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Abstract

Multilevel algorithms are a successful class of optimisation
techniques which address the mesh partitioning problem for
mapping meshes onto parallel computers. They usually com-
bine a graph contraction algorithm together with a local opti-
misation method which refines the partition at each graph level.
To date these algorithms have been used almost exclusively
to minimise the cut-edge weight in the graph with the aim of
minimising the parallel communication overhead. However it
has been shown that for certain classes of problem, the con-
vergence of the underlying solution algorithm is strongly in-
fluenced by the shape or aspect ratio of the subdomains. In
this paper therefore, we modify the multilevel algorithms in
order to optimise a cost function based on aspect ratio. Sev-
eral variants of the algorithms are tested and shown to provide
excellent results.

1 Introduction

The need for mesh partitioning arises naturally in many finite
element (FE) and finite volume (FV) applications. Meshes
composed of elements such as triangles or tetrahedra are of-
ten better suited than regularly structured grids for represent-
ing completely general geometries and resolving wide varia-
tions in behaviour via variable mesh densities. Meanwhile,
the modelling of complex behaviour patterns means that the
problems are often too large to fit onto serial computers, either
because of memory limitations or computational demands, or
both. Distributing the mesh across a parallel computer so that
the computational load is evenly balanced and the data local-
ity maximised is known as mesh partitioning. It is well known
that this problem is NP-complete, so in recent years much at-
tention has been focused on developing suitable heuristics, and
some powerful methods, many based on a graph correspond-
ing to the communication requirements of the mesh, have been
devised, e.g. [15].

A particularly popular and successful class of algorithms
which address this mesh partitioning problem are known as
multilevel algorithms. They usually combine a graph contrac-
tion algorithm which creates a series of progressively smaller
and coarser graphs together with a local optimisation method

which, starting with the coarsest graph, refines the partition at
each graph level. To date these algorithms have been used al-
most exclusively to minimise the cut-edge weight, a cost which
approximates the total communications volume in the underly-
ing solver. This is an important goal in any parallel application,
in order to minimise the communications overhead, however,
it has been shown, [24], that for certain classes of solution al-
gorithm, the convergence of the solver is actually heavily influ-
enced by the shape or aspect ratio (AR) of the subdomains and
in this case the overall solution time can be more dependent on
the number of iterations than on the parallel communications
overhead, [23]. In this paper therefore, we modify the multi-
level algorithms (the matching and local optimisation) in order
to optimise a cost function based on AR. We also abstract the
process of modification in order to suggest how the multilevel
strategy can be modified into a generic technique which can
optimise arbitrary cost functions.

1.1 Domain decomposition preconditioners and
aspect ratio

To motivate the need for aspect ratio optimisation we consider
the requirements of a class of solution techniques. A natu-
ral parallel solution strategy for the underlying problem is to
use an iterative solver such as the conjugate gradient (CG) al-
gorithm together with domain decomposition (DD) precondi-
tioning, e.g. [3]. DD methods take advantage of the partition of
the mesh into subdomains by imposing artificial boundary con-
ditions on the subdomain boundaries and solving the original
problem on these subdomains, [5]. The subdomain solutions
are independent of each other, and thus can be determined in
parallel without any communication between processors. In
a second step, an ‘interface’ problem is solved on the inner
boundaries which depends on the jump of the subdomain so-
lutions over the boundaries. This interface problem gives new
conditions on the inner boundaries for the next step of subdo-
main solution. Adding the results of the third step to the first
gives the new conjugate search direction in the CG algorithm.

The time needed by such a preconditioned CG solver is de-
termined by two factors, the maximum time needed by any of
the subdomain solutions and the number of iterations of the
global CG. Both are at least partially determined by the shape
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of the subdomains. Whilst an algorithm such as the multigrid
method as the solver on the subdomains is relatively robust
against shape, the number of global iterations are heavily in-
fluenced by the AR of subdomains, [23]. Essentially, the sub-
domains can be viewed as elements of the interface problem,
[10, 11], and just as with the normal finite element method,
where the condition of the matrix system is determined by the
AR of elements, the condition of the preconditioning matrix is
here dependent on the AR of subdomains.

1.2 Related work

The idea of optimising AR in order to maintain scalability in
the solver was first developed by Farhatet al., [10, 11]. This
was backed up by Vanderstraetenet al. who showed that par-
titioning for cut-edge weight was not necessarily the most ap-
propriate optimisation for every solver [23, 24]. However the
field of mesh partitioning has changed somewhat since this
work was carried out and although other more recent work ex-
ists which takes AR into account, e.g. [7, 8, 22], our aim in this
paper is to extend the ideas in the light of recent developments
in multilevel mesh partitioning technology.

1.3 Overview

Below, in Section 2, we introduce the mesh partitioning prob-
lem and establish some terminology. We then discuss the mesh
partitioning problem as applied to AR optimisation and de-
scribe how the graph needs to be modified to carry this out.
Next, in Section 3, we describe the multilevel paradigm and
present and compare three possible matching algorithms which
take account of AR. In Section 4 we then outline a Kernighan-
Lin (KL), [18], type iterative local optimisation algorithm and
describe four possible modifications which aim to optimise
AR. Finally in Section 5 we compare the results with a cut
edge partitioner, suggest how the multilevel strategy can be
modified into a generic technique and present some ideas for
further investigation.

2 Mesh partitioning

2.1 The mesh partitioning problem

To define the mesh partitioning problem, letG = G(V;E) be
an undirected graph of verticesV , with edgesE which rep-
resent the data dependencies in the mesh. For the purposes
of this paper we assume that each graph vertex represents a
mesh element and that graph edges arise from elements that
are adjacent in the sense of sharing an element face. We as-
sume that both vertices and edges can be weighted (with pos-
itive integer values) and thatjvj denotes the weight of a ver-
tex v and similarly for edges and sets of vertices and edges.
Given that the mesh needs to be distributed toP processors,
define a partition� to be a mapping ofV into P disjoint sub-
domainsS

p

such that
S

P

S

p

= V . To evenly balance the

load, the optimal subdomain weight is given byS := djV j=P e

(where the ceiling functiondxe returns the smallest integer
� x) and theimbalanceis then defined as the maximum sub-
domain weight divided by the optimal (since the computational
speed of the underlying application is determined by the most
heavily weighted processor).

The definition of the mesh-partitioning problem then is to find
a partition which evenly balances the load or vertex weight
in each subdomain whilst minimising some cost function�.
Typically this cost function is simply the total weight of cut
edges, but in this paper we describe a cost function based on
AR. A more precise definition of the mesh-partitioning prob-
lem is therefore to find� such thatS

p

� S and such that� is
minimised.

2.2 The aspect ratio and cost function

We seek to modify the methods by optimising the partition on
the basis of AR rather than cut-edge weight. In order to do
this it is necessary to define a cost function which we seek to
minimise and a logical choice would bemax

p

AR(S
p

), where
AR(S

p

) is the AR of the subdomainS
p

. However maximum
functions are notoriously difficult to optimise (indeed it is for
this reason that most mesh partitioning algorithms attempt to
minimise the total cut-edge weight rather than the maximum
between any two subdomains) and so instead we choose to
minimise the average AR

�AR =

X

p

AR(S

p

)

P

: (1)

There are several definitions of AR, however, and for example,
for a given polygon S, a typical definition, [21], is the ratio of
the largest circle which can be contained entirely within S (in-
scribed circle) to the smallest circle which entirely contains S
(circumcircle). However these circles are not easy to calculate
for arbitrary polygons and in an optimisation code where ARs
may need to be calculated very frequently, we do not believe
this to be a practical metric. It may also fail to express cer-
tain irregularities of shape. A careful discussion of the relative
merits of different ways of measuring AR may be found in [22]
and for the purposes of this paper we follow the ideas therein
and define the AR of a given shape by measuring the ratio of
its perimeter length (surface area in 3d) over that of some ideal
shape with identical area (volume in 3d).

Suppose then that in 2d the ideal shape is chosen to be a square.
Given a polygonS with area
S and perimeter length@S, the
ideal perimeter length (the perimeter length of a square with
area
S) is 4

p


S and so the AR is defined as@S=4
p


S.
Alternatively, if the ideal shape is chosen to be a circle then
the same argument gives the AR of@S=2

p

�
S. In fact, given
the definition of the cost function (1) it can be seen that these
two definitions will produce the same optimisation problem
(and hence the same results) with the cost just modified by a
constantC (whereC = 1=4 for the square and1=2

p

� for cir-
cle). These definitions of AR are easily extendible to 3d and
given a polyhedronS with volume
S and surface area@S,
the AR can be calculated asC@S=(
S)2=3, whereC = 1=4 if
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Figure 1: Left to right: a simple mesh (a), its dual (b), the same meshwith combined elements (c) and its dual (d)

the cube is chosen as the optimal shape andC = 1=�

1=3

6

2=3

for the sphere. Note that henceforth, in order to talk in gen-
eral terms for both 2d & 3d, given an objectS we shall use
the terms@S or surfacefor the surface area (3d) or perimeter
length (2d) of the object and
S or volumefor the volume (3d)
or area (2d).

Of the above definitions of AR we choose to use the cir-
cle/sphere based formulae since they guarantee that the aspect
ratios of any shape are� 1. This gives a convenient formula
for the cost function of:

�template=
1

C

X

p

@S

p

(
S

p

)

d�1

d

(2)

whereC = �

1

d

(2d)

d�1

d

P andd (= 2 or 3) is the dimension of
the mesh. We refer to this cost function as�templateor�

t

because
of the way it tries to match shapes to chosen templates.

In fact, it will turn out (see for examplex3.2) that even this
function may be too complex for certain optimisation needs
and we can define a simpler one by assuming that all subdo-
mains have approximately the same volume,
S

p

� 
M=P ,
where
M is the total volume of the mesh. This assumption
may not necessarily be true, but it is likely to be true locally
(seex4.4). We can then approximate (2) by

�template�
1

C

0

X

p

@S

p

(3)

whereC 0

= (�P )

1

d

(2d
M)

d�1

d . This can be simplified still
further by noting that the surface of each subdomainS

p

con-
sists of two components, theexteriorsurface,@eS

p

, where the
surface of the subdomain coincides with the surface of the
mesh@M , and theinterior surface,@iS

p

, whereS
p

is ad-
jacent to other subdomains and the surface cuts through the
mesh. Thus we can break the

P

p

@S

p

term in (3) into two
parts

P

p

@

i

S

p

and
P

p

@

e

S

p

and simplify (3) further by not-
ing that

P

p

@

e

S

p

is just@M , the exterior surface of the mesh
M . This then gives us a second cost function to optimise:

�surface=
1

K

1

X

p

@

i

S

p

+K

2

(4)

whereK
1

= (�P )

1

d

(2d
M)

d�1

d andK
2

= @M=K

1

. We
refer to this cost function as�surface or �

s

because it is just con-
cerned with optimising surfaces.

2.3 Modifying the graph

To use these cost functions in a graph-partitioning context,
we must add some additional qualities to the graph. Figure 1
shows a very simple mesh (1a) and its dual graph (1b). Each
element of the mesh corresponds to a vertex in the graph.
The vertices of the graph can be weighted as is usual (see
x2.1) but in addition, vertices store the volume and total sur-
face of their corresponding element (e.g.
v

1

= 
e

1

and
@v

1

= @e

1

). We also weight the edges of the graph with
the size of the surface they correspond to. Thus, in Figure 1,
if D(b; c) refers to the distance between pointsb andc, then
the weight of edge(v

1

; v

2

) is set toD(b; c). In this way, for
verticesv

i

corresponding to elements which have no exterior
surface, the sum of their edge weights is equivalent to their sur-
face (@v

i

=

P

E

j(v

i

; v

j

)j). Thus for vertexv
2

, @v
2

= @e

2

=

D(b; c)+D(c; e)+D(e; b) = j(v

2

; v

1

)j+j(v

2

; v

5

)j+j(v

2

; v

3

)j.

When it comes to combining elements together, either into
subdomains, or for the multilevel matching (x3) these prop-
erties, volume and surface can be easily combined. Thus in
Figure 1(c) whereE

1

= e

1

+e

4

,E
2

= e

3

+e

5

andE
3

= e

3

we
see that volumes can be directly summed, for example
V

1

=


E

1

= 
e

1

+ 
e

4

= 
v

1

+ 
v

4

, as can edge weights, e.g.
j(V

1

; V

2

)j = D(b; c) +D(c; d) = j(v

1

; v

2

)j + j(v

4

; v

5

)j. The
surface of a combined objectS is the sum of the surfaces of
its constituent parts less twice the interior surface, e.g.@V

1

=

@E

1

= @e

1

+ @e

4

� 2�D(a; c) = @v

1

+ @v

4

� 2j(v

1

; v

4

)j.
These properties are very similar to properties in conventional
graph algorithms, where the volume combines in the same way
as weight and surfaces combine as the sum of edge weights
(although including an additional term which expresses the ex-
terior surface@e). The edge weights function identically.

Note that with these modifications to the graph, it can be seen
that if we optimise using the�

s

cost function (4), the AR mesh
partitioning problem is identical to the cut-edge weight mesh
partitioning problem with a special edge weighting. However,
the inclusion of non-integer edge weights does have an effect
on the some of the techniques that can be used, in particular
the bucket sorting strategy and this is discussed in [27].

2.4 Testing the algorithms

Throughout this paper we compare the effectiveness of differ-
ent approaches using a set of test meshes. The algorithms
have been implemented within the framework of JOSTLE,
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mesh no. vertices no. edges type aspect ratio mesh grading
uk 4824 6837 2d triangles 3.82 7.98e+02
4elt-dual 30269 44929 2d triangles 1.08 2.13e+04
t60k 60005 89440 2d triangles 1.80 2.00e+00
dime20 224843 336024 2d triangles 2.11 3.70e+03
cs4 22499 43858 3d tetrahedra 1.32 9.64e+01
wing 62032 121544 3d tetrahedra 1.27 1.08e+06
mesh100 103081 200976 3d tetrahedra 2.02 2.45e+02
cyl3 232362 457853 3d tetrahedra 1.59 8.42e+00

Table 1: Test meshes

a mesh partitioning software tool developed at the Univer-
sity of Greenwich and freely available for academic and re-
search purposes under a licensing agreement (available from
http://www.gre.ac.uk/jostle). The experiments
were carried out on a DEC Alpha with a 466 MHz CPU and
1 Gbyte of memory. Due to space considerations we only in-
clude 8 test meshes but they have been chosen to be a repre-
sentative sample of medium to large scale real-life problems
and include both 2d and 3d examples. Table 1 gives a list of
the meshes and their sizes in terms of the number of vertices
and edges. The table also shows the aspect ratio of each entire
mesh and the mesh grading, which here we define as the max-
imum surface of any element over the minimum surface, and
these two figures give a guide as to how difficult the optimi-
sation may be. For example, ‘uk’ is simply a triangulation of
the British mainland and hence has a very intricate boundary
and therefore a high aspect ratio. The ‘wing’ mesh on the other
hand is a cube containing a hollowed out section in the shape of
an aeroplane wing; the AR is therefore reasonably close to 1,
but the grading is very high as the mesh goes from very small
elements close to the wing to very large ones in the far-field.

Table 2 shows the results of the most successful combination
of algorithms – surface matching (SM, seex3.2) and local
template gain/template cost optimisation (LTGTC, seex4.3) –
which were chosen as a benchmark for the other combinations.
For the 4 different values ofP (the number of subdomains), the
table shows the average aspect ratio as given by�

t

, the edge
cut jE

c

j (that is the number of cut edges, not the weight of
cut edges weighted by surface size) and the time in seconds,
t

s

, to partition the mesh. Notice that with the exception of the
‘uk’ mesh andP = 16, all partitions have average aspect ra-
tios� 1:53 which is within the target range of[1:0; 1:57] sug-
gested in [8]1. Indeed for the ‘uk’ mesh it is no surprise that
the results forP = 16 are not optimal because the subdomains
inherit some of the poor AR from the original mesh (which has
an AR of 3.82) and it is only when the mesh is split into small
enough pieces,P = 32, 64 or 128, that the optimisation suc-
ceeds in ameliorating this effect. Intuitively this also gives a
hint as to why DD methods are a very successful technique as
a solver.

The partitioning times ranged from under 1 second to a maxi-
mum of 16 seconds (for the largest 3D mesh). Experience sug-
gests that this is not an unreasonable overhead for a domain
decomposition based method.

3 The multilevel paradigm

In recent years it has been recognised that an effective way
of both speeding up partition refinement and, perhaps more
importantly giving it a global perspective is to use multilevel
techniques. The idea is to match pairs of vertices to formclus-
ters, use the clusters to define a new graph and recursively iter-
ate this procedure until the graph size falls below some thresh-
old. The coarsest graph is then partitioned and the partition
is successively optimised on all the graphs starting with the
coarsest and ending with the original. This sequence of con-
traction followed by repeated expansion/optimisation loops is
known as the multilevel paradigm and has been successfully
developed as a strategy for enhancing many partitioning ap-
proaches. The multilevel idea was first proposed by Barnard &
Simon, [2], as a method of speeding up spectral bisection. It
was subsequently generalised by Hendrickson & Leland, [14],
who employed it to give global partition quality to local refine-
ment algorithms such as that of Kernighan & Lin [18] and by
Vanderstraetenet al., [23], who used it to speed up stochas-
tic optimisation techniques such as simulated annealing, [19].
Several algorithms for carrying out the matching have been de-
vised by Karypis & Kumar, [16], while Walshaw & Cross de-
scribe a method for utilising imbalance in the coarsest graphs
to enhance the final partition quality, [25].

3.1 Implementation

Graph contraction. To create a coarser graph
G

l+1

(V

l+1

; E

l+1

) from G

l

(V

l

; E

l

) we use a variant of the
edge contraction algorithm proposed by Hendrickson & Le-
land, [14]. The idea is to find a maximal independent subset
of graph edges, or amatchingof vertices, and then collapse
them. The set is independent because no two edges in the set
are incident on the same vertex (so no two edges in the set are
adjacent), and maximal because no more edges can be added
to the set without breaking the independence criterion. Having
found such a set, each selected edge is collapsed and the ver-
tices,u

1

; u

2

2 V

l

say, at either end of it are merged to form a
new vertexv 2 V

l+1

with weightjvj = ju

1

j+ ju

2

j.

The initial partition. Having constructed the series of graphs
until the number of vertices in the coarsest graph is smaller
than some threshold, the normal practice of the multilevel strat-
egy is to carry out an initial partition. Here, following the

1Reference [8] suggests value of 1.40 using the square/cube based definition of AR inx2.2 – this is equivalent to 1.57 using the circle/sphere based definition.

4



P = 16 P = 32 P = 64 P = 128

mesh �

t

jE

c

j t

s

�

t

jE

c

j t

s

�

t

jE

c

j t

s

�

t

jE

c

j t

s

uk 1.62 197 0.27 1.46 332 0.40 1.40 559 0.48 1.40 937 1.08
4elt-dual 1.24 898 0.88 1.28 1358 1.18 1.27 1985 1.40 1.29 2737 1.82
t60k 1.34 1031 1.37 1.28 1607 1.62 1.30 2524 2.03 1.31 3806 2.80
dime20 1.43 1889 4.92 1.34 2886 5.32 1.30 4651 6.15 1.26 6732 7.17
cs4 1.47 2625 2.00 1.47 3660 2.52 1.47 5000 3.23 1.48 6629 3.57
wing 1.37 9346 4.67 1.40 13640 6.48 1.41 15706 7.57 1.43 17027 10.27
mesh100 1.53 6020 4.23 1.49 8413 7.23 1.49 11577 6.38 1.50 15995 8.00
cyl3 1.47 10929 8.68 1.52 16382 10.05 1.52 22355 12.03 1.51 29926 15.97

Table 2: Final results using surface matching and local template gain/template cost optimisation

e1
e2e3

e1
e2e3

(a) surface matching (b) cost matching

Figure 2: Surface (a) and cost (b) matching

idea of Gupta, [13], we contract until the number of vertices
in the coarsest graph is the same as the number of subdo-
mains,P , and then simply assign vertexi to subdomainS

i

.
Unlike Gupta, however, we do not carry out repeated expan-
sion/contraction cycles of the coarsest graphs to find a well
balanced initial partition but instead, since our optimisation al-
gorithm incorporates balancing (of the vertex weights – see
x2.1), we commence on the expansion/optimisation sequence
immediately.

Partition expansion. Having optimised the partition on a
graphG

l

, the partition must be interpolated onto its parent
G

l�1

. The interpolation itself is a trivial matter; if a vertex
v 2 V

l

is in subdomainS
p

then the matched pair of vertices
that it represents,v

1

; v

2

2 V

l�1

, will be in S
p

.

3.2 Incorporating aspect ratio

The matching part of the multilevel strategy can be easily mod-
ified in several ways to take AR into account and in each case
the vertices are visited (at most once) using a randomly or-
dered linked list. Each vertex is then matched with an un-
matched neighbour using the chosen matching algorithm and
it and its match removed from the list. Vertices with no un-
matched neighbours remain unmatched and are also removed.
In addition toRandom Matching (RM), [15], where vertices
are matched with random neighbours, we propose and have
tested 3 matching algorithms:

Surface Matching (SM). As we have seen inx2.3, the AR par-
titioning problem can be approximated by the cut-edge weight
problem using (4), the�

s

cost function, and so the simplest
matching is to use the Heavy Edge approach of Karypis & Ku-
mar, [16], where the vertex matches across the heaviest edge to

any of its unmatched neighbours. This is the same as matching
across the largest surface (since here edge weights represent
surfaces) and we refer to this assurface matching.

Template Cost Matching (TCM). A second approach fol-
lows the ideas of Bouhmala, [4], and matches vertices with
the neighbour which minimises the given cost function. In this
case, the chosen vertex matches with the unmatched neighbour
which gives the resulting cluster the best aspect ratio. Using
the�

t

cost function, we refer to this astemplate cost match-
ing.

Surface Cost Matching (SCM). This is the same idea as TCM
only using the�

s

cost function, (4), which is faster to calculate
and matches a vertex with the neighbour which minimises the
surface of the resulting cluster.

Figure 2 motivates the difference between surface matching
(SM) and cost matching (SCM & TCM). For surface match-
ing, the graph vertex corresponding toe

1

matches across the
largest surface area, in this case withe

2

. For cost matching,
the graph vertex corresponding toe

1

matches to minimise as-
pect ratio (TCM) or surface area (SCM) of the resulting cluster,
in this case withe

3

.

3.3 Results for different matching functions

In Table 3 we compare the results in Table 2, where SM was
used, with random matching, RM. In both cases the LTGTC
optimisation algorithm (seex4.3) was used. For each value
of P , the first column shows the average AR,�

t

of the parti-
tioning. The second column for each value ofP then compares

results with those in Table 2 using the metric�(RM)�1

�(SM)�1

. Thus a

figure> 1means that RM has produced worse results than SM.
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P = 16 P = 32 P = 64 P = 128

mesh �

t

�(RM)�1

�(SM)�1

�

t

�(RM)�1

�(SM)�1

�

t

�(RM)�1

�(SM)�1

�

t

�(RM)�1

�(SM)�1

uk 1.65 1.05 1.49 1.06 1.40 1.01 1.39 0.98
4elt-dual 1.29 1.20 1.30 1.09 1.29 1.05 1.29 1.02
t60k 1.36 1.08 1.36 1.26 1.36 1.19 1.37 1.20
dime20 1.45 1.05 1.39 1.16 1.39 1.29 1.35 1.33
cs4 1.58 1.24 1.52 1.12 1.55 1.17 1.53 1.10
wing 1.44 1.17 1.44 1.12 1.44 1.08 1.46 1.07
mesh100 1.59 1.10 1.52 1.05 1.53 1.08 1.57 1.13
cyl3 1.53 1.11 1.52 1.00 1.59 1.14 1.56 1.10
Average 1.12 1.11 1.13 1.12

Table 3: Random matching results compared with surface matching

Figure 3: Final ‘element’ shapes for random (a) and surface (b) matching

These comparisons are then averaged and so it can be seen, e.g.
for P = 16 that RM produces results 12% (1.12) worse on av-
erage than SM. Indeed RM is better than SM in only one case
(‘uk’, P = 128) and up to 33% worse (‘dime20’,P = 128)
with the overall average quality 12% worse than SM. This is
not altogether surprising since the AR of elements in the coars-
est graph can be very poor if the matching takes no account of
it, and hence the optimisation has to work with badly shaped
elements. This limitation is graphically demonstrated in Fig-
ure 3 which shows an example of the shapes of the final 16
clusters in the coarsest graph of an example 2d mesh. Whilst
the shapes for SM (3b) are very good (although the borders
are somewhat irregular), the shapes for RM (3a) are extremely
poor and as a result the partition optimisation on the coarser
graphs is limited in the improvements that can be made.

When it comes to comparing SM with SCM & TCM (results
not shown here, see [27]) there is actually very little differ-
ence; SCM is about 1.9% worse on average and TCM only
about 0.6% worse. This suggests that the multilevel strategy is
relatively robust to the matching algorithmprovidedthe AR is
taken into account in some way.

With regard to partitioning time, RM was on average about
32.9% slower than SM; as explained above this is because
the optimisation is inhibited by the poor quality of the coarser
graph and thus took considerably longer. SCM & TCM were
about 14.3% & 8.5% slower than SM respectively; this is due
to the slightly slower matching process. However the multi-
level partitioning is generally very fast and any of the intel-
ligent matching algorithms (as opposed to random matching,
RM) do not add significantly to the optimisation time.

Overall this suggests that SM is the algorithm of choice al-

though there is little benefit over TCM.

4 The Kernighan-Lin optimisation al-
gorithm

In this section we outline the key features of an optimisation
algorithm, fully described in [25] and then inx4.3 describe
how it can be modified to optimise for AR. It is a Kernighan-
Lin (KL) type algorithm incorporating a hill-climbing mecha-
nism to enable it to escape from local minima. The algorithm
uses bucket sorting, the linear time complexity improvement
of Fiduccia & Mattheyses, [12], and is a partition optimisa-
tion formulation; in other words it optimises a partition ofP
subdomains rather than a bisection.

4.1 The gain function

A key concept in the method is the idea ofgain. The gain
g(v; q) of a vertexv in subdomainS

p

can be calculated for ev-
ery other subdomain,S

q

, q 6= p, and expresses how much the
cost of a given partition would be improved werev to migrate
to S

q

. Thus, if� denotes the current partition and�0 the par-
tition if v migrates toS

q

then for a cost function�, the gain
g(v; q) = �(�) � �(�

0

). Assuming the migration ofv only
affects the cost ofS

p

andS
q

(as is true for�
t

and�
s

) then
from (1) we get

g(v; q) = AR(S

q

)�AR(S
q

+v)+AR(S

p

)�AR(S

p

�v): (5)
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this gives an expression

gtemplate(v; q) =
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which cannot be further simplified. However, for�
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(wherej(S
q

; v)j denotes the sum of edge weights betweenS

q

andv), we get

gsurface(v; q) =
2

K

1

fj(S

q

; v)j � j(S

p

; v)jg (7)

Notice in particular thatgsurface is the same as the cut-edge
weight gain function and that it is entirely localised, i.e. the
gain of a vertex only depends on the length of its boundaries
with a subdomain and not on any intrinsic qualities of the sub-
domain which could be changed by non-local migration.

4.2 The iterative optimisation algorithm

The iterative optimisation algorithm, as is typical for KL type
algorithms, has inner and outer iterative loops with the outer
loop terminating when no migration takes place during an in-
ner loop. The optimisation uses two bucket sorting structures
or bucket trees, [25], and is initialised by calculating the gain
for all border vertices and inserting them into one of the bucket
trees. These vertices will subsequently be referred to ascan-
didatevertices and the tree containing them as thecandidate
tree.

The inner loop proceeds by examining candidate vertices,
highest gain first (by always picking vertices from the high-
est ranked bucket), testing whether the vertex is acceptable for
migration and then transferring it to the other bucket tree (the
tree ofexaminedvertices). This inner loop terminates when the
candidate tree is empty although it may terminate early if the
partition cost rises too far above the cost of the best partition
found so far. Once the inner loop has terminated any vertices
remaining in the candidate tree are transferred to the examined
tree and finally pointers to the two trees are swapped ready for
the next pass through the inner loop.

The algorithm also uses a KL type hill-climbing strategy; in
other words vertex migration from subdomain to subdomain
can beacceptedeven if it degrades the partition quality and
later, based on the subsequent evolution of the partition, either
rejected orconfirmed. During each pass through the inner loop,
a record of the optimal partition achieved by migration within
that loop is maintained together with a list of vertices which

have migrated since that value was attained. If subsequent
migration finds a ‘better’ partition then the migration iscon-
firmedand the list is reset. Once the inner loop is terminated,
any vertices remaining in the list (vertices whose migration has
not been confirmed) are migrated back to the subdomains they
came from when the optimal cost was attained.

The algorithm, together with conditions for vertex migration
acceptance and confirmation is fully described in [25]. The
impact of non-integer gain values on the bucket sorting is ad-
dressed and discussed in [27].

4.3 Incorporating aspect ratio: localisation

One of the advantages of using cut-edge weight as a cost func-
tion is its localised nature. When a graph vertex migrates from
one subdomain to another, only the gains of adjacent vertices
are affected. In contrast, when using the graph to optimise
AR, if a vertexv migrates fromS

p

to S
q

, the volume and sur-
face of both subdomains will change. This in turn means that,
when using the template cost function (2), the gain of all border
vertices both within and abutting subdomainsS

p

andS
q

will
change. Strictly speaking, all these gains should be adjusted
with the huge disadvantage that this may involve thousands of
floating point operations and hence be prohibitively expensive.
We have tested (Table 5) a version which includes full updating
but, as alternatives, we propose three localised variants:

Surface Gain/Surface Cost (SGSC). The simplest way to lo-
calise the updating of the gains is to make the assumption in
x2.2 that the subdomains all have approximately equal volume
and to use the surface cost function�

s

from (4). As men-
tioned in x2.3 the problem immediately reduces to the cut-
edge weight problem, albeit with non-integer edge weights,
and from (7) only the gains of the vertices adjacent to the mi-
grating vertex will need updating. However, if this assumption
is not true, it is not clear how well�

s

will optimise the AR and
below we discuss some experimental results.

Surface Gain/Template Cost (SGTC). The second method
we propose for localising the updates of gain relies on the ob-
servation that the gain is simply used as a method of rating the
vertices so that the algorithm always visits those with highest
gain first (using the bucket sort). It is not clear how crucial this
rating is to the success of the algorithm and indeed Karypis
& Kumar demonstrated that (at least when optimising for cut-
edge weight) almost as good results can be achieved by simply
visiting the vertices in random order, [17]. We therefore pro-
pose approximating the gain with the surface cost function�

s

from (4) to rate the vertices and store them in the bucket tree
structure, but using the template cost function�

t

from (2) to
assess the change in cost when actually migrating an vertex.
This localises the gain function.

Local Template Gain/Template Cost (LTGTC). A third pos-
sibility we propose is to actually use the template cost function,
�

t

for adjusting the gain, but only adjusting the gain of those
vertices adjacent to the migrating vertex. The motivation is
that the neighbours of the migrating vertex are likely to have
large changes in gain whereas the gains of other vertices are
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P = 16 P = 32 P = 64 P = 128

mesh �

t

�(SGTC)�1

�(LTGTC)�1

�

t

�(SGTC)�1

�(LTGTC)�1

�

t

�(SGTC)�1

�(LTGTC)�1

�

t

�(SGTC)�1

�(LTGTC)�1

uk 1.62 1.00 1.50 1.08 1.41 1.03 1.40 1.00
4elt-dual 1.43 1.79 1.42 1.50 1.37 1.36 1.38 1.31
t60k 1.30 0.90 1.25 0.90 1.29 0.95 1.27 0.87
dime20 1.35 0.82 1.33 0.98 1.30 0.98 1.30 1.17
cs4 1.53 1.15 1.49 1.05 1.51 1.08 1.50 1.04
wing 1.65 1.74 1.65 1.65 1.66 1.62 1.63 1.46
mesh100 1.48 0.91 1.48 0.97 1.52 1.05 1.50 1.01
cyl3 1.52 1.10 1.52 0.99 1.53 1.03 1.52 1.02
Average 1.18 1.14 1.14 1.11

Table 4: Surface gain/template cost optimisation compared with local template gain/template cost

P = 16 P = 32 P = 64 P = 128

mesh �

t

�(TGTC)�1

�(LTGTC)�1

�

t

�(TGTC)�1

�(LTGTC)�1

�

t

�(TGTC)�1

�(LTGTC)�1

�

t

�(TGTC)�1

�(LTGTC)�1

uk 1.64 1.04 1.49 1.06 1.38 0.95 1.38 0.96
4elt-dual 1.23 0.98 1.27 0.96 1.28 1.01 1.28 0.96
t60k 1.33 1.00 1.28 0.98 1.31 1.03 1.31 1.01
dime20 1.39 0.91 1.34 1.01 1.29 0.95 1.29 1.13
cs4 1.48 1.04 1.49 1.04 1.48 1.01 1.49 1.01
wing 1.38 1.01 1.41 1.04 1.41 1.00 1.44 1.02
mesh100 1.52 0.97 1.50 1.01 1.50 1.01 1.51 1.02
cyl3 1.48 1.02 1.51 0.98 1.52 1.01 1.52 1.02
Average 0.99 1.01 1.00 1.02

Table 5: Template gain/template cost optimisation compared with local template gain/template cost

likely to only change marginally (since they are only affected
by the change in volume and surface of subdomains). The dis-
advantage is that the gains will become progressively more and
more inaccurate as the optimisation progresses; however, they
are still likely to be as accurate as using the surface cost.

Finally note that the implementation which, when a vertex mi-
grates from subdomainS

p

to S
q

, involves full updating of the
gains of all vertices in and adjacent to the borders ofS

p

andS
q

is referred to asTemplate Gain/Template Cost (TGTC).

4.4 Results for different optimisation functions

Table 4 compares SGTC optimisation against the LTGTC re-
sults from Table 2. Both sets of results use surface match-
ing (SM). The table is in the same form as those inx3.3 and
show that on average the surface gain function provides re-
sults which are 14.1% worse than LTGTC. Although we do not
show the results here, a similar comparison shows that SGSC
provides results which are 12.2% worse, [27].

Note that in earlier results, [26], we concluded that SGTC was
the algorithm of choice and the reason for this discrepancy
is explained in the test meshes used. In [26] we did not use
the ‘4elt-dual’ and ‘wing’ meshes which contain the highest
mesh grading (the ratio of the largest surface of an element
to the smallest), respectively 2.13e+4 and 1.08e+6. Looking
at the results in more detail then ‘4elt-dual’ gives average as-
pect ratios between 31-79% worse than LTGTC, while ‘wing’
ranges between 46-74% worse. These heavily influence the

average results and the reason we believe this to happen is
that the approximation (3) made inx2.2, that every subdomain
has approximately equal volume, completely breaks down for
meshes with very high gradings. For all the other meshes, the
SGTC optimisation gives average ARs between 20% better to
17% worse than LTGTC and in fact, if we exclude the ‘4elt-
dual’ & ‘wing’ meshes from the results, on average SGTC is
only 0.36% worse than LTGTC. This leads us to suggest that
as a very rough ‘ball park’ figure, if the mesh grading is of the
order103 or less, the surface gain function provides perfectly
good results, but if greater than this a more accurate estimate
of gain is necessary and LTGTC is to be preferred.

Table 5 compares TGTC optimisation, the version which uses
full updating of gains, with LTGTC and shows that on average
LTGTC & TGTC give results which are almost equivalent in
quality (TGTC is in fact 0.50% worse than LTGTC) and hence
that LTGTC provides a very good approximation to TGTC.

Again we are not not primarily concerned with partitioning
times, but it was interesting to note that SGSC & SGTC were
on average 28.41% & 24.38% faster than LTGTC. This is be-
cause the surface cost function,�

s

, is much quicker to calcu-
late when assessing or updating the gains (since it does not

involve calculatingS
d�1

d

p

). TGTC was over 50 times slower on
average than LTGTC and we feel that this justifies the assertion
that full updating of gains is too expensive.

Meanwhile in Table 7 we compare the edge cut produced by
the EC version of JOSTLE with that of the AR version. As
might be expected, EC partitioning produces the best results
(about 14.4% better than AR). Notice, in particular, the results

8



P = 16 P = 32 P = 64 P = 128

mesh �

t

�(EC)�1

�(AR)�1

�

t

�(EC)�1

�(AR)�1

�

t

�(EC)�1

�(AR)�1

�

t

�(EC)�1

�(AR)�1

uk 1.68 1.10 1.55 1.19 1.46 1.15 1.41 1.04
4elt-dual 1.32 1.33 1.28 1.01 1.29 1.06 1.29 1.01
t60k 1.38 1.13 1.31 1.09 1.33 1.09 1.32 1.02
dime20 1.50 1.17 1.45 1.33 1.40 1.33 1.38 1.45
cs4 1.52 1.12 1.54 1.15 1.53 1.12 1.51 1.05
wing 1.60 1.61 1.61 1.53 1.61 1.50 1.53 1.23
mesh100 1.55 1.03 1.60 1.22 1.61 1.24 1.61 1.21
cyl3 1.59 1.25 1.63 1.21 1.61 1.18 1.59 1.17
Average 1.22 1.22 1.21 1.15

Table 6: AR results for the edge cut partitioner compared with the AR partitioner

P = 16 P = 32 P = 64 P = 128

mesh jE

c

j

jE

c

j(EC)

jE

c

j(AR)

jE

c

j

jE

c

j(EC)

jE

c

j(AR)

jE

c

j

jE

c

j(EC)

jE

c

j(AR)

jE

c

j

jE

c

j(EC)

jE

c

j(AR)

uk 182 0.92 305 0.92 512 0.92 809 0.86
4elt-dual 602 0.67 902 0.66 1515 0.76 2364 0.86
t60k 1016 0.99 1552 0.97 2439 0.97 3624 0.95
dime20 1382 0.73 2368 0.82 3717 0.80 5540 0.82
cs4 2496 0.95 3501 0.96 4666 0.93 6077 0.92
wing 5008 0.54 6866 0.50 9401 0.60 11877 0.70
mesh100 4782 0.79 7851 0.93 11100 0.96 15202 0.95
cyl3 11377 1.04 16783 1.02 22369 1.00 29432 0.98
Average 0.83 0.85 0.87 0.88

Table 7:jE
c

j results for the edge cut partitioner compared with the AR partitioner

for the ‘wing’ mesh (the mesh with the highest grading) where
the EC partitioner produces partitions with up to 50% fewer cut
edges than the AR partitioner, but the AR partitioner produces
subdomains with aspect ratios 23-61% better. This demon-
strates that a good partition for aspect ratio is not necessarily a
good partition for edge-cut and vice-versa.

5 Discussion and conclusions

5.1 Comparison with cut-edge weight partition-
ing

In Table 6 we compare AR as produced by the edge cut version
of JOSTLE (EC) described in [25] with the results from Ta-
ble 2. The EC partitioner never produces average aspect ratios
that are actually better than the AR partitioner and on average
gives results which are 19.8% worse than those of the AR par-
titioner and can be up to 61% worse. Notice that there is no real
consistency in the differences however (as there is in the differ-
ences between SGSC & SGTC compared with LTGTC – see
x4.4) and we conclude that although an EC partitioner might
be expected to produce reasonably good AR results (since a
partition with a low value ofjE

c

j is likely to have compact and
therefore well shaped subdomains), targeting the cost function
on AR can provide considerably better results in most cases.

In terms of time, the EC partitioner is about 2 times faster than
AR on average. Again this is no surprise since the AR parti-
tioning involves floating point operations (assessing cost and

combining elements) while EC partitioning only requires inte-
ger operations. However both are extremely fast at producing
high quality partitions.

5.2 Impact on solver iterations

To investigate the impact of different partitions on the con-
vergence of a domain decomposition based preconditioner, we
tested a solver on a number of partitions for two of the meshes.
A heat distribution problem with Dirichlet boundary condi-
tions was solved using the conjugate gradient algorithm sup-
plied in the PETSC library [1] and the domain decomposition
preconditioner implemented in the ParPre package [9]. Un-
fortunately, the parallel mesh environment we used, PadFEM,
[6], is only implemented for 2d applications and so we were
unable to test any 3d examples. In addition, limitations on the
parallel hardware meant that we were only able to use up to
32 processors and the ‘dime20’ mesh was too large to fit into
the memory; we also experienced some convergence problems
with the ‘4elt-dual’ mesh. However, the results presented in
Table 8, where the partitions which have been optimised for
aspect ratio always have fewer solver iterations, do confirm
that the partition can have a significant impact on the conver-
gence (and this is true even for a simple problem such as the
Heat Equation – the effect may be magnified for more com-
plex problems). More importantly for this paper, the results
also suggest that the definition of aspect ratio used here can be
a good cost function to optimise in order to enhance the con-
vergence (although correlation between iterations and aspect
ratio is somewhat tenuous).
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P = 8 P = 16 P = 32

mesh optimisation �

t

jE

c

j iterations �

t

jE

c

j iterations �

t

jE

c

j iterations
uk AR 1.86 109 406 1.62 197 814 1.46 332 1029
uk EC 1.91 99 571 1.68 182 873 1.55 305 1303
t60k AR 1.32 569 2509 1.34 1031 2376 1.28 1607 4451
t60k EC 1.33 539 2635 1.38 1016 2907 1.31 1552 5481

Table 8: The impact of partitions on the number of solver iterations

5.3 Generic multilevel mesh partitioning

In this paper we have adapted a mesh partitioning technique
originally designed to solve the edge cut partitioning problem
to a different cost function. The question then arises, is the
multilevel strategy an appropriate technique for solving parti-
tioning problems (or indeed other optimisation problems) with
different cost functions? Clearly this is an impossible question
to answer in general but a couple of pertinent remarks can be
made:

� For the AR based cost functions at least, the method
seems relatively sensitive to whether the cost is included
in the matching. This suggests that, if possible, a generic
multilevel partitioner should use the cost function to
minimise the cost of the matchings. Note, however, that
this may not be possible, since a cost function which,
say, measured the cost of a mapping onto a particular
processor topology would be unable to function since at
the matching stage no partition, and hence no mapping
exists.

� The optimisation relies, for efficiency at least, on having
a local gain function in order that the migration of a ver-
tex does not involve anO(N=P ) or even anO(N) up-
date. Here we were able to localise the updating of gains
either by (a) making a simple approximation to localise
the cost function, or (b) by just ignoring the updating of
non-adjacent vertices. However, it is not clear that (a) is
always possible or that (b) is always valid. On the other
hand, the underlying approach in (a) which essentially
decouples the gain from the cost does look quite promis-
ing for more general cost functions. In other words, we
can use a local (and possibly crude) approximation for
the gain function and then control the convergence/hill-
climbing of the Kernighan Lin (KL) method, [18], with
the true cost. In some ways, this could be regarded as a
hybrid of the KL method and simulated annealing (SA),
[19], because in some ways you could regard SA as KL
with a random gain function. This concept of decou-
pling the gain and cost functions is part of our ongoing
research.

5.4 Conclusion and future research

We have shown that the multilevel strategy can be modified
to optimise for aspect ratio. In Section 2 we gave a definition
of aspect ratio and showed how the graph could be modified
to take AR into account. In Section 3.2 we described three

matching algorithms (modifications of those already in the lit-
erature) which can be used to take AR into account and in Sec-
tion 3.3 concluded that if it is not taken into account (i.e. ran-
dom matching) the same quality of results cannot be expected.
In Section 4.3 we described four ways of incorporating AR
into a Kernighan-Lin based optimisation algorithm. We then
demonstrated in Section 4.4 that we can approximate the cost
function to localise the updating of gains reasonably success-
fully, provided that the mesh grading is not too high. We also
showed that we can also localise the updating of gains by just
ignoring non-adjacent vertices and concluded that full updat-
ing of gains does not provide any significant advantages (and
costs a lot more). Finally in Sections 5.1 & 5.2 we showed that
partitions with good subdomain aspect ratios can vary greatly
from those with a low edge-cut and demonstrated on a subset of
the meshes that our optimisation algorithm can indeed provide
the convergence benefits for DD preconditioners that other re-
searchers, using different definitions of aspect ratio, suggest,
e.g. [10, 20, 23].

Finally, although a parallel version of JOSTLE exists, e.g. [28],
it is not clear how well AR optimisation, with its more global
cost function, will work in parallel and this is another direc-
tion for future research. Some related work on AR optimisa-
tion already exists in the context of a parallel dynamic adaptive
mesh environment, [7, 8, 22], but none of this work involves
multilevel methods so the question still arises whether parallel
multilevel techniques can help in the optimisation.
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