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Abstract which, starting with the coarsest graph, refines the partition at
) ) ~_ each graph level. To date these algorithms have been used al-
Multilevel algorithms are a successful class of optimisation mqost exclusively to minimise the cut-edge weight, a cost which
techniques which address the mesh partitioning problem forgpnroximates the total communications volume in the underly-
mapping meshes onto parallel computers. They usually comy,qg solver. This is an important goal in any parallel application,
bine a graph contraction algorithm together with a local opti- i order to minimise the communications overhead, however,
misation method wh|ph refines the partition at each graph Ie_velit has been shown, [24], that for certain classes of solution al-
To date these algorithms have been used almost exclusivelyqyithm, the convergence of the solver is actually heavily influ-
to minimise the cut-edge weight in the graph with the aim of gnced by the shape or aspect ratio (AR) of the subdomains and
minimising the parallel communication overhead. However it j this case the overall solution time can be more dependent on
has been shown that for certain classes of problem, the conge number of iterations than on the parallel communications
vergence of the underlying solution glgonthm is strong_ly in- gverhead, [23]. In this paper therefore, we modify the multi-
fluenced by the shape or aspect ratio of the subdomains. Ifeyel algorithms (the matching and local optimisation) in order
this paper therefore, we modify the multilevel algorithms in 5 gptimise a cost function based on AR. We also abstract the
order to optimise a cost function based on aspect ratio. Sevprocess of modification in order to suggest how the multilevel
eral variants of the algorithms are tested and shown to prOV'd%trategy can be modified into a generic technique which can

excellent results. optimise arbitrary cost functions.
1 Introduction 1.1 Domain decomposition preconditionersand
aspect ratio

The need for mesh partitioning arises naturally in many finite

element (FE) and finite volume (FV) applications. Meshes To motivate the need for aspect ratio optimisation we consider
composed of elements such as triangles or tetrahedra are ofhe requirements of a class of solution techniques. A natu-
ten better suited than regularly structured grids for representral parallel solution strategy for the underlying problem is to
ing completely general geometries and resolving wide varia-use an iterative solver such as the conjugate gradient (CG) al-
tions in behaviour via variable mesh densities. Meanwhile, gorithm together with domain decomposition (DD) precondi-
the modelling of complex behaviour patterns means that thetioning, e.g. [3]. DD methods take advantage of the partition of
problems are often too large to fit onto serial computers, eitheithe mesh into subdomains by imposing artificial boundary con-
because of memory limitations or computational demands, orditions on the subdomain boundaries and solving the original
both. Distributing the mesh across a parallel computer so thaproblem on these subdomains, [5]. The subdomain solutions
the computational load is evenly balanced and the data localare independent of each other, and thus can be determined in
ity maximised is known as mesh patrtitioning. It is well known parallel without any communication between processors. In
that this problem is NP-complete, so in recent years much ata second step, an ‘interface’ problem is solved on the inner
tention has been focused on developing suitable heuristics, andoundaries which depends on the jump of the subdomain so-
some powerful methods, many based on a graph corresponddtions over the boundaries. This interface problem gives new
ing to the communication requirements of the mesh, have beewonditions on the inner boundaries for the next step of subdo-
devised, e.g. [15]. main solution. Adding the results of the third step to the first

] . gives the new conjugate search direction in the CG algorithm.
A particularly popular and successful class of algorithms

which address this mesh partitioning problem are known asThe time needed by such a preconditioned CG solver is de-
multilevel algorithms. They usually combine a graph contrac- termined by two factors, the maximum time needed by any of
tion algorithm which creates a series of progressively smallerthe subdomain solutions and the number of iterations of the
and coarser graphs together with a local optimisation methodjlobal CG. Both are at least partially determined by the shape



of the subdomains. Whilst an algorithm such as the multigridload, the optimal subdomain weight is given®y= [|V'|/P]
method as the solver on the subdomains is relatively robus{where the ceiling functiorjz] returns the smallest integer
against shape, the number of global iterations are heavily in=> x) and theimbalanceis then defined as the maximum sub-
fluenced by the AR of subdomains, [23]. Essentially, the sub-domain weight divided by the optimal (since the computational
domains can be viewed as elements of the interface problemspeed of the underlying application is determined by the most
[10, 11], and just as with the normal finite element method, heavily weighted processor).

where the condition of the matrix system is determined by the o o . i
AR of elements, the condition of the preconditioning matrix is The definition of the mesh-partitioning problem then is to find
here dependent on the AR of subdomains. a partition which evenly balances the load or vertex weight

in each subdomain whilst minimising some cost function
Typically this cost function is simply the total weight of cut
edges, but in this paper we describe a cost function based on
AR. A more precise definition of the mesh-partitioning prob-
lem is therefore to fina such thatS, < S and such thaf is

The idea of optimising AR in order to maintain scalability in  minimised.

the solver was first developed by Farlettal, [10, 11]. This

was backed up by Vanderstraetetral. who showed that par-

titioning for cut-edge weight was not necessarily the most ap-2.2 The aspect ratio and cost function
propriate optimisation for every solver [23, 24]. However the

field of mesh partitioning has changed somewhat since thisWe seek to modify the methods by optimising the partition on
work was carried out and although other more recent work ex-

. . : .7 =" the basis of AR rather than cut-edge weight. In order to do

ISts Wh.'Ch takes AR mtp accqunt, €.g. [7,8,22], our aim in this this it is necessary to define a costgfunctioi which we seek to

paper is to extend the |_d_ea_s in the light of recent developmentT@,ninimise and a logical choice would beax, AR(S,), where

in multilevel mesh partitioning technology. AR(S)) is the AR of the subdomaifi,. However maximum
functions are notoriously difficult to optimise (indeed it is for

] this reason that most mesh partitioning algorithms attempt to

1.3 Overview minimise the total cut-edge weight rather than the maximum

between any two subdomains) and so instead we choose to

Below, in Section 2, we introduce the mesh partitioning prob- Mminimise the average AR

1.2 Reated work

lem and establish some terminology. We then discuss the mesh AR(S,)
partitioning problem as applied to AR optimisation and de- T =) Tp (1)
scribe how the graph needs to be modified to carry this out. »

Next, in Section 3, we describe the multilevel paradigm and
present and compare three possible matching algorithms whiclThere are several definitions of AR, however, and for example,
take account of AR. In Section 4 we then outline a Kernighan-for a given polygon S, a typical definition, [21], is the ratio of
Lin (KL), [18], type iterative local optimisation algorithm and  the largest circle which can be contained entirely within S (in-
describe four possible modifications which aim to optimise scribed circle) to the smallest circle which entirely contains S
AR. Finally in Section 5 we compare the results with a cut (circumcircle). However these circles are not easy to calculate
edge partitioner, suggest how the multilevel strategy can befor arbitrary polygons and in an optimisation code where ARs
modified into a generic technique and present some ideas fomay need to be calculated very frequently, we do not believe
further investigation. this to be a practical metric. It may also fail to express cer-
tain irregularities of shape. A careful discussion of the relative
merits of different ways of measuring AR may be found in [22]
TR and for the purposes of this paper we follow the ideas therein
2 Mesh partltlonl ng and define the AR of a given shape by measuring the ratio of
its perimeter length (surface area in 3d) over that of some ideal

2.1 Themesh partitioning problem shape with identical area (volume in 3d).

Suppose then that in 2d the ideal shape is chosen to be a square.

To define the mesh partitioning problem, &t= G(V, E) be Given a polygors with areaf2S and perimeter lengthS, the

an undirected graph of verticds, with edgesE which rep- ideal perimeter length (the perimeter length of a square with
resent the data dependencies in the mesh. For the purposeseass) is 4//QS and so the AR is defined a@S/4v/QS.

of this paper we assume that each graph vertex represents Alternatively, if the ideal shape is chosen to be a circle then
mesh element and that graph edges arise from elements théte same argument gives the ARG /2v/72S. In fact, given

are adjacent in the sense of sharing an element face. We ashe definition of the cost function (1) it can be seen that these
sume that both vertices and edges can be weighted (with pogwo definitions will produce the same optimisation problem
itive integer values) and that| denotes the weight of a ver- (and hence the same results) with the cost just modified by a
tex v and similarly for edges and sets of vertices and edgesconstant’’ (whereC = 1/4 for the square antl/2,/7 for cir-
Given that the mesh needs to be distributed’tprocessors, cle). These definitions of AR are easily extendible to 3d and
define a partitionr to be a mapping oV into P disjoint sub-  given a polyhedrors with volume2S and surface areés,
domainsS, such that J, S, = V. To evenly balance the the AR can be calculated &95/(Q5)%/?, whereC = 1/4 if
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Figure 1: Left to right: a simple mesh (a), its dual (b), the same métshcombined elements (c) and its dual (d)

the cube is chosen as the optimal shape@nd 1/7'/362/> 2.3 Modifying the graph
for the sphere. Note that henceforth, in order to talk in gen-
eral terms for both 2d & 3d, given an obje§twe shall use
the terms9S or surfacefor the surface area (3d) or perimeter
length (2d) of the object andS or volumefor the volume (3d)

or area (2d).

To use these cost functions in a graph-partitioning context,
we must add some additional qualities to the graph. Figure 1
shows a very simple mesh (1a) and its dual graph (1b). Each
element of the mesh corresponds to a vertex in the graph.
The vertices of the graph can be weighted as is usual (see
e8&.1) but in addition, vertices store the volume and total sur-
face of their corresponding element (ef@gv; = Qe; and
Ovy = Oey). We also weight the edges of the graph with
the size of the surface they correspond to. Thus, in Figure 1,
1 ds, if D(b,c) refers to the distance between poihtandc, then
Liempae = = Z oo L ) the weight of edgé€w; ,v2) is set toD(b, ¢). In this way, for
C 4 (08,5 . : : .
verticesv; corresponding to elements which have no exterior
) i surface, the sum of their edge weights is equivalent to their sur-
whereC' = 73 (2d) "= P andd (= 2 or 3) is the dimension of  face Pv; = Y, |(vs,v;)|). Thus for vertexs, dvs = des =
the mesh. We refer to this cost functionlgs,,..or 'y because  D(b,¢)+D(c,e)+D(e,b) = |(va, v1)|+|(v2, vs)|+]|(v2,v3)].
of the way it tries to match shapes to chosen templates.

Of the above definitions of AR we choose to use the cir-
cle/sphere based formulae since they guarantee that the asp
ratios of any shape are 1. This gives a convenient formula
for the cost function of:

When it comes to combining elements together, either into
In fact, it will turn out (see for examplg3.2) that even this  subdomains, or for the multilevel matchinggj these prop-
function may be too complex for certain optimisation needs erties, volume and surface can be easily combined. Thus in
and we can define a simpler one by assuming that all subdoFigure 1(c) wheré’, = e; +e4, Fy = e3+es andEs = e3 we
mains have approximately the same volufig, ~ QM/P, see that volumes can be directly summed, for exafple =
whereQQM is the total volume of the mesh. This assumption QF;, = Qe; + Qes = Qu; + Quy4, as can edge weights, e.g.
may not necessarily be true, but it is likely to be true locally |(V;,V5)| = D(b,¢) + D(c,d) = |(v1,v2)| + |(v4,v5)|. The

(see§4.4). We can then approximate (2) by surface of a combined objestis the sum of the surfaces of
its constituent parts less twice the interior surface, @1§. =
L OFE, = 0ey + ey — 2 x D(a,c) = Ovy + Ovg — 2|(v1,v4)]-
Flemp\aleN C, Z asp (3) . .. . . .
- These properties are very similar to properties in conventional

graph algorithms, where the volume combines in the same way

, 1 d—1 : L . as weight and surfaces combine as the sum of edge weights
\hotehreC;) - (:P):h(2§i¥]M) df ' Th':’ canhbe E:;nphﬂ_ed St_'” (although including an additional term which expresses the ex-
urther by noting that the surtace ot each su onfgireon terior surface?®). The edge weights function identically.
sists of two components, tlexteriorsurfacep°S,,, where the
surface of the subdomain coincides with the surface of theNote that with these modifications to the graph, it can be seen
meshdM, and theinterior surface,8'S,, whereS,, is ad-  that if we optimise using thE, cost function (4), the AR mesh
jacent to other subdomains and the surface cuts through th@artitioning problem is identical to the cut-edge weight mesh
mesh. Thus we can break the  dS, term in (3) into two  partitioning problem with a special edge weighting. However,
partszp 0'S, and Zp 0°S, and simplify (3) further by not-  the inclusion of non-integer edge weights does have an effect
ing thatzp 0°S, is justdM, the exterior surface of the mesh on the some of the techniques that can be used, in particular
M. This then gives us a second cost function to optimise: the bucket sorting strategy and this is discussed in [27].

1 )
1—‘surface: T 815 + K: (4) . .
K, Zp: pr 2.4 Testing the algorithms

where K, = (7rP)5(2dQM)d%1 and K, = OM/K;. We Throughout this paper we compare the effectiveness of differ-
refer to this cost function ai,,...Or I's because it is just con- ent approaches using a set of test meshes. The algorithms
cerned with optimising surfaces. have been implemented within the framework of JOSTLE,



mesh no. vertices no. edges type aspectratio mesh grading
uk 4824 6837  2dtriangles 3.82 7.98e+02
4elt-dual 30269 44929  2dtriangles 1.08 2.13e+04
t60k 60005 89440  2dtriangles 1.80 2.00e+00
dime20 224843 336024  2d triangles 2.11 3.70e+03
cs4 22499 43858 3dtetrahedra 1.32 9.64e+01
wing 62032 121544 3dtetrahedra 1.27 1.08e+06
mesh100 103081 200976 3dtetrahedra 2.02 2.45e+02
cyl3 232362 457853 3dtetrahedra 1.59 8.42e+00

Table 1: Test meshes

a mesh partitioning software tool developed at the Univer-3 The multilevel par adigm
sity of Greenwich and freely available for academic and re-
search purposes under a licensing agreement (available from ) ) ]
http://wwv. gre. ac. uk/j ostle). The experiments In recent years it has beg_n reco_gmsed that an effective way
were carried out on a DEC Alpha with a 466 MHz CPU and ©f Poth speeding up partition refinement and, perhaps more
1 Gbyte of memory. Due to space considerations we only m_lmpor.tantly giving it a.global perspgctlve is tq use multilevel
clude 8 test meshes but they have been chosen to be a reprigchniques. The idea is to match pairs of vertices to fous-
sentative sample of medium to large scale real-life problemd€rs Use the clusters to define a new graph and recursively iter-
and include both 2d and 3d examples. Table 1 gives a list of2t€ this procedure until the graph size falls below some thresh-
the meshes and their sizes in terms of the number of vertice§!d- The coarsest graph is then partitioned and the partition
and edges. The table also shows the aspect ratio of each entifé Successively optimised on all the graphs starting with the
mesh and the mesh grading, which here we define as the ma)g_oarfsest and ending with the ongmall. This sequence of con-
imum surface of any element over the minimum surface, andgtraction followed by repeated e_xpansmn/optlmlsatlon loops is
these two figures give a guide as to how difficult the optimi- Known as the multilevel paradigm and has been successfully
sation may be. For example, ‘uk’ is simply a triangulation of developed as a strategy for enhancing many partitioning ap-
the British mainland and hence has a very intricate boundaryproaches. The multilevel idea was first proposed by Barnard &
and therefore a high aspect ratio. The ‘wing’ mesh on the other>Mon, [2], as a method of speeding up spectral bisection. It
hand is a cube containing a hollowed out section in the shape ofVas Subsequently generalised by Hendrickson & Leland, [14],
an aeroplane wing; the AR is therefore reasonably close to 1o employed it to give global partition quality to local refine-
but the grading is very high as the mesh goes from very smallment algorithms such as that of Kernighan & Lin [18] and by
elements close to the wing to very large ones in the far-field. Vanderstraeteet al, [23], who used it to speed up stochas-
tic optimisation techniques such as simulated annealing, [19].
Table 2 shows the results of the most successful combinatiorseveral algorithms for carrying out the matching have been de-
of algorithms — surface matching (SM, sg8.2) and local  vised by Karypis & Kumar, [16], while Walshaw & Cross de-
template gain/template cost optimisation (LTGTC, $48) — scribe a method for utilising imbalance in the coarsest graphs
which were chosen as a benchmark for the other combinationdo enhance the final partition quality, [25].
For the 4 different values d? (the number of subdomains), the
table shows the average aspect ratio as givehbyhe edge
cut |E,| (that is the number of cut edges, not the weight of .
cut edges weighted by surface size) and the time in seconds’,g'1 Implementation
ts, to partition the mesh. Notice that with the exception of the
‘uk’ mesh andP = 16, all partitions have average aspect ra- Graph contraction. To create a coarser graph
tios < 1.53 which is within the target range ¢f.0, 1.57] sug- Gii1(Vig1, Ejpq) from Gy(V;, E;) we use a variant of the
gested in [8}. Indeed for the ‘uk’ mesh it is no surprise that edge contraction algorithm proposed by Hendrickson & Le-
the results for” = 16 are not optimal because the subdomains land, [14]. The idea is to find a maximal independent subset
inherit some of the poor AR from the original mesh (which has of graph edges, or matchingof vertices, and then collapse
an AR of 3.82) and it is only when the mesh is split into small them. The set is independent because no two edges in the set
enough piecesl” = 32, 64 or 128, that the optimisation suc- are incident on the same vertex (so no two edges in the set are
ceeds in ameliorating this effect. Intuitively this also gives a adjacent), and maximal because no more edges can be added
hint as to why DD methods are a very successful technique aso the set without breaking the independence criterion. Having
asolver. found such a set, each selected edge is collapsed and the ver-

. . tices,uy,us € V; say, at either end of it are merged to form a
The partitioning times ranged from under 1 second to a maxi-, o\ vertexs € Vipr with weight|v] = [ua| + [us)].

mum of 16 seconds (for the largest 3D mesh). Experience sug-

gests that this is not an unreasonable overhead for a domaihe initial partition. Having constructed the series of graphs

decomposition based method. until the number of vertices in the coarsest graph is smaller
than some threshold, the normal practice of the multilevel strat-
egy is to carry out an initial partition. Here, following the

1Reference [8] suggests value of 1.40 using the square/asrdefinition of AR ir§2.2 — this is equivalent to 1.57 using the circle/sphere dvasdinition.



P =16 P =32 P =64 P =128

mesh T, B & | T: B & | Tt B | T¢ |B] &

uk 162 197 027 1.46 332 040 1.40 559 048 1.40 937 1.08
delt-dual| 1.24 898 0.88 1.28 1358 1.18 1.27 1985 140 1.29 2737 1.82
160K 134 1031 1.37 1.28 1607 1.62 1.30 2524 2.03 1.31 3806 2.80
dime20 | 1.43 1889 4.92 1.34 2886 532 1.30 4651 6.15 1.26 6732 7.17
cs4 147 2625 2.00 1.47 3660 252 1.47 5000 323 1.48 6629 3.57
wing 1.37 9346 4.67 1.40 13640 6.44 1.41 15706 7.57 1.43 17027 10.27
mesh100| 1.53 6020 4.23 1.49 8413 7.23 1.49 11577 6.39 1.50 15995 8.00
cyl3 1.47 10929 869 1.52 16382 10.0§ 1.52 22355 12.03 1.51 29926 15.97

Table 2: Final results using surface matching and local template gain&tnguolst optimisation

(a) surface matching (b) cost matching

Figure 2: Surface (a) and cost (b) matching

idea of Gupta, [13], we contract until the number of vertices any of its unmatched neighbours. This is the same as matching
in the coarsest graph is the same as the number of subdacross the largest surface (since here edge weights represent
mains, P, and then simply assign vertéxo subdomains;. surfaces) and we refer to this sgrface matching

Unlike Gupta, however, we do not carry out repeated expan- _

sion/contraction cycles of the coarsest graphs to find a welllémplate Cost Matching (TCM). A second approach fol-
balanced initial partition but instead, since our optimisation al- 10Ws the ideas of Bouhmala, [4], and matches vertices with
gorithm incorporates balancing (of the vertex weights — seethe neighbour which minimises the given cost function. In this

§2.1), we commence on the expansion/optimisation sequencase, the chosen vertex matches with the unmatched neighbour

immediately. which gives the resulting cluster the best aspect ratio. Using
theT'; cost function, we refer to this demplate cost match-

Partition expansion. Having optimised the partition on a ing.

graphd), the partition must be interpolated onto its parent ] o .

G)_1. The interpolation itself is a trivial matter; if a vertex SurfaceCost Matching (SCM). Thisis the same idea as TCM

v € V; is in subdomairs, then the matched pair of vertices ©Nly using the’; cost function, (4), which s faster to calculate

that it representsy, v; € Vi_1, will be in S,,. and matches a vertex with the neighbour which minimises the
surface of the resulting cluster.

Figure 2 motivates the difference between surface matching
3.2 Incorporating aspect ratio (SM) and cost matching (SCM & TCM). For surface match-
ing, the graph vertex correspondingdp matches across the

) _ ) largest surface area, in this case with For cost matching,
The matching part of the multilevel strategy can be easily mod-ipe graph vertex correspondingdp matches to minimise as-

ified in several ways to take AR into account and in each casgyect ratio (TCM) or surface area (SCM) of the resulting cluster,
the vertices are visited (at most once) using a randomly or-jn this case withes.

dered linked list. Each vertex is then matched with an un-

matched neighbour using the chosen matching algorithm and

it and its match removed from the list. Vertices with no un-

matched neighbours remain unmatched and are also removed.3 Resultsfor different matching functions
In addition toRandom Matching (RM), [15], where vertices

are matched with random neighbours, we propose and havg, Taple 3 we compare the results in Table 2, where SM was
tested 3 matching algorithms: used, with random matching, RM. In both cases the LTGTC

SurfaceMatching (SM). As we have seen 2.3, the AR par- optimisation algorithm (seé4.3) was used. For each value

titioning problem can be approximated by the cut-edge WeightOf P, the first column shows the average AR, of the partl-

problem using (4), th&'; cost function, and so the simplest tioning. The secor.1d columnforeach valudibﬂ,c/le)rllcompares
matching is to use the Heavy Edge approach of Karypis & Ku- esults with those in Table 2 using the me&&%. Thusa

mar, [16], where the vertex matches across the heaviest edge figure> 1 means that RM has produced worse results than SM.



P =16 P =32 P =064 P =128

T(RM)—1 r(RM)-1 r(RM)-1 T(RM)—1
mesh T, W T, r((87|\/|))4 T, F((SiM))il T, W
uk 1.65 1.05 1.49 1.06 1.40 1.01 1.39 0.98
4elt-dual | 1.29 1.20 1.30 1.09 1.29 1.05 1.29 1.02
t60k 1.36 1.08 1.36 1.26 1.36 1.19 1.37 1.20
dime20 | 1.45 1.05 1.39 1.16 1.39 1.29 1.35 1.33
cs4 1.58 1.24 1.52 1.12 1.55 1.17 1.53 1.10
wing 1.44 1.17 1.44 1.12 1.44 1.08 1.46 1.07
mesh100| 1.59 1.10 1.52 1.05 1.53 1.08 1.57 1.13
cyl3 1.53 1.11 1.52 1.00 1.59 1.14 1.56 1.10
Average 1.12 1.11 1.13 1.12

Table 3: Random matching results compared with surface matching

Figure 3: Final ‘element’ shapes for random (a) and surface (b) matching

These comparisons are then averaged and so it can be seen, etigough there is little benefit over TCM.

for P = 16 that RM produces results 12% (1.12) worse on av-

erage than SM. Indeed RM is better than SM in only one case

(‘uk’, P = 128) and up to 33% worse (‘dime20F = 128)

with the overall average quality 12% worse than SM. Thisis4 The Kernighan_Lin optimisation al-
not altogether surprising since the AR of elements in the coars- .

est graph can be very poor if the matching takes no account of gor ithm

it, and hence the optimisation has to work with badly shaped

elements. This limitation is graphically demonstrated in Fig- n this section we outline the key features of an optimisation
ure 3 which shows an example of the shapes of the final 16J y P

clusters in the coarsest graph of an example 2d mesh. Whilsﬁlgomhm’ fully described in [25] and then ##.3 describe

ow it can be modified to optimise for AR. It is a Kernighan-
the shapes for SM (3b) are very good (although the borders . . : ; T )
are somewhat irregular), the shapes for RM (3a) are extremel){]In (KL) type algorithm incorporating a hill-climbing mecha

. oo ism to enable it to escape from local minima. The algorithm
poor and as a result the partition optimisation on the coarser . . . oo
T . uses bucket sorting, the linear time complexity improvement
graphs is limited in the improvements that can be made.

of Fiduccia & Mattheyses, [12], and is a partition optimisa-
When it comes to comparing SM with SCM & TCM (results tion forml_JIation; in other W(_)rds _it optimises a partition Bf
not shown here, see [27]) there is actually very little differ- Subdomains rather than a bisection.

ence; SCM is about 1.9% worse on average and TCM only

about 0.6% worse. This suggests that the multilevel strategy is

relatively robust to the matching algorithpnovidedthe AR is . .
taken into account in some way. 4.1 Thegain function

With regard to partitioning time, RM was on average about p key concept in the method is the idea gdin. The gain
32.9% slower than SM; as explained above this is becaus (v, q) of a vertexv in subdomairs, can be calculated for ev-
the optimisation is inhibited by the poor quality of the coarser ery other subdomair§,, ¢ # p, and expresses how much the
graph and thus took considerably longer. SCM & TCM were ¢qst of a given partition would be improved weréo migrate
about 14.3% & 8.5% slower than SM respectively; this is due ¢ S,. Thus, if = denotes the current partition antithe par-
to the slightly slower matching process. However the multi- +ition if o migrates toS, then for a cost functio’, the gain
level partitioning is generally very fast and any of the intel- g(v,q) = T(r) — I(x'). Assuming the migration o only

ligent matching algorithms (as opposed to random matching gffects the cost of, and S, (as is true for; andT,) then
RM) do not add significantly to the optimisation time. from (1) we get

Overall this suggests that SM is the algorithm of choice al-
g(v,q) = AR(S,) —AR(S,+v)+AR(S,) —AR(S,—v). (5)



For T, this gives an expression have migrated since that value was attained. If subsequent
migration finds a ‘better’ partition then the migrationden-

1 05, 0{S, + v} firmedand the list is reset. Once the inner loop is terminated,
Gempiad V@) = C S )% - (S, + U})% any vertices remaining in the list (vertices whose migration has
! ! not been confirmed) are migrated back to the subdomains they
95, Sy —w} (6)  came fromwhen the optimal cost was attained.

+ d—1 d—1
0S,) = Q{S, —v}H) =
(25,)" (S —vh) The algorithm, together with conditions for vertex migration

which cannot be further S|mp||f|ed However, mg, since acceptance and confirmation is fU”y described in [25] The
impact of non-integer gain values on the bucket sorting is ad-
AR(Sq) _ AR(Sq + ’U) — F {alsq _ 81(Sq + ’U)} dressed and discussed in [27]
1
1 A
= 7 1S

—(@S, + 0'v — 2|(Sy0))} 4.3 Incorporating aspect ratio: localisation

1 i
- K {2|(Sq, v)| -0 ”} One of the advantages of using cut-edge weight as a cost func-
tion is its localised nature. When a graph vertex migrates from
(where|(S,,v)| denotes the sum of edge weights betwSgn  one subdomain to another, only the gains of adjacent vertices

andv), we get are affected. In contrast, when using the graph to optimise
9 AR, if a vertexv migrates fromS,, to S, the volume and sur-
Geuracd ¥, ) = i {1(Sq,v)| = 1(Sp, )|} 7 face of both subdomains will change. This in turn means that,

when using the template cost function (2), the gain of all border
Notice in particular thatj... is the same as the cut-edge vertices both within and abutting subdomaisisand .S, will
change. Strictly speaking, all these gains should be adjusted

weight gain function and that it is entirely localised, i.e. the *', Y > -
gain of a vertex only depends on the length of its boundariegVith the huge disadvantage that this may involve thousands of

with a subdomain and not on any intrinsic qualities of the sub-floating point operations and hence be prohibitively expensive.

domain which could be changed by non-local migration. We have tested (Table 5) a version which includes full updating
but, as alternatives, we propose three localised variants:

. . C . Surface Gain/Surface Cost (SGSC). The simplest way to lo-

4.2 Theiterative optimisation algorithm calise the updating of the gains is to make the assumption in
§2.2 that the subdomains all have approximately equal volume

The iterative optimisation algorithm, as is typical for KL type and to use the surface cost functibp from (4). As men-
algorithms, has inner and outer iterative loops with the outertioned in §2.3 the problem immediately reduces to the cut-
loop terminating when no migration takes place during an in- edge weight problem, albeit with non-integer edge weights,
ner loop. The optimisation uses two bucket sorting structuresand from (7) only the gains of the vertices adjacent to the mi-
or bucket trees, [25], and is initialised by calculating the gain grating vertex will need updating. However, if this assumption
for all border vertices and inserting them into one of the bucketis not true, it is not clear how well; will optimise the AR and
trees. These vertices will subsequently be referred waas below we discuss some experimental results.

didatevertices and the tree containing them as ¢hadidate .
tree Surface Gain/Template Cost (SGTC). The second method

we propose for localising the updates of gain relies on the ob-
The inner loop proceeds by examining candidate verticesservation that the gain is simply used as a method of rating the
highest gain first (by always picking vertices from the high- vertices so that the algorithm always visits those with highest
est ranked bucket), testing whether the vertex is acceptable fogain first (using the bucket sort). It is not clear how crucial this
migration and then transferring it to the other bucket tree (therating is to the success of the algorithm and indeed Karypis
tree ofexaminedrertices). This inner loop terminates when the & Kumar demonstrated that (at least when optimising for cut-
candidate tree is empty although it may terminate early if theedge weight) almost as good results can be achieved by simply
partition cost rises too far above the cost of the best partitionvisiting the vertices in random order, [17]. We therefore pro-
found so far. Once the inner loop has terminated any verticepose approximating the gain with the surface cost fundfipn
remaining in the candidate tree are transferred to the examinettom (4) to rate the vertices and store them in the bucket tree
tree and finally pointers to the two trees are swapped ready fostructure, but using the template cost functignfrom (2) to
the next pass through the inner loop. assess the change in cost when actually migrating an vertex.

. o ~ This localises the gain function.
The algorithm also uses a KL type hill-climbing strategy; in

other words vertex migration from subdomain to subdomainL ocal Template Gain/Template Cost (LTGTC). A third pos-

can beacceptedeven if it degrades the partition quality and sibility we propose is to actually use the template cost function,
later, based on the subsequent evolution of the partition, eithef; for adjusting the gain, but only adjusting the gain of those
rejected oconfirmed During each pass through the inner loop, vertices adjacent to the migrating vertex. The motivation is
a record of the optimal partition achieved by migration within that the neighbours of the migrating vertex are likely to have
that loop is maintained together with a list of vertices which large changes in gain whereas the gains of other vertices are



P =16 P =32 P=64 P =128
mesh | I givercr | I riverér | T trerér | T AtTere
uk 1.62 1.00 1.50 1.08 1.41 1.03 1.40 1.00
4elt-dual | 1.43 1.79 1.42 1.50 1.37 1.36 1.38 1.31
t60k 1.30 0.90 1.25 0.90 1.29 0.95 1.27 0.87
dime20 | 1.35 0.82 1.33 0.98 1.30 0.98 1.30 1.17
cs4 1.53 1.15 1.49 1.05 151 1.08 1.50 1.04
wing 1.65 1.74 1.65 1.65 1.66 1.62 1.63 1.46
mesh100| 1.48 0.91 1.48 0.97 1.52 1.05 1.50 1.01
cyl3 1.52 1.10 1.52 0.99 1.53 1.03 1.52 1.02
Average 1.18 1.14 1.14 1.11

Table 4: Surface gain/template cost optimisation compared with local &enghin/template cost

P=16 P =32 P =64 P =128

r(TGTC -1 r(TGTC -1 r(TGTC -1 r(TGTC -1
mesh | T qirerery | T prere | T rirera | T mTeTe
uk 1.64 1.04 1.49 1.06 1.38 0.95 1.38 0.96
4elt-dual | 1.23 0.98 1.27 0.96 1.28 1.01 1.28 0.96
t60k 1.33 1.00 1.28 0.98 1.31 1.03 1.31 1.01
dime20 | 1.39 0.91 1.34 1.01 1.29 0.95 1.29 1.13
cs4 1.48 1.04 1.49 1.04 1.48 1.01 1.49 1.01
wing 1.38 1.01 1.41 1.04 1.41 1.00 1.44 1.02
mesh100| 1.52 0.97 1.50 1.01 1.50 1.01 151 1.02
cyl3 1.48 1.02 1.51 0.98 1.52 1.01 1.52 1.02
Average 0.99 1.01 1.00 1.02

Table 5: Template gain/template cost optimisation compared with localagsrgmin/template cost

likely to only change marginally (since they are only affected average results and the reason we believe this to happen is
by the change in volume and surface of subdomains). The disthat the approximation (3) made§&.2, that every subdomain
advantage is that the gains will become progressively more andhas approximately equal volume, completely breaks down for
more inaccurate as the optimisation progresses; however, thesneshes with very high gradings. For all the other meshes, the
are still likely to be as accurate as using the surface cost. SGTC optimisation gives average ARs between 20% better to
. ] ) ] - 17% worse than LTGTC and in fact, if we exclude the ‘4elt-
Finally note that the implementation which, when a vertex mi- 4,41’ & ‘wing’ meshes from the results, on average SGTC is
grates from subdomaifi, to S,, involves full updating of the 5y 0.36% worse than LTGTC. This leads us to suggest that
gains of all vertices in and adjacent to the borderS,0dndS; 45 a very rough ‘ball park’ figure, if the mesh grading is of the
is referred to aemplate Gain/Template Cost (TGTC). order10? or less, the surface gain function provides perfectly
good results, but if greater than this a more accurate estimate
of gain is necessary and LTGTC is to be preferred.

4.4 Resultsfor different optimisation functions Table 5 compares TGTC optimisation, the version which uses
full updating of gains, with LTGTC and shows that on average

Table 4 compares SGTC optimisation against the LTGTC re-LTGTC & TGTC give results which are almost equivalent in
sults from Table 2. Both sets of results use surface matchduality (TGTC s in fact 0.50% worse than LTGTC) and hence
ing (SM). The table is in the same form as thos§33 and that LTGTC provides a very good approximationto TGTC.

show that on average the surface gain function provides re-

. Again we are not not primarily concerned with partitioning
0, A
sults which are 14.1 A)wor_se _than LTGT(_:‘ Ithough we do not imes, but it was interesting to note that SGSC & SGTC were
show the results here, a similar comparison shows that SGS

i its which 12 204 o7 n average 28.41% & 24.38% faster than LTGTC. This is be-
provides results which are 12.2% worse, [27]. cause the surface cost functidh,, is much quicker to calcu-

Note that in earlier results, [26], we concluded that SGTC waslaté when assessing or updating the gains (since it does not
the algorithm of choice and the reason for this discrepancyinvolve calculatingS, ¥ ). TGTC was over 50 times slower on

is explained in the test meshes used. In [26] we did not useaverage than LTGTC and we feel that this justifies the assertion
the ‘4elt-dual’ and ‘wing’ meshes which contain the highest that full updating of gains is too expensive.

mesh grading (the ratio of the largest surface of an element o

to the smallest), respectively 2.13e+4 and 1.08e+6. LookingMeanwhile in Table 7 we compare the edge cut produced by
at the results in more detail then ‘4elt-dual’ gives average ashe EC version of JOSTLE with that of the AR version. As
pect ratios between 31-79% worse than LTGTC, while ‘wing’ might be expected, EC partitioning pr_oduce_s the best results
ranges between 46-74% worse. These heavily influence théabout 14.4% better than AR). Notice, in particular, the results



P =16 P =32 P =064 P =128
mesh | T fapt | T raRo | U paR | D raR
uk 1.68 1.10 1.55 1.19 1.46 1.15 1.41 1.04
4elt-dual | 1.32 1.33 1.28 1.01 1.29 1.06 1.29 1.01
t60k 1.38 1.13 1.31 1.09 1.33 1.09 1.32 1.02
dime20 | 1.50 1.17 1.45 1.33 1.40 1.33 1.38 1.45
cs4 1.52 1.12 1.54 1.15 1.53 1.12 1.51 1.05
wing 1.60 l1.61 1.61 1.53 1.61 1.50 1.53 1.23
mesh100| 1.55 1.03 1.60 1.22 1.61 1.24 1.61 1.21
cyl3 1.59 1.25 1.63 121 1.61 1.18 1.59 1.17
Average 1.22 1.22 1.21 1.15

Table 6: AR results for the edge cut partitioner compared with the ARtipartr

P =16 P =32 P =64 P =128

E.|(EC E.|(EC E.|(E E.J(EC
mesh | IF] i | 1P] feaw | P | P A
uk 182 0.92 305 0.92 512 0.92 809 0.86
4elt-dual | 602 0.67 902 0.66 1515 0.76 2364 0.86
t60k 1016 0.99 1552 0.97 2439 0.97 3624 0.95
dime20 | 1382 0.73 2368 0.82 3717 0.80 5540 0.82
cs4 2496 0.95 3501 0.96 4666 0.93 6077 0.92
wing 5008 0.54 6866 0.50 9401 0.60 | 11877 0.70
mesh100, 4782 0.79 7851 0.93 | 11100 0.96 | 15202 0.95
cyl3 11377 1.04 | 16783 1.02 | 22369 1.00 | 29432 0.98
Average 0.83 0.85 0.87 0.88

Table 7:|E.| results for the edge cut partitioner compared with the AR partitioner

for the ‘wing’ mesh (the mesh with the highest grading) where combining elements) while EC partitioning only requires inte-
the EC partitioner produces partitions with up to 50% fewer cut ger operations. However both are extremely fast at producing
edges than the AR partitioner, but the AR partitioner produceshigh quality partitions.

subdomains with aspect ratios 23-61% better. This demon-

strates that a good partition for aspect ratio is not necessarily a

good partition for edge-cut and vice-versa. 5.2 Impact on solver iterations

To investigate the impact of different partitions on the con-
5 Discussion and conclusions vergence of a domain decomposition based preconditioner, we
tested a solver on a number of partitions for two of the meshes.
) . ) . A heat distribution problem with Dirichlet boundary condi-
5.1 Comparisonwith cut-edge weight partition- tions was solved using the conjugate gradient algorithm sup-
ing plied in the PETSC library [1] and the domain decomposition
preconditioner implemented in the ParPre package [9]. Un-

In Table 6 we compare AR as produced by the edge cut versiofortunately, the parallel mesh environment we used, PadFEM,
of JOSTLE (EC) described in [25] with the results from Ta- [6] is only implemented for 2d applications and so we were
ble 2. The EC partitioner never produces average aspect ratiognable to test any 3d examples. In addition, limitations on the
that are actually better than the AR partitioner and on averagdarallel hardware meant that we were only able to use up to
gives results which are 19.8% worse than those of the AR par-32 Processors and the ‘dime20" mesh was too large to fit into
titioner and can be up to 61% worse. Notice that there is no reaf® memory; we also experienced some convergence problems
consistency in the differences however (as there is in the differ-With the “4elt-dual’ mesh. However, the results presented in
ences between SGSC & SGTC compared with LTGTC — seelable 8, where the partitions which have been optimised for
§4.4) and we conclude that although an EC partitioner might@SPECt ratio always have fewer solver iterations, do confirm
be expected to produce reasonably good AR results (since that the partition can have a S|gn|f|c_ant impact on the conver-
partition with a low value ofE, | is likely to have compactand ~9€nce (and this is true even for a simple problem such as the
therefore well shaped subdomains), targeting the cost functiorf’®at Equation — the effect may be magnified for more com-

on AR can provide considerably better results in most cases. P!ex problems). More importantly for this paper, the results
also suggest that the definition of aspect ratio used here can be

In terms of time, the EC partitioner is about 2 times faster thana good cost function to optimise in order to enhance the con-
AR on average. Again this is no surprise since the AR parti-vergence (although correlation between iterations and aspect
tioning involves floating point operations (assessing cost andatio is somewhat tenuous).



P=38 P =16 P =32
mesh optimisation T; |E.| iterations| T |E.| iterations| T |E.| iterations
uk AR 1.86 109 406 1.62 197 814 1.46 332 1029
uk EC 191 99 571 1.68 182 873 1.55 305 1303
t60k AR 1.32 569 2509 | 1.34 1031 2376 | 1.28 1607 4451
t60k EC 1.33 539 2635 | 1.38 1016 2907 | 1.31 1552 5481

Table 8: The impact of partitions on the number of solver iterations

5.3 Generic multilevel mesh partitioning matching algorithms (modifications of those already in the lit-
erature) which can be used to take AR into account and in Sec-

In this paper we have adapted a mesh partitioning techniqué'on 3.3 coqcluded that if it is not taken into account (i.e. ran-
originally designed to solve the edge cut partitioning problem d0mM matching) the same quality of results cannot be expected.
to a different cost function. The question then arises, is the!n Section 4.3 we described four ways of incorporating AR
multilevel strategy an appropriate technique for solving parti- Nt© @ Kemighan-Lin based optimisation algorithm. We then
tioning problems (or indeed other optimisation problems) with démonstrated in Section 4.4 that we can approximate the cost
different cost functions? Clearly this is an impossible questionfunction to localise the updating of gains reasonably success-

to answer in general but a couple of pertinent remarks can bdully: Provided that the mesh grading is not too high. We also
made: showed that we can also localise the updating of gains by just

ignoring non-adjacent vertices and concluded that full updat-
ing of gains does not provide any significant advantages (and
e For the AR based cost functions at least, the methodcosts a lot more). Finally in Sections 5.1 & 5.2 we showed that
seems relatively sensitive to whether the cost is includedpartitions with good subdomain aspect ratios can vary greatly
in the matching. This suggests that, if possible, a genericfrom those with a low edge-cut and demonstrated on a subset of
multilevel partitioner should use the cost function to the meshes that our optimisation algorithm can indeed provide
minimise the cost of the matchings. Note, however, thatthe convergence benefits for DD preconditioners that other re-
this may not be possible, since a cost function which, searchers, using different definitions of aspect ratio, suggest,
say, measured the cost of a mapping onto a particulare.g. [10, 20, 23].
processor topology would be unable to function since at
the matching stage no partition, and hence no mappinginally, although a parallel version of JOSTLE exists, e.g. [28],
exists. it is not clear how well AR optimisation, with its more global
cost function, will work in parallel and this is another direc-
¢ The optimisation relies, for efficiency at least, on having tion for future research. Some related work on AR optimisa-
alocal gain function in order that the migration of a ver- tion already exists in the context of a parallel dynamic adaptive
tex does not involve a®(N/P) or even anO(N) up- mesh environment, [7, 8, 22], but none of this work involves
date. Here we were able to localise the updating of gainsmultilevel methods so the question still arises whether parallel
either by (a) making a simple approximation to localise multilevel techniques can help in the optimisation.
the cost function, or (b) by just ignoring the updating of
non-adjacent vertices. However, it is not clear that (a) is
always possible or that (b) is always valid. On the other
hand, the underlying approach in (a) which essentially References
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