation, pages 360–366. IEEE, 1995.

[4] T. N. Bui and C. Jones. A Heuristic for Reducing Fill-In in Sparse Matrix
Factorization. In R. F. Sincovec et al., editor, Parallel Processing for Scientific
Computing, pages 445–452. SIAM, 1993.

[5] R. Diekmann, B. Meyer, and B. Monien. Parallel Decomposition of Unstruc-
tured FEM-Meshes. Concurrency: Practice & Experience, 10(1):53–72, 1998.

[6] P. Diniz, S. Plimpton, B. Hendrickson, and R. Leland. Parallel Algorithms for
Dynamically Partitioning Unstructured Grids. In D. Bailey et al., editor, Parallel
Processing for Scientific Computing, pages 615–620. SIAM, 1995.

[7] C. Farhat. A Simple and Efficient Automatic FEM Domain Decomposer. Com-
put. & Structures, 28(5):579–602, 1988.

[8] C. Farhat and M. Lesoinne. Automatic Partitioning of Unstructured Meshes
for the Parallel Solution of Problems in Computational Mechanics. Internat. J.
Numer. Methods Engng., 36:745–764, 1993.

18



problems. Theoret. Comput. Sci., 1:237–267, 1976.

[10] A. Gupta. Fast and effective algorithms for graph partitioning and sparse matrix
reordering. IBM Journal of Research and Development, 41(1/2):171–183, 1996.

[11] B. Hendrickson. Graph Partitioning and Parallel Solvers: Has the Emperor No
Clothes? In A. Ferreira and J. Rolim, editors, Proc. Irregular ’98: Parallel
Algorithms for Irregularly Structured Problems, volume 1457 of LNCS, pages
218–225. Springer, 1998.

[12] B. Hendrickson and K. Devine. Dynamic Load Balancing in Computational
Mechanics. (to appear in Comput. Meth. Appl. Mech. Engrg.).

[13] B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs.
Tech. Rep. SAND 93-1301, Sandia National Labs, Albuquerque, NM, 1993.

[14] B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs.
In S. Karin, editor, Proc. Supercomputing ’95, New York, NY 10036, 1995.
ACM Press.

[15] Y. C. Hu, S.-H. Teng, and S. Lennart-Johnsson. A Data-Parallel Implementation
of the Geometric Partitioning Algorithm. In M. Heath et al., editor, Parallel
Processing for Scientific Computing. SIAM, Philadelphia, 1997.

[16] M. T. Jones and P. E. Plassmann. Parallel Algorithms for the Adaptive Refine-
ment and Partitioning of Unstructured Meshes. In Proc. Scalable High Perfor-
mance Comput. Conf. ’94, pages 478–485. IEEE, 1994.

[17] G. Karypis and V. Kumar. A Coarse-Grain Parallel Formulation of Multilevel
k-way Graph Partitioning Algorithm. In M. Heath et al., editor, Parallel Pro-
cessing for Scientific Computing. SIAM, Philadelphia, 1997.

[18] D. E. Keyes. How Scalable is Domain Decomposition in Practice? (submitted
to Proc. Int. Conf. Domain Decomposition Methods, Greenwich 1998).

[19] D. E. Keyes, D. K. Kaushik, and B. F. Smith. Prospects for CFD on Petaflops
Systems. In M. Hafez and K. Oshima, editors, CFD Review 1998, pages 1079–
1096, Singapore, 1998. World Scientific.

[20] R. Lohner, R. Ramamurti, and D. Martin. A Parallelizable Load Balancing Al-
gorithm. AIAA-93-0061, American Institute of Aeronautics and Astronautics,
Washington, DC, 1993.

[21] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Geometric Separators
for Finite-Element Meshes. SIAM J. Sci. Comput., 19(2):364–386, 1998.

[22] J. Savage and M. Wloka. Parallelism in Graph Partitioning. J. Par. Dist. Com-
put., 13:257–272, 1991.

19



Repartitioning of Adaptive Meshes. J. Par. Dist. Comput., 47(2):109–124, 1997.

[24] H. D. Simon. Partitioning of Unstructured Problems for Parallel Processing.
Computing Systems Engrg., 2:135–148, 1991.

[25] H. D. Simon, A. Sohn, and R. Biswas. HARP: A Dynamic Spectral Partitioner.
J. Par. Dist. Comput., 50(1/2):83–103, 1998.

[26] D. Vanderstraeten and R. Keunings. Optimized Partitioning of Unstructured
Computational Grids. Internat. J. Numer. Methods Engng., 38:433–450, 1995.

[27] C. Walshaw and M. Cross. Mesh Partitioning: a Multilevel Balancing and Re-
finement Algorithm. Accepted by SIAM J. Sci. Comput. (originally published
as Univ. Greenwich Tech. Rep. 98/IM/35), 1998.

[28] C. Walshaw and M. Cross. Dynamic Mesh Partitioning and Load-Balancing for
Parallel Computational Mechanics Codes. In B. H. V. Topping, editor, Parallel
& Distributed Processing for Computational Mechanics. Saxe-Coburg Publica-
tions, Edinburgh, 1999. (Proc. Euro-CM-Par, Weimar, Germany, 1999).

[29] C. Walshaw and M. Cross. Parallel Optimisation Algorithms for Multilevel
Mesh Partitioning. To appear in Parallel Comput. (originally published as Univ.
Greenwich Tech. Rep. 99/IM/44), 1999.

[30] C. Walshaw, M. Cross, R. Diekmann, and F. Schlimbach. Multilevel Mesh Par-
titioning for Optimising Domain Shape. To appear in Int. J. High Performance
Comput. Appl. (originally published as Univ. Greenwich Tech. Rep. 98/IM/38),
1998.

[31] C. Walshaw, M. Cross, and M. Everett. Parallel Dynamic Graph Partitioning for
Adaptive Unstructured Meshes. J. Par. Dist. Comput., 47(2):102–108, 1997.

20


