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Abstract

Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem for
distributing unstructured meshes onto parallel computers. They usually combine a graph contraction algorithm together with
a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost
exclusively to minimise the cut edge weight in the graph with the aim of minimising the parallel communication overhead,
but recently there has been a perceived need to take into account the communications network of the parallel machine. For
example the increasing use of SMP clusters (systems of multiprocessor compute nodes with very fast intra-node communi-
cations but relatively slow inter-node networks) suggest the use of hierarchical network models. Indeed this requirement is
exacerbated in the early experiments with meta-computers (multiple supercomputers combined together, in extreme cases
over inter-continental networks). In this paper therefore, we modify a multilevel algorithm in order to minimise a cost function
based on a model of the communications network. Several network models and variants of the algorithm are tested and we
establish that it is possible to successfully guide the optimisation to reflect the chosen architecture. © 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction either because of memory limitations or computational
demands, or both. Distributing the mesh across a par-
The need for mesh partitioning arises naturally in allel computer so that the computational load is evenly
many finite element (FE) and finite volume (FV) appli- balanced and the data locality maximised is known as
cations. Meshes composed of elements such as trian-mesh partitioning. It is well known that this problem
gles or tetrahedra are often better suited than regularly is NP-complete, so in recent years much attention has
structured grids for representing completely general been focused on developing suitable heuristics, and
geometries and resolving wide variations in behaviour some powerful methods, many based on a graph cor-
via variable mesh densities. Meanwhile, the modelling responding to the communication requirements of the
of complex behaviour patterns means that the prob- mesh, have been devised, e.g. [13].
lems are often too large to fit onto serial computers, A particularly popular and successful class of algo-
rithms which address this mesh partitioning problem
"+ Corresponding author. Tek+44-20-8331-8142; are known as multilevel . algorithms. Thgy usually
fax: +44-20-8331-8665. combine a graph contraction algorithm which creates
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together with a local optimisation method which, 4.5 give a comparison with a combined partitioning
starting with the coarsest graph, refines the partition and processor assignment algorithm. Finally, we sum-
at each graph level. To date these algorithms have marise the findings in Section 5 and suggest some fu-
been used almost exclusively to minimise the cut edge ture research.

weight, a cost which approximates the total commu-  The main contribution of this paper is to describe a
nications volume in the underlying solver. This is an multilevel optimisation algorithm which can be influ-
important goal in any parallel application in order enced to take account of a user supplied model of the
to minimise the communications overhead, however, communications network. As part of that, the princi-
this edge cut model, in itself somewhat inadequate pal innovations are as follows:

[12], assumes a flat or homogeneous communications
network. In fact the trend for connecting together
multi-processor machines results in architectures
which exhibit significant network heterogeneities.
For example the increasing use of SMP clusters (sys-
tems of multiprocessor compute nodes with very
fast intra-node communications but relatively slow
inter-node networks) suggest the use of hierarchical
network models. Indeed this requirement is exacer-
bated in the early experiments with meta-computers *
(multiple supercomputers combined together, in ex-
treme cases over inter-continental networks). In this
paper therefore, we modify the multilevel algorithms
in order to minimise a cost function based on a model
of the communications network supplied by the user
at run-time. We aim to make the optimisation as 1.2. Notation and definitions

generic as possible so that, if and when different ar-

chitectures appear, the algorithms still apply and can Let G = G(V, E) be an undirected graph of

e In Section 3.1, we motivate why the multilevel
paradigm is so good at this task and why we believe
it to provide a powerful solution to the mapping
problem.

e In Section 3.4, we suggest a simplification of the

preference function without the requirement for

O(P?) operations (Where® is the number of pro-

cessors).

In Section 3.4, we describe an algorithm for deter-

mining which processors are adjacent in an arbitrar-

ily processor graph.

e In Section 4.2, we discuss how to construct network
models which can achieve certain mappings.

be used simply by changing the network model. vertices V, with edgesE which represent the data
dependencies in the mesh. The graph vertices can
1.1. Overview either represent mesh nodes (the nodal graph), mesh

elements (the dual graph), a combination of both (the

This paper is organised as follows. First we define full or combined graph) or some other special pur-
both the partitioning and mapping problems and dis- pose representation. We assume that both vertices and
cuss some of the architectures for which we wish to edges can be weighted (with positive integer values)
optimise mappings of unstructured meshes. In Section and thatjv| denotes the weight of a vertexand sim-
2, we discuss the multilevel paradigm and outline a ilarly for edges and sets of vertices and edges. Given
multilevel partitioning algorithm which optimises for ~ that the mesh needs to be distributed’t@rocessors,
cut-weight. In Section 3, we describe how different let P be the set of processors and define a partition
components of this algorithm, in particular the ini- 7 : V — P to be a mapping oV into P disjoint
tial partition (Section 3.2) and the gain and prefer- subdomains§, such thatupS, = V. The weight of
ence functions (Sections 3.3 and 3.4), can be modified @ subdomain is just the sum of the weights of the
to take account of network costs. A large proportion vertices in the subdomains,| = > ,cs, vl and we
of this paper, Section 4, is given over to experimen- denote the set of inter-subdomain or cut edges (i.e.
tal results and, having presented several metrics (Sec-edges cut by the partition) bg (note that|E¢| =
tion 4.1), we discuss different ways of modelling the |L|). Vertices which have an edge . (i.e. those
network (Section 4.2), present the results of the map- which are adjacent to vertices in another subdomain)
ping algorithm (Section 4.3), test different versions of are referred to aborder vertices. Finally, note that
the preference function (Section 4.4) and in Section we use the words subdomain and processor more or
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less interchangeably: the mesh is partitioned ifto
subdomains; each subdomélip is assigned to a pro-
cessorp and each processgrowns a subdomais,.
The definition of the graph partitioning problem
is to find a partition which evenly balances the load
or vertex weight in each subdomain whilst minimis-
ing the communications cost. To evenly balance the
load, the optimal subdomain weight is given By=
[[V|/P]1! and theimbalanceis then defined as the
maximum subdomain weight divided by the optimal
(since the computational speed of the underlying ap-
plication is determined by the most heavily weighted
processor). It is a normal practice in graph partition-
ing to approximate the communications cost|Ay|,
the weight of cut edges or cut-weight and, if we define
the cost functiond = @ (, G) := |E¢|, the usual (al-
though not universal) definition of the graph partition-
ing problem is therefore to find such thats,| < §
and such tha® is minimised.

1.3. The mapping problem

As stated, the usual practice in graph partitioning
is to approximate the communications costdythe
cut-weight, and then attempt to minimise this quantity.
However, for the purposes of this paper we are inter-
ested in parallel machines or networks in which the
communications cost (both latency and bandwidth) is
not uniform across the inter-processor network and in
this case the cut-weight is certainly an inadequate mea-
sure. For instance, a cut edge between two processor
which are ‘neighbouring’ in some sense will contribute
far less to the overall cost than an edge between two
processors which are ‘far apart’. Unfortunately, how-
ever, modelling the true communication cost in detail
is close to impossible as it depends not only on the
latency and bandwidth of point-to-point communica-
tions (a cost which can be instrumented), but also on

603

N represented by a weighted grapliP, £), whereP

is the set ofP processors angd the set of interproces-
sor edges which is complete (i.e. there is an edge for
every pair of processors) and weighted. We can then
define the contribution to the cost function from every
cutedge(v, w) withv € S, andw € S, to be|(v, w)|-

[(p, q)|, the weight of the cut edge multiplied by the
weight of the link over which it passes. Thus given a
partitionz : V — P, the cost function is given by

r= Y [@wwl-|G@),zw)l (1)

(v,w)eE¢

Note that for an interconnect with uniform links, we
have|(p, g)| = C, aconstantforalp, g € P and then
this cost just reduces to the cut-weight (moddlp

Using this new cost function we can then define the
mappingproblem similarly to the partitioning problem
as: given a graplG(V, E) and a processor network
NP, L), findx : V — P, a mapping of vertices to
processors, such thgf,| < S for all subdomainss,,
and such thaf” is minimised.

Note that we distinguish the mapping problem,
which is an extension of the partitioning problem,
from the processor assignment problefgometimes
also called the mapping problem) which, given a
partition of a graph, deals with assigning tResub-
domains to theP processors again to minimise a cost
function such agl”, but typically without changing
the assignment of vertices to subdomains. We discuss
this processor assignment problem further in Section

3.2 and compare mapping to partitioning combined

with processor assignment in Section 4.5.

1.4. The network cost matrix: modelling the
communications overhead

In order to address the mapping problem we first

the network loading and congestion at any given time, consider how to represent the communications net-
a factor which is at best highly complex and indeed Work in terms of N the weighted complete graph.
which can be easily affected by entirely independent Firstly it is useful to motivate some of the ideas with
applications competing for the same resources. For the terminologycompute nodevhich we use to refer
this reason, and to give us a cost function for which 0 @ group of tightly coupled processors. Typically
optimisation is tractable, we assign a weight to the link this might be a shared memory multi-processor —

between every pair of processors giving us a network Sometimes kpown as a symmetric muIti—processor
(SMP)—or in the case of meta-computing, any

form of supercomputer. We shall generally assume
that communications between compute nodes, or

LWhere the ceiling functionx] returns the smallest integer
greater than.
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Fig. 1. Example processor graphs: (a) 1D array; (b) 2D array; (c) cluster hub; (d) meta-computer.

inter-nodecommunications are relatively slow, whilst  puters) connected together. For example in [10] experi-
those within a compute node, artra-nodecommu- mentation was carried out on a meta-computer consist-
nications, are relatively fast and uniform. However, ing of a Cray T3E in Stuttgart, Germany, connected to
the model we use is general and non-uniformity could a Cray T3E in Pittsburgh, USA. In this respect they are
even be built into intra-node links. more extreme examples of network heterogeneities.
Fig. 1 shows some typical processor graphs which  Even given relatively simple processor graphs such
model machine interconnection networks. For exam- as those shown in Fig. 1, choosing the weighting of
ple, Fig. 1(a) is a 1D array, a configuration which may links to model the machine is by no means straight-
not actually occur in practice as a physical machine forward, e.g. [6]. However, for the example proces-
interconnect, but which nonetheless can be a useful sor graphs shown here we might start by weighting
concept, particularly for machines with very high com- all normal width edges by 1 and the thicker edges
munication latencies, since if the mesh can be success-by 2. To weight a link between two processors with-
fully mapped onto this topology, each subdomain will out an explicit edge between them, we can then just
have at most two neighbours. Fig. 1(b) is a 2D array, sum the weights of the shortest path between them.
a topology which has in fact been realised in the past For example, the weight of the link between the two
for the Intel Paragon (and similarly in 3D for the Cray processors at either end of the 1D array, Fig. 1(a), is
T3D). More recently, however, and of particular inter- then 5, whilst the link weight between the two pro-
est for the purposes of this paper, machines have ap-cessors at the extreme right-and left-hand side ends
peared which have a hierarchical network. For exam- of the meta-computer, Fig. 1(c), is4 1+ 2+ 1). It
ple, Fig. 1(c) shows an SMP cluster of four compute turns out (see Section 4.2) that thirsear path length
nodes (each of four processors) with all inter-node (LPL) weighting is not sufficiently distinct and so an-
communications passing through a hub. Meanwhile a other possibility which we use is to square the path
meta-computer is illustrated in Fig. 1(d). Such ma- lengths to give theuadratic path lengt{QPL).
chines are not physically assembled as such but consist This then gives us the complete weighted graph
of two or more compute nodes (typically supercom- described above. In practice, however, we can describe
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Fig. 2. Example network matrices: (a) 1D array; (b) cluster of two compute nodes each with four processors.

the network sufficiently by simply providingraetwork and then migrated vertices farthest away from the cen-
cost matrix(NCM), a P x P matrix of weights mod- tre of the subdomain to an adjacent processor. This
elling the cost of communication between every pair of technique worked reasonably well for mapping onto
processors. In fact the matrix is symmetric (since we 1D and 2D arrays but again it is difficult to see how it
assume that communication in either direction across could be extended to SMP clusters or meta-computers.
the link is equally expensive) and has zeroes down the Perhaps more interestingly, in tests with a solver using
diagonal (since no communication is required from a the resulting mappings on parallel machine with 2D
processor to itself) and so we actually only need to array type architecture, McManus et al. [19] showed
specify the upper diagonal part of the matrix to the that despite an increase in cut-weight the applica-
partitioning code. Some example network matrices are tion scalability and efficiency was much increased us-
shown in Fig. 2 using the QPL model described above. ing a 2D array mapping as compared to a partition-
Fig. 2(a) shows the matrix for a 1D array of eight pro- ing/processor assignment approach (see Section 4.5).
cessors, whilst Fig. 2(b) shows that of a cluster of two Indeed the same was true even for a 1D array mapping

compute nodes each with four processors. with a far greater cut-weight and for certain experi-
ments the efficiency of the 1D mapping even exceeded
1.5. Related work that of the 2D [18].

Another more general approach to the mapping
Despite the fact that the partitioning problem has problem was developed by Pellegrini and Roman
received a lot of attention in recent years, the map- [20,21] and Hendrickson et al. [14,15]. The technique
ping problem has been relatively little studied. Evenin uses recursive bisection of both the mesh (or source
those papers which have considered it the additional graph) and the processor graph (or target graph).
complexity of the problem have led to approaches This means that the partition of the mesh somehow
which are either very limited in application or which reflects the natural partition of the network. How-
focus on particular architectures such as the hyper- ever, additionally within each bisection, apart from
cube. For example, in [8] Dormanns and Heiss de- the cut-weight, vertices are also assigned to proces-
scribe an approach to map onto grid like networks (e.g. sors based on which portion of the parallel machine
the 1D and 2D arrays that we consider) which uses their neighbours have already been assigned to. Pelle-
self-organising maps to geometrically ‘fit' the proces- grini tests the algorithms on a number of architecture
sor grid onto the graph; vertices are then assigned to models and provides some interesting results, whilst
their nearest processor. Unfortunately, however, it is a Hendrickson et al. incorporate the technique within
slow process and it is difficult to see how it could be a multilevel framework (although unlike here as re-
adapted for more irregular networks such as the SMP cursive bisection based method) and generalise the
cluster and meta-computer. idea which (they calskewed graph partitioningto
In an earlier attempt to address this problem, Wal- address other partitioning problems [15].
shaw et al. [26] used graph-based distance functionto More recently, Teresco et al. [23] have discussed a
calculate the ‘width’ of a subdomain (in graph terms) hierarchical model of network performance within a
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dynamic load-balancing framework, although they do A related but more complex issue is addressed by
not describe how the load-balancing is able to incor- Chen and Taylor [6], who examines the balancing of
porate the model in order to optimise the mapping.  computation and communication. For example, if one
Perhaps most interesting for the methods described processor within a compute node is having to do all
here is the work of Chen and Taylor. They have inves- the communication to external compute nodes then it
tigated partitioning for distributed systems and, in [6], should be given less computational load. Once again
provide experimental and theoretical analysis which we have not explored this problem, but believe that
suggests that for architectures such as the cluster andwith a judicious choice of penalty weight, it could be
meta-computer, it can be most beneficial to the effi- handled using the functionality described in the pre-
ciency if all inter-node communication to/from a given vious paragraph. This is essentially the method that
compute node is done by just one processor of the Chen and Taylor use to address the problem although
node. They have also constructed a parallel mapping it does make the assumption that the extra commu-
tool called ParaPART which takes into account the net- nications load can be estimated prior to partitioning.
work costs [7]. This uses a three stage process; firstly In fact the extra communications load is a function
the mesh is partitioned inte parts (wheren is the of the resulting partition and so this assumption may
number of compute nodes) and then as a second stemot be valid. However, building a true representation
the portion of the mesh assigned to each compute nodeof this function into the partitioning cost model may
is partitioned amongst its processors. In a final step be intractable.
the partition for each compute node is retrofitted using
simulated annealing to ensure that only one processor
carries out the communication to/from each compute 2. Multilevel mesh partitioning
node and that this processor has a correspondingly
smaller portion of the mesh because of its additional  In this section, we discuss the multilevel paradigm

communication load. in the context of the mesh partitioning problem and
outline our multilevel algorithm, described in [25], for
1.6. Related issues addressing it. The modifications to the algorithm for

optimising a network based cost function are deferred
We do not address here the issues of inhomogeneoudo Section 3.

CPU performance. In fact this is a somewhat simpler
problem to solve and the software, JOSTLE [25], in 2.1. The multilevel paradigm
which we have implemented and tested the schemes
presented here is able to take this into account using In recent years it has been recognised that an effec-
its integral load-balancing capabilities. For example, tive way of both speeding up mesh patrtitioning algo-
given a graph of say 75 vertices and two processors, rithms and/or perhaps more importantly giving them
with processor 1 twice as fast as processor 2, the usera global perspective is to use multilevel techniques.
may impose a penalty weight (based on the relative The idea is to match pairs of vertices to foctus-
speeds and the total vertex weight; in this case 25) on ters use the clusters to define a new graph and re-
processor 2 to simulate its slower performance. The cursively iterate this procedure until the graph size
load-balancer within JOSTLE then balances the total falls below some threshold. The coarsest graph is then
graph weight plus any penalty weights (in this example partitioned (possibly with a crude algorithm) and the
75+ 25 = 100) and gives an equal share (50) to each partition is successively optimised on all the graphs
processor. Because processor 2 has a penalty weighstarting with the coarsest and ending with the orig-
of 25, its share of the vertices is 25 as compared with inal. This sequence of contraction followed by re-
the 50 of processor 1 and so the partition is balanced to peated expansion/optimisation loops is known as the
reflect the relative performance of the processors. We multilevel paradigm and has been successfully devel-
have not yet tested this functionality in combination oped as a strategy for overcoming the localised nature
with the network optimisation ideas described here but of Kernighan—Lin (KL) [17], and other optimisation
see no reason why it should not work successfully.  algorithms. The multilevel idea was first proposed by
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Barnard and Simon [1] as a method of speeding up Partition expansionHaving optimised the partition
spectral bisection and improved by both Hendrickson on a graphG;, the partition must be interpolated onto
and Leland [13] and Bui and Jones [2], who gener- its parentG;_;. The interpolation itself is a trivial
alised it to encompass local refinement algorithms. matter; if a vertexw € V; is in subdomair§,, then the
Several algorithms for carrying out the matching have matched pair of vertices that it represenis, vy €
been devised by Karypis and Kumar [16], while Wal-  V;_1, will be in §,.

shaw and Cross [25] describe a method for utilising

imbalance in the coarsest graphs to enhance the final2.2. The iterative optimisation algorithm

partition quality.

Graph contraction To create a coarser graph The iterative optimisation algorithm that we use
Gi+1(Vit1, Ej41) from G;(V;, E;) we use a variant  at each graph level is a variant of the KL bisection
of the edge contraction algorithm proposed by Hen- optimisation algorithm which includes a hill-climbing
drickson and Leland [13]. The idea is to find a maxi- mechanism to enable it to escape from local min-
mal independent subset of graph edges, ma#ching ima. Our implementation uses bucket sorting, the
of vertices, and then collapse them. The set is inde- linear time complexity improvement of Fiduccia and
pendent if no two edges in the set are incident on the Mattheyses [9], and the buckets are accessed via a tree
same vertex (so no two edges in the set are adjacent),structure, which we refer to as a bucket tree. The algo-
and maximal if no more edges can be added to the setrithm is a partition optimisation formulation; in other
without breaking the independence criterion. Having words it optimises a partition af subdomains rather
found such a set, each selected edge is collapsed andhan a bisection (this functionality is sometimes re-
the verticesu1, up € V; say, at either end of it are  ferred to as multiwayP-way ork-way optimisation).
merged to form a new vertex € V;;1 with weight The algorithm is fully described and tested in [25].

[v] = |ug| + |uzl. As is typical for KL-type algorithms, the optimisa-

A simple way to construct a maximal independent tion has inner and outer iterative loops with the outer
subset of edges is to create a randomly ordered list of loop terminating when no migration takes place dur-
the vertices and visit them in turn, matching each un- ing an inner loop. It uses two bucket sorting structures
matched vertex with an unmatched neighbouring ver- or bucket trees and is initialised by calculating the
tex (or with itself if no unmatched neighbours exist). gain—the potential improvement in the cost function
Matched vertices are removed from the list. If there (the cut-weight in the classical graph partitioning con-
are several unmatched neighbours the choice of which text) —for all border vertices and inserting them into
to match with can be random, but it has been shown one of the bucket trees. These vertices are referred to
by Karypis and Kumar [16], that it can be beneficial to ascandidatevertices and the tree containing them as
the optimisation to collapse the most heavily weighted the candidate tree
edges and our matching algorithm uses this heuristic. The inner loop proceeds by examining candidate

The initial partition Having constructed the series vertices, highest gain first (by always picking vertices
of graphs until the number of vertices in the coarsest from the highest ranked bucket), testing whether the
graph is smaller than some threshold, the normal prac- vertex is acceptable for migration and then transfer-
tice of the multilevel strategy is to carry out an initial  ring it to the other bucket tree (the tree éfamined
partition. Here, following the idea of Gupta [11], we vertices). If the candidate vertex is found to be accept-
contract until the number of vertices in the coarsest able (i.e. it does not overly upset the load-balance), it
graph is the same as the number of subdomais, is migrated, its neighbours have their gains updated
and then simply assign vertexto subdomains;. and those which are not already in the examined tree
Unlike Gupta, however, we do not carry out repeated are relocated in the candidate tree according to this up-
expansion/contraction cycles of the coarsest graphsdated gain. This inner loop terminates when the can-
to find a well balanced initial partition but instead, didate tree is empty although it may terminate early if
since our optimisation algorithm incorporates bal- the partition cost rises too far above the cost of the best
ancing, we commence on the expansion/optimisation partition found so far. Once the inner loop has termi-
sequence immediately. nated any vertices remaining in the candidate tree are
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transferred to the examined tree and finally pointers properties of the multilevel algorithm. Edges which
to the two trees are swapped ready for the next passcross expensive links are penalised heavily within the
through the inner loop. cost function and so vertices at either end of such
The algorithm also uses a KL-type hill-climbing an edge tend to migrate to more adjacent processors
strategy; in other words vertex migration from subdo- (more adjacent to the processor owning the vertex at
main to subdomain can laecepteceven if it degrades  the other end of the edge) and create a sort of buffer
the partition quality and later, based on the subsequentzone. However, because this occurs high up in the
evolution of the partition, either rejected confirmed multilevel process, where each vertexrepresents
During each pass through the inner loop, a record of many vertices in the original graph, the buffer zone
the optimal partition achieved by migration within which may start off only one vertex wide, can actu-
that loop is maintained together with a list of vertices ally represent reasonably broad regions in the mesh.
which have migrated since that value was attained. If In this way the partition is given a good global qual-
subsequent migration finds a ‘better’ partition then the ity on the coarse graphs which is refined on the finer
migration isconfirmedand the list is reset. Note that graphs.
it is possible to find better partitions despite selecting  Fig. 3 illustrates this process for the t60k mesh (as
some vertices with negative gain because, as the opti-used in the testing, Section 4) on a 1D array of eight
miser runs, the gains of adjacent vertices will change processors. It can be seen (top left) that the coarsest
and so the migration of a group of vertices some graph,Gis, with eight vertices is fairly linear and so
or all of which start with negative gain can in fact the initial partition is reasonably good, although there
decrease the overall cost (i.e. produce a net positiveis a suboptimal cut edge between processor 2 (blue)
gain). Once the inner loop is terminated, any vertices and processor 6 (beige). After a couple of optimi-
remaining in the list (vertices whose migration has sations the mapping algorithm has already started to
not been confirmed) are migrated back to the sub- buffer these two processors away from each other as
domains they came from when the optimal cost was shown by the partition on graptii» with 34 vertices
attained. (top right). By the time the multilevel process reaches
The algorithm, together with conditions for vertex graphGg with 1488 vertices (bottom left) the map-
migration acceptance and confirmation is fully de- ping has succeeded in separating all non-neighbouring
scribed in [25]. processors although the buffer region of processor 4
(green) is only one vertex wide in some parts. How-
ever, in the final partition (bottom right), on graghy
3. Modifying the method for mapping with 60 005 vertices, this has been redressed.

3.1. Motivation
3.2. The initial partition

In this section, we describe the modifications re-
quired to allow the multilevel algorithm to optimise As in the standard multilevel algorithm we contract
a cost function based on network costs. In fact the the graph until the number of vertices in the coarsest
coarsening algorithm is left unchanged and the cost 9raph,G.(VL, EL), is the same as the number of pro-
function is first taken into account when the ver- cessorsp, and assign each coarse vertex to a proces-
tices of the coarsest graph are assigned to fhe sor. However, it makes sense at this point to try and
processors (Section 3.2). The cost is subsequentlymap the vertices so as to minimise the cost function
optimised on each of the multilevel graphs in suc- I" from (1). In other words we wish to minimise
cession by relatively simple changes to the gain and
preference functions (Sections 3.3 and 3.4). A suc- Z [(i, v)| - [ (i), w (). (2)
cessful mapping is then one in which subdomains are (v;,v;)cE,
constructed such that adjacent subdomains generally
lie on adjacent processors. The power of the processSuppose now that we write the coarsest gréghas
to compute such a mapping stems from the global a matrix with theijth entry equal to the weight of the
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Fig. 3. The multilevel mapping illustrated for the mesh t60k on a 1D array with eight processors.

edge between verticag andv; so that one such algorithm based on simulated annealing and
described in [5].
[(vi, vj)| if v;isadjacentto;,
gij=10 if v; is not adjacent to;, 3.3. The gain function
0 onthe diagonal.e.if i = j.

Once the initial partition has been computed, the
multilevel approach uses a modification of the opti-
misation algorithm (outlined in Section 2.2) succes-
sively on each of the coarsened graphs and finally on

Then, since there ar@ vertices inG; and P pro-
cessors, every edge ifi; must be cut and so (2) is
equivalent to minimising

P P the original. As is usual for such KL-like optimisation
DY i algorithms, a key concept in the method is the idea of
i=1j=1 gain. The gaing(v, ¢) of a vertexv in subdomains,

. } can be calculated for every other subdomain,g #
where (/) is the shorthand forr (v;) andny is the p, and expresses how much the cost of a given parti-
kith entry in the NCM (see Section 1.4). tion would be improved were to migrate taS,,. Thus,

In fact this expression is a simplification (in the it ; genotes the current partition and the partition
more general case there is also a linear term) of a i , migrates tas, then for a cost functiow, the gain
well—known optimisation problem, thquadratic as- ¢(v, ¢) = W () — ¥ (). Normally in mesh partition-
signment problem(QAP) [3]. This has been exten- jnq the cost function is simply the total weight of cut or
sively studied since 1957 and is NP-complete [4]. inter-subdomain edged/ (1) = ®(1) = |{(v, w) €
There are many heuristic algorithms which addressthe ¢ . c s andw ¢ § . p # ¢)| and in this case the
problem, some of which are available in a software li- gain is ceflculated asq follows: given a vertexe S,

brary, QAPLIB.? For the results in this paper we use |g e, (v) denote the set of edges fromto vertices in
Sqreq(v) ={(v,w) € E : w € S,}. Then the part of
2 Available from http://www.imm.dtu.digk/qaplib/. the cost function® () associated withy is
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> ler @)=Y lerw)] — le, V)],
r#p reP

If v migrates taS, then the part of the new cosk,(r"),
associated with becomes

> ler@)l =) lerw)] — leg).

r#q reP

©)

No other part of the cost function is affected so the
gain is simply

gain (v,q) = ®(n) — @(7) (4)

= [Der(vn —lep ()| + @o}

reP

— [Der(vn — leg (0| + Cbo] (5)

reP
(6)

where®q simply represents the part of the cost func-
tion unaffected by.

= leg()| = lep (V)]
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= [Zm(vn 1(p, 1)l +Fo:|

reP
- [Der(vn g, )l -H"o] ©
reP
:Z|€r(v)|'(|(l7,r)|—|(q””)|)- (10)

reP

Note that whilst this expression is not in itself difficult
to evaluate, it has complexity (@) and is thus con-
siderably more costly than that for the cut-weight gain
function (6). This additional complexity will have a
bearing on the evaluation of the preference below.

3.4. Setting the preference

The preference of a vertex € S, expresses
the migration that maximises the gain. Thus, if
gain (v,g) = max,gain (v, r) or in other words
the gain of migratingyv to subdomainS, produces
the maximum gain in the cost function over all pos-
sible migrations ofv, then the preference af is set

Recall, however, that in this paper we are interested 10 ¢, Préf (v) = ¢. In the following sections, we
in the mapping cost in which edges between different describe three possible ways of setting the preference.

subdomains are weighted differently depending on

the cost of communication between the processors 3-4-1. Adjacent subdomain preference _
owning these subdomains. Thus the cost associated FOr the cut-weight cost function, it is impossible to

with v e S, is

> ler@)l - 1(p. P,
r#p
where |(p, r)| represents the weight of an edge be-

tween processorp andr. Eq. (7) can more conve-
niently be written as

(7)

D ler @)l - 1(p, 1),
reP

since we can také(p, p)| = 0. Similarly to (3)
the new contribution to the cost if migrates toS,
is

> ler@)l - 1(g, Pl
reP
and so the gain is

gain (v,q) = I'(m) — I'(7") )

achieve a positive gain by migrating a vertex to a sub-
domain to which it is not adjacent and it is thus quite
usual to make a simplification and only maximise the
gain over subdomains adjacent to the vertex. Indeed
most border vertices will only be adjacent to one sub-
domains, and then the preference is simply seyjto
without the need to find a maximum. For those adja-
cent to more than one subdomain, it is still inexpensive
to find the maximum as the number of neighbouring
subdomains is bounded by the degree of the vertex
(which is usually low for graphs arising from FE and
FV applications).

3.4.2. Full processor preference

For optimising a mapped partition, however, it is no
longer true that migrating a vertex to a non-adjacent
subdomain cannot accrue a positive gain. Consider
the graph in Fig. 4(a) being mapped to the processor
graph in Fig. 4(b) with the edges weighted as shown.
Note that this processor graph is simply a 1D array
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Fig. 4. An example mapping: (a) the partitioned graph; (b) the target processor graph; (c) the optimal mapping.

(see Section 1.4) of three processprs; andr with suggest an alternative simplification which retains the
the non-local edge given a weight of 4. Vertex S, spirit of the previous one and for a vertexs Sp seek

is only adjacent to one other subdomainand this the maximum gain over a union of subdomains adja-
cut edge adds a cost of 4 to the cost function (becausecent tov together with processors adjacenitin the

the edge(p, r) is weighted 4 in the processor graph). processor graph.

However, migration ofv to S, does not improve the Looking at the example processor graphs in Fig. 1,
cost and sajain (v,r) = 0. On the other hand, if, itis easy to see which processors are adjacent to each
as in Fig. 4(c),v migrates toS, (to which v is not other, however, for an arbitrary processor graph which
adjacent) the cost is improved by 2 (sing and is simply specified aéP(P — 1) edge weights (see

S, are no longer adjacent) and gain (v,q) = 2. Section 1.4) the processor adjacencies must be deter-

Thus, although one more edge is cut, because of themined. To simply say that processqgrandg are ad-
migration ofv to a non-adjacent subdomain, the cut jacent if the edge weightp, ¢)| is 1 is sufficient for
edges map better onto the least costly edges in thethe 1D and 2D arrays and renders the visual represen-
processor graph. It is also interesting to note that this tation shown in Fig. 1(a) and (b). However, it gives
is the optimal mapping for this graph, despite the fact disconnected graphs in the cases of the cluster hub and
that subdomair$, is disconnected. meta-computer architectures and this can be deleteri-
An obvious conclusion is that the simplification of ous to the optimisation which ideally should migrate
limiting the preference to adjacent subdomains is not vertices to near neighbours; if we restrict the prefer-
appropriate in the mapping case and to set the pref- ence to only the most closely coupled processors, the
erence forv € S, by maximising the gain over all  algorithm is given no information on how to minimise
r # p. This ensures that the method finds the maxi- the inter-node links.
mum gain, however, it does mean that, since the gain We therefore determine the processor adjacencies
calculation has complexity @), the preference cal- by sorting th%P(P —1) edges into sets distinguished
culation is @ P?) because we must calculate the gain by weight (i.e. set 1 contains edges of weight 1, set

for all P — 1 possible migrations. 4 contains edges of weight 4, etc.) and including all
those with minimum weight in the processor adja-
3.4.3. Adjacent subdomain/processor preference cency graph. We then test if this graph is disconnected

For small numbers of processom, thisisnotase-  with a breadth first search from any one of the pro-
rious overhead, however, calculating gains and prefer- cessors. If it fails to span the graph (visit all the pro-
ences is a fairly fundamental operation in the optimi- cessors), then the graph is disconnected and we add
sation algorithm and for large numbers of processors in the next set of edges. This process is repeated until
it can be prohibitive to compute so many gains, many a connected graph, the processor adjacency graph, is
of which may be far from optimal. For this reason we recovered.
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Note the distinction between the two representa- nodal graphs (where the mesh nodes are partitioned)
tions of the network —the processor graph(P, £) and dual graphs (where the mesh elements are parti-
or NCM has P vertices and%P(P — 1) edges and  tioned). None of the graphs are weighted; such graphs
is a complete graph (i.e. for evepy, g € P there is are not widely available since most applications do not
an edge(p, g) € L), whilst the processor adjacency accurately instrument costs and it is difficult to draw
graphN’(P, L") has P vertices but a subset of edges meaningful conclusions from the few examples that
L' c L (the minimally weighted subset of edges suf- we have access to.
ficient to connectV’). Table 1 gives a list of the graphs, their sizes, the

maximum, minimum and average degree of the ver-
3.4.4. Summary tices and a short description. The degree information

Returning to the preference, this then gives us three (the degree of a vertex is the number of vertices ad-

possible functions to choose from. In order of compu- jacent to it) gives some idea of the character of the

tational complexity:

o the adjacent subdomain preference function for

for short) where a vertex’s preference for migration
is selected from subdomains to which it is adjacent;
the adjacent subdomain/processor preference func-
tion (or fsp) where, additionally, the preference can
be selected from processors adjacent in the proces-
sor graph to the processor which owns the vertex;
the full processor preference function (fy) where

the preference is selected from among every pro-
cessor.

Of these threefp is always of complexity ©P?) to
calculate, but is the true representation for calculat-
ing the maximum gain. The other twg and fsp
cannot guarantee to find the maximum gain, bup if

is not too small are unlikely to be @2). In Sec-
tion 4.4, we test the three possibilities and determine
the best function to use in terms of complexity and
results.

4. Results

We have implemented the algorithms described
here within the framework of JOSTLE, a mesh par-
titioning software tool developed at the University
of Greenwich, and freely available for academic and
research purposes under a licensing agreerhéfie
experiments were carried out on a DEC Alpha with a
466 MHz CPU and 1 GB of memory.

The test graphs have been chosen to be a repre-
sentative sample of medium to large scale real-life
problems and include both 2D and 3D examples of

3 Available from http:/Awww.gre.ac.uk/jostle.

graphs. These range from the relatively homogeneous
dual graphs, where every vertex represents a mesh el-
ement, in these cases a triangle (2D) or tetrahedron
(3D) and so every vertex has at most three or four
neighbours respectively, to the more complex nodal
graphs with their more irregular interconnections. As
the graphs are not weighted, the number of vertices
in V is the same as the total vertex weight| and
similarly for the edge<.

4.1. Metrics

Unfortunately, there is no clear metric to measure
the quality of a partition and so we use a variety as
follows:

e Cut-weight(®): As discussed in Section 1.2 the
classical, although disputed, measure for partition
quality is the total weight of cut edges or cut-weight.
Thus if E; denotes the set of cut edges then the
cut-weight® is given by

®=|El= Y |wuwl

(v,w)EE:

This metric approximates the total communication
volume for the sort of homogeneous graphs which
represent meshes (although see [12,22] for further
discussion). However, it is not appropriate for het-
erogeneous networks since a cut edge between ver-
tices on ‘neighbouring’ processors does not have
the same impact on the runtime of the underlying
solver as a cut edge between ‘non-neighbouring’
processors.

Network cos{(I"): A better metric is the (network)
cost function which we are trying to minimise



C. Walshaw, M. Cross/Future Generation Computer Systems 17 (2001) 601-623 613

Table 1
A summary of the test meshes
Mesh Size Degree Type

\% E Maximum Minimum Average
crack 10240 30380 9 3 5.93 2D nodal graph
delt 15606 45878 10 3 5.88 2D nodal graph
t60k 60005 89440 3 2 2.98 2D dual graph
dime20 224843 336024 3 2 2.99 2D dual graph
144 144649 1074393 26 4 14.86 3D nodal graph
m14b 214765 1679018 40 4 15.64 3D nodal graph
cyl3 232362 457853 4 2 3.94 3D dual graph
meshlm 1119663 2212012 4 2 3.95 3D dual graph

within the optimisation and which, from (1), is _ Lawer @), ()]

A

given by O(Eq)
Ywwee ;W @@@), w(w)l T
r= > |wwl- @, w)l. = oS =

(v,w)eE¢
However, this is not true for weighted graphs.
Recall from Section 1.3 that is the mapping of e Average path length/unweighted dilati¢f): Re-

vertices to processors, so thafv) represents the lated to the average dilation is the average path
processor which owns and hence the network length

edge weight|(w (v), m(w))| = |(p,q)| for two

processory, ¢ is just the entrynpg of the NCM. L waerl @), T ()

However, as we will see in Section 4.2, the NCM O(Eo) ’

is constructed so as to guide the mapping appropri-
ately rather than measured from machine response
times, and in this sense the network cast,is a
somewhat abstract measure.

e Average dilation(A): Perhaps a better measure for
comparing different partitions, particularly to quan-
tify the success in following the guidance given
by the NCM, is the average dilation. This measure
describes the average link weight (averaged over
all of the cut edges). In other words, we can define  Note that in terms of interpretation of the results,

where [(p, g) is just the minimum path length
(number of edges) in the processor graph between
processorg andg. In fact if we define the weight
of a link between two processors to be the path
length thenA and § are the same. However, we
believe that in order to heavily penalise cut edges
across non-local links, it is better for the link
weights not to be a linear function of path length.

the average dilation as what we typically look for is low average dilation
(i.e. most of the communication occurs across the
Ao 2wk T W), T(w))] fastest links). For architectures such as the cluster and
O(E¢) ’ meta-computer a certain amount of communication in-
evitably crosses the slower inter-node links, but if we
where QEc) is just the number of edges ifi. In can keep it to a small proportion then it should not

fact, because all the meshes have unit edge WeightSSk)W the app"cation too much. Indeed even for ar-
(i.e.|(v,w)| = 1forall (v, w) € E and hence all  chitectures such as the 1D and 2D arrays, it can be
(v, w) € Ec), the size ofEc is the same as the the case that single message interprocessor latencies
cut-weight, QE¢) = |E¢| = @ and hence the av-  and bandwidths are almost identical for both ‘nearby’
erage dilation is just the network cost divided by and ‘distant’ processors. However, in this case we still
the cut-weight: wish to achieve a good mapping of the mesh to the
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network to avoid the congestion which occurs when and response times measured) would be likely to
most of the processors have to communicate across theshow roughly similar rapidity for all intra-node com-
machine rather than locally. Once again success is in- munications and roughly similar slowness for any
dicated by lowaveragedilation since a small amount inter-node messages. The NCM would therefore be
of non-local communication should not overly impede a good representation of the network but not a good
the application. enough blueprint for guiding the mapping.

For a final comparison metric we also use the par- The next question that arises, given that instru-
titioning run-time, z, for some of the tests. We also mentation of the network may be insufficient for the
measure the imbalance (as defined in Section 1.2), butmapping task, is what value to give the weights. It
we do not record it here since in all the experiments it is helpful here to consider one of the simplest archi-
did not exceed the specified tolerance (set at run-time) tectures, the 1D array. In fact a successful mapping

of 1.03 or 3% imbalance. for a 1D array usually corresponds to a slicing of the
domain and tends to result in long thin subdomains.
4.2. Network modelling However, it is not an entirely unreasonable architec-

ture to map onto and, for example, on systems which

The ultimate aim of this work would be to derive a are very heavily latency dominated (e.g. networks of
generic optimisation technigue which can map a mesh workstations), the minimum possible number of com-
onto a parallel interconnection network given an ap- munication startups per processor is 2 (except for those
propriate NCM. In an ideal world one could imagine at the ends of the array) and it can be worth putting up
that it should be possible for the optimisation soft- with longer subdomain boundaries and hence longer
ware to run some quick tests on the parallel network messages in order to achieve this [18]. The 1D array
in question, measure the response times and derivethus gives us a very simple but not unrealistic archi-
an NCM automatically. However, we do not believe tecture on which to do some initial tests. We can then
that such a technique would necessarily provide a define the NCMV, to benpg = |p —qgl*, i.e. the path
good NCM. As mentioned in Section 1.5, Chen and length between any two processors to some power
Taylor [6], suggest that it can be most beneficial to  In Tables 2 and 3, we test three different network
efficiency if all inter-node communications to/from a models, the linear, quadratic and cubic path length
given compute node is done by just one processor of models (or in other words. = 1,2,3), of a 1D
the node (as we have suggested in the way that wearray. In order to compare them fairly (i.e. in the
have drawn Fig. 1(c) and (d)). The NCM should there- same metric) we have run the mapping algorithm
fore be weighted such that one processor per nodefor all the meshes using the three valuesioénd
has easier access to remote processors. However, anyhen for each result measured the average path length
instrumentation of such architectures (e.g. ping-pong (which is the same as the average dilation for the LPL
style tests where messages are passed back and fortimodel).

Table 2
Comparison of average path length for a 1D array for different network matfels:the QPL modelg! is LPL ands® cubic path length
Mesh P=38 P =16 P =32

82 81/82 83/82 82 81/82 83/62 62 61/82 53/52
crack 1.00 1.04 1.00 1.00 1.33 1.00 1.00 1.42 1.00
delt 1.00 1.24 1.00 1.00 1.61 1.00 1.01 1.66 1.00
t60k 1.00 1.16 1.00 1.00 1.20 1.00 1.00 1.41 1.00
dime20 1.00 1.36 1.00 1.00 1.55 1.00 1.00 1.94 1.00
144 1.00 1.04 1.00 1.02 1.30 0.98 1.13 1.35 0.91
ml4b 1.00 1.06 1.00 1.00 1.07 1.00 1.03 1.23 0.99
cyl3 1.00 1.36 1.00 1.00 1.97 1.00 1.01 2.40 1.00
meshlm 1.00 1.15 1.00 1.00 1.35 1.00 1.00 1.33 1.00

Average 1.18 1.00 1.42 1.00 1.59 0.99
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Table 3
Comparison of cut-weight for a 1D array for different network modéls:is the QPL model®; is the LPL and®3 the cubic path length
Mesh P=8 P=16 P =32

@, D1/ P2 D3/ D) D2 D1/P2 D3/ D3 D3 D1/P2 D3/ D)
crack 1179 1.00 1.03 2376 0.78 1.00 5167 0.68 1.01
delt 1279 0.71 0.92 2430 0.64 1.15 5045 0.57 1.00
t60k 647 0.85 1.24 1353 0.81 1.14 3062 0.68 0.99
dime20 1023 0.94 1.13 2547 0.69 0.84 4555 0.66 1.14
144 47572 0.88 0.92 117826 0.64 0.90 205841 0.62 1.00
m1l4b 37792 1.29 1.14 76136 0.90 1.39 174113 0.75 0.92
cyl3 14905 0.75 1.04 29819 0.55 1.01 63577 0.41 1.05
meshlm 22075 0.80 1.02 44841 0.73 1.18 86239 0.70 1.04
Average 0.90 1.05 0.72 1.08 0.63 1.02

Table 2 shows a comparison of these three values bic model appears to enforce the mapping too rigidly
of A as follows. For each value @f, the first column and, as a result, ends up with a worse cut-weight than
showss?, the average path length for the quadratic the quadratic model (on average between 8% worse
model (A = 2), whilst the second and third columns for P = 16 to 2% worse forP = 32).

show the average path length for the lingar= 1) From these two tables (and other experimentation
and cubic(x = 3) models, respectively, scaled BY. not reported here), we conclude that the model of
Thus for the crack mesh artl = 8, the valugs!/52 = network costs must have weights sufficiently large

1.04 indicates that the average path length for the to heavily penalise communication across undesirable
linear model is 4% worse than that for the quadratic links but that enforcing this too rigidly can actually
model. Since a figure df* = 1.00 indicates complete  be detrimental to the partitioning without significantly
success in the mapping task (since no message has t@nhancing the mapping. On this basis we use the QPL
pass between non-neighbouring processors) we canmodel for the remainder of the experiments.

see that the quadratic model is very successful with  In the following sections, we test the algorithms on
most values 082 = 1.00 or close to it. In fact the cu-  four different classes of architecture (as illustrated in
bic model is marginally better (on average about 1% Fig. 1) and on each architecture for three value# pf
better for P = 32 as indicated by the average value the number of processors. We informally notate each
of 3/8% = 0.99). However, the linear model is con-  architecture as follows:

siderably worse (on an average 18% worseHos 8

to 59% worse forP = 32). We believe that this is be- P=8 P =16 pP=32

cause cut edges between non-neighbouring processors

are not sufficiently penalised in the cost function. 1D array 8x 1 16x 1 32x1
Looking at the results in Table 3 (which are pre- 2D array 4x 2 4x4 8x4

sented in the same format as Table 2 with the results Cluster 2[4] 4[4] 8 [4]

of the linear and cubic models scaled by those of the Meta-computer 2 [4] 2 [8] 2 [16]

guadratic), we see the consequences of the choice of
the model on the cut-weight. It is almost inevitable In this notation the networks in Fig. 1 can be
that the mapping task will be detrimental in some way described as: (a)%1, (b) 6x 4, (c) 4 [4] and (d) 2 [8].

to the cut-weight (this is particularly true for the 1D In the corresponding NCMs for the 1D and 2D ar-
array architecture) and so we see conversely that therays, given as lengtk height, processor connections
linear model which is not so good for mapping is con- to the immediate left or right and up or down neigh-
siderably better for optimising the cut-weight (on av- bours have a weight of 1. Any other connections be-
erage 10% better foP = 8 to 37% better forP = tween processorg and g say have a weight of?,
32). On the other hand, we can also see that the cu-where!/ is the minimum path length along edges of
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Table 4
The results of the mapping algorithm for a 1D array architecture showing the cut-véejgivierage dilatiom and CPU time in seconds,
Mesh P=38 P =16 P =32

[ A [ A [
crack 1179 1.00 0.27 2376 1.00 0.48 5167 1.01 1.08
delt 1279 1.00 0.25 2430 1.01 0.53 5045 1.02 1.35
t60k 647 1.00 0.57 1353 1.00 0.68 3062 1.00 1.53
dime20 1023 1.00 2.53 2547 1.00 2.88 4555 1.06 3.55
144 47572 1.00 5.17 117826 1.06 10.32 205841 1.49 18.03
mil4b 37792 1.00 7.48 76136 1.01 8.95 174113 1.12 19.48
cyl3 14905 1.00 7.92 29819 1.00 14.13 63577 1.03 36.85
meshlm 22075 1.00 24.03 44841 1.00 50.42 86239 1.00 65.90

unit weight. For the cluster and meta-computer archi- length of 2. The value of the corresponding entry in
tectures, the notation[c] refers ton compute nodes  the NCM, npq, is once again defined &% wherel is
each ofc processors. Each compute node is a com- the minimum path length betwegnandg.

pletely connected subgraph and any intra-node edges

have a path length of 1. For each compute node one of4.3. Mapping results

the processors is nominated as being responsible for

remote communications and all inter-node edges be- In Tables 4—7 we show the mapping results for the
tween two of these nominated processors have a pathfour different architecture classes, 1D and 2D arrays,

Table 5
The results of the mapping algorithm for a 2D array architecture showing the cut-véejgherage dilatiom and CPU time in seconds,
Mesh P=8 P =16 p =32

] A ] ]
crack 882 1.01 0.20 1527 1.01 0.27 2272 1.03 0.43
delt 765 1.00 0.22 1481 1.02 0.35 2391 1.02 0.57
t60k 527 1.00 0.55 1240 1.00 0.68 1992 1.00 1.08
dime20 817 1.00 2.55 1457 1.00 2.72 3014 1.00 3.30
144 40159 1.02 5.07 61461 1.03 6.07 93511 1.06 9.43
ml4b 37772 1.02 6.83 56920 1.02 8.05 102969 1.04 11.85
cyl3 9107 1.00 5.08 14697 1.00 7.52 22409 1.00 10.60
meshlm 14021 1.00 20.95 29333 1.00 26.03 48926 1.00 36.73
Table 6
The results of the mapping algorithm for a cluster architecture showing the cut-wjgiterage dilatiord and CPU time in seconds,
Mesh P=38 P =16 P=32

] A ] ]
crack 940 1.67 0.20 1597 1.74 0.30 2781 1.87 0.47
delt 811 1.51 0.22 1478 1.82 0.37 2531 1.84 0.57
t60k 581 1.46 0.50 1197 1.66 0.75 2161 1.78 1.08
dime20 922 1.79 2.47 1854 1.83 2.78 3190 1.78 3.33
144 35068 1.62 4.88 67452 1.92 7.38 106394 2.03 9.88
ml4b 29580 1.48 6.45 65217 1.76 8.38 129350 1.94 13.70
cyl3 10157 1.73 5.02 16743 1.85 8.55 25842 1.87 12.57
meshlm 19017 1.79 22.28 30860 1.74 28.88 59443 1.88 49.78
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Table 7

The results of the mapping algorithm for a meta-computer architecture showing the cut-weigkierage dilationrA and CPU time in
secondsy

Mesh pP=38 P =16 P =32

A T [} A T [} A T
crack 940 1.67 0.20 1506 1.45 0.30 2143 1.32 0.42
4elt 811 151 0.20 1203 1.38 0.35 1817 1.23 0.47
60k 581 1.46 0.50 1045 1.26 0.65 1702 1.19 0.88
dime20 922 1.79 2.48 1594 1.46 2.58 2658 1.31 3.17
144 35068 1.62 4.85 53289 1.44 5.62 77251 1.39 7.83
m14b 29580 1.48 6.43 49699 1.24 7.42 75928 1.18 10.63
cyl3 10157 1.73 4.98 14893 1.54 7.20 19224 1.37 11.33
meshim 19017 1.79 22.35 29880 1.41 26.70 42338 1.28 33.32
cluster and meta-computer. For each valuePoive diagonal neighbours are adjacent across a subdomain

give the cut-weightg, the average dilatiom}, both as interface, diagonal communication is bound to arise.
described in Section 4.1, and the partitioning time in However, it can be seen from the dilation figures that
secondsz. Although the cut-weight figures are fairly  this is kept relatively very low since the values far
meaningless in isolation, we will see in Section 4.5 never rise above 1.06.
(by comparing them to those from the standard par- The cluster and meta-computer architectures
titioning for cut-weight) that partitioning for network  (Tables 6 and 7) are a somewhat different prospect
mapping does not impose too great a penalty on the since there is a certain amount of traffic which must
cut-weight (e.g. about 25% for a 16 processor cluster travel across the slower inter-node links (which are
and only around 12% for a meta-computer). weighted with a value of at least 4 in the NCMs).
More interesting are the average dilation figures. However, in all cases but one (cluster architecture,
For example, for a 1D array, an average dilation of P = 32, mesh 144) the average dilation is below 2.00
A = 1.00 would indicate complete success in the map- indicating the success of the mapping (contrast this
ping task as no message would have to pass betweerwith the unmapped figures in Section 4.5).
non-neighbouring processors. In that respect we can With regard to timings, as can be seen the mapping
see that the figures in Table 4 are very good indeed — algorithm is very fast. Ever for mesh1im (with over a
in all cases forP = 8 and most forP = 16 the value million vertices) it normally takes less than a minute
for A is indeed 1.0. Obviously, the mapping is more and for the smaller meshes it can be just fractions of
difficult as P increases (since the subdomains must a second. The timings also give a hint as to the ad-
become longer and thinner), but in only two cases for ditional complexity of the problem. For example, the
P = 32 (for the meshes 144 and m14b) does the value 1D array mapping is probably the most challenging
of A exceed 1.1. and takes the longest to partition, whilst the 2D and
The 2D results in Table 5 are perhaps even better. meta-computer architecture, where the relative con-
Once again an average dilation 4f= 1.00 indicates nectivity of the processor graph is much greater, are
complete success, however, this is not easy to achievefastest to compute. Once again we will contrast this
for an unstructured mesh (as compared to a structuredwith a standard cut-weight partitioner in Section 4.5.
mesh with a simple stencil) as a result of the diagonal
processor links. For the NCMs we have chosen, these4.4. Preference tests
diagonal links (i.e. those which run between neigh-
bouring processors one link to the left or right of each  In Tables 8 and 9 we compare the different versions
other and one link up or down) have weight of 4 (the of the preference function as described in Section
path length squared). Since it appears to be almost im-3.4. Here we just consider their effect on the optimi-
possible to partition certain of these meshes so that nosation cost function]”, and partitioning timer, and,
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Comparison of mapping costs;,, for a cluster architecture for different preference functiafig; is where the preference is chosen from
neighbouring subdomains and process@ksfrom neighbouring subdomains ardd from all processors

Mesh P=8 P =16 P =32

I'sp Is/Tsp I'p/Tsp I'sp Is/Tsp T'p/Tsp Isp Is/Tsp I'p/Tsp
crack 1567 1.04 0.99 2782 1.03 1.00 5208 1.14 0.98
4elt 1228 1.00 1.00 2690 121 1.06 4655 1.17 1.08
t60k 851 111 1.03 1986 1.15 0.97 3841 1.35 1.00
dime20 1648 1.37 1.02 3396 1.52 0.90 5674 131 0.97
144 56839 1.00 1.00 129839 1.02 1.03 216042 0.97 0.99
m14b 43875 0.98 0.99 114975 0.99 0.97 250616 0.99 0.92
cyl3 17531 1.09 1.08 31050 1.07 0.99 48372 1.19 1.06
meshim 34131 0.99 0.85 53741 1.14 1.04 111661 1.10 1.00
Average 1.07 1.00 1.14 1.00 1.15 1.00
Table 9

Comparison of mapping times, for a cluster architecture for different preference functiong:is where the preference is chosen from
neighbouring subdomains and processagsfom neighbouring subdomains ang from all processors

Mesh P=38 P =16 P =32

Tsp Ts/Tsp TP /Tsp Tsp Ts/Tsp TP /Tsp Tsp Ts/Tsp Tp/Tsp
crack 0.20 1.10 1.85 0.30 1.10 4.17 0.47 0.96 12.66
4elt 0.22 1.00 1.45 0.37 1.00 3.84 0.57 0.96 14.60
t60k 0.50 1.04 1.40 0.75 0.89 2.56 1.08 0.97 11.00
dime20 2.47 1.04 1.13 2.78 0.97 1.45 3.33 0.94 4.90
144 4.88 1.01 1.91 7.38 1.01 2.54 9.88 1.05 7.39
ml4b 6.45 0.99 1.43 8.38 0.97 2.69 13.70 1.01 5.85
cyl3 5.02 1.09 1.93 8.55 0.93 3.31 12.57 0.85 13.78
meshlm 22.28 1.04 1.55 28.88 0.92 2.88 49.78 0.99 14.49
Average 1.04 1.58 0.97 2.93 0.97 10.58
Table 10

Averages over all meshes of partition cost ratios and partitioning time ratios for different preference furtfiaimoses the preference
from neighbouring subdomains and processggsirom neighbouring subdomains anfk from all processors

Architecture P=28 P=16 P=32

Jsl fsp fr/fsp fs/fsp frlfsp Js/fsp fr/fsp
Partition costs I”
1D array 1.23 1.02 1.65 0.96 1.71 0.99
2D array 1.07 1.00 1.05 1.00 1.10 1.01
Cluster 1.07 1.00 1.14 1.00 1.15 1.00
Meta-computer 1.07 1.00 1.11 0.98 1.11 0.98
Partitioning times
1D array 1.00 191 0.89 3.59 0.89 13.63
2D array 0.98 1.48 0.95 3.56 0.98 10.67
Cluster 1.04 1.58 0.97 2.93 0.97 10.58
Meta-computer 1.06 1.59 0.98 2.86 0.92 7.78
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as an example, we focus on the cluster architecture. marises each by presenting the averages (i.e. the final
Table 10, meanwhile, summarises results for all the row of Tables 8 and 9 are duplicated). As before, the
four architectures under scrutiny. Recall that the pref- I'sp results are on average almost identical to ife
erence function selects which subdomain a vertex results and are sometimes even better than them (1D
would prefer to migrate to and, if computed so as array, P = 8 and 2D array,P = 32). However, the

to take every possibility into consideration, results in s results can be considerably worse, particularly for
an Q(P2) operation which must be carried out many the 1D array (up to 71% worse on average for=
times throughout the course of an optimisation. We 32). The timings also confirm those in Table £
denote the cost function and partitioning time for is marginally faster overall thams,, but f» is much

this full preference evaluationfp, by I'r and tp. slower (over 13 times slower for the 1D array and
However, we have also (in Section 3.4) suggested P = 32).
two variants (approximations) with lower complex- In summary then, these results demonstrate that

ity, the adjacent subdomain preferengg, (as used not only is fsp the adjacent subdomain/processor
in cut-weight optimisation) with metrics denoted preference function, a valid simplification ofp,
by I's and s and the adjacent subdomain/processor the full preference function, but also th@b can be
preference,fsp, a search over adjacent subdomains prohibitively expensive to use. Meanwhilgs, the
and processors adjacent in the processor graph (withsimplification that a cut-weight partitioner could use
metrics denoted bysp and tsp). without performance degradation, does not produce
Table 8 shows the cost function results for the clus- mappings of the same quality and does not even ap-
ter architecture broadly presented in the same format pear to offer much of an advantage in terms of faster
as Table 2. For each value #f the first column gives  partitioning times. For these reasons, all the other
the results forfsp, whilst the second and third columns  results in this paper have been computed ugigg
show those forfs and fp scaled byfsp. Thus for the
crack, mesh and® = 8, I' is 4% worse forfs than 4.5. Comparison with processor assignment
it is for fsp(I's/T'sp = 1.04). However, it is the aver-
ages (bottom row) which shows the overall trend of In this final section of results we compare the map-
the results. For all values dt, both fp and fp give ping algorithm with the two stage approach of par-
the same cost function results on average (although titioning for cut-weight followed by the mapping of
there is up to 15% variation in the individual figures) the subdomains to processors (often known as proces-
indicating that the simplification offp to fsp does sor assignment). The partitioning algorithm is just the
not significantly affect the overall quality. However, multilevel algorithm outlined in Section 2 (and fully
simplifying further to fs does impact on the quality described in [25]), whilst the processor assignment
(on average rendering it 7% worse fBr= 8 to 15% which seeks to map the subdomains graph onto the
worse forP = 32). processor graph, whilst minimising the cost is once
Considering the timings shown in Table 9, however, again the QAP described in Section 3.2 and uses the
we see that, as we would expegtp with complexity algorithm outlined there.
O(P) is considerably faster thayip with its O(P?) This type of two stage approach has been suggested
complexity and that this difference is greatly exagger- previously (e.g. [26]), but since the network costs are
ated asP increases (e.g. the mapping is over 10 times nottaken into account during the partitioning stage, the
faster on average faP = 32). Interestingly,fs, which subdomains are not ‘shaped’ so as to take into account
is simpler again tharfsp, although generally faster can  of the processor topology and the overall combination
sometimes be slower (up to 15% fBr= 32 with the may be far from optimal.
cy13 mesh). We believe that this is because the algo- The tests also give a good comparison of the map-
rithm is unable to produce such high quality partitions ping algorithm against standard cut-weight partition-
and thus the outer loop of the optimisation (see Sec- ing (with no consideration of network cost) since the
tion 2.2) takes longer to converge. assignment stage is very rapid (an{f) algorithm
To demonstrate that these figures hold for all four of where the number of processoPs <« V, the num-
the architectures under consideration, Table 10 sum- ber of graph vertices) and does not increase the par-
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Table 11 Table 13
The average dilation for processor assignment, compared with The average dilation for processor assignment, compared with
that for mapping,Am, on a cluster architecture that for mapping,Am, on a meta-computer architecture
Mesh P=28 P =16 P =32 Mesh P=8 P =16 P =32

Ap  Ap/Am Ap  Ap/Am Ap  Ap/An Ap  Ap/Am Ap  Ap/Am Ap  Ap/Am
crack 3.86 231 415 2.39 5.76 3.08 crack 3.86 2.31 2.83 1.95 2.48 1.88
delt 3.44 2.28 485 2.66 476 2.59 delt 3.44 2.28 294 213 220 1.79
t60k 2.40 1.64 3.95 2.38 484 272 t60k 240 1.64 2.02 1.60 1.75 1.47
dime20 3.58 2.00 3.84 210 408 2.29 dime20 3.58 2.00 251 1.72 199 152
144 423 261 5.79 3.02 6.38 3.14 144 423 261 3.62 251 2.65 1.91
ml4b 3.79 256 403 2.29 5.85 3.02 mil4b 3.79 2.56 2.05 1.65 190 161
cyl3 5.26 3.04 6.18 3.34 6.69 3.58 cyl3 5.26 3.04 423 275 340 248
meshim 3.84 2.5 424 244 5.75 3.06 meshlm 3.84 2.15 3.26 231 2.86 2.23
Average 2.32 2.58 2.93 Average 2.32 2.08 1.86

titioning time very much. In addition, the processor rithm (denotedAn, and®p,). Thus for the crack, mesh

assignment algorithm does not change the cut-weight and P = 8, the partitioning/processor assignment al-

achieved by the partitioner (since it merely reassigns gorithm has average dilation 2.31 times worse than the

subdomains to processors). The cut-weight partitioner mapping algorithm. In fact, on average the situation is

alone would therefore produce the same cut-weight re- worse and the average dilation is between 2.32 times

sults and marginally faster timings, but mapping costs worse forP = 8 and 2.93 times worse faP = 32

and average dilation figures that are never better andindicating that the mapping algorithm certainly makes

may be considerably worse than if the processor as- a considerable difference.

signment algorithm is used in addition. As stated previously mapping does have a negative
Tables 11 and 12 focus on a comparison of results impact on the cut-weight, but as we can see from Ta-

for the cluster architecture and show average dilation, ble 12, only fairly minimally forP = 8, i.e. just 19%

A, and cut-weight@. As previously the first column  on average, rising to around 37% fBr= 32.

for each value oP shows the average dilation,, and Tables 13 and 14 present the same information for

cut-weight, @ p, respectively, for the combined par- the meta-computer architecture. In fact, with the rel-

titioning/processor assignment algorithm, whilst the atively richer structure in the processor graph (recall

second column shows these figures scaled by the re-that this features only two fully connected compute

spective figures from Table 6, for the mapping algo- nodes rather than the multiple compute nodes of the

Table 12 Table 14
The cut-weight for processor assignmefi, compared with that The cut-weight for processor assignmesi;, compared with that
for mapping,®m, on a cluster architecture for mapping,®m, on a meta-computer architecture
Mesh pP=38 P =16 P =32 Mesh P=8 P =16 P=32

@p Op/Pm  Pp Dp/Pm  Pp Pp/Pm dp Dp/Pm  Pp Dp/Pm  Pp Dp/Pm
crack 751 0.80 1191 0.75 1804 0.65 crack 751 0.80 1191 0.79 1804 0.84
delt 656 0.81 1012 0.68 1687 0.67 delt 656 0.81 1012 0.84 1687 0.93
t60k 530 0.91 984 0.82 1588 0.73 t60k 530 0.91 984 0.94 1588 0.93
dime20 636 0.69 1274 0.69 2282 0.72 dime20 636 0.69 1274 0.80 2282 0.86
144 28150 0.80 41842 0.62 60467 0.57 144 28150 0.80 41842 0.79 60467 0.78
ml4b 30663 1.04 45988 0.71 72997 0.56 m14b 30663 1.04 45988 0.93 72997 0.96
cyl3 6798 0.67 10188 0.61 15179 0.59 cyl3 6798 0.67 10188 0.68 15179 0.79
meshlm 13798 0.73 24522 0.79 35178 0.59 meshlm 13798 0.73 24522 0.82 35178 0.83

Average 0.81 0.71 0.63 Average 0.81 0.82 0.87
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Table 15
Averages of processor assignment compared with mapping for
average dilation ratios, cut-weight and partitioning times

Architecture Assignment/mapping

P=28 P=16 P =32
Average dilation
1D array 4.28 8.01 15.52
2D array 1.96 2.57 3.43
Cluster 2.32 2.58 2.93
Meta-computer 2.32 2.08 1.86
Cut-weight
1D array 0.63 0.50 0.38
2D array 0.84 0.77 0.73
Cluster 0.81 0.71 0.63
Meta-computer 0.81 0.82 0.87
Partitioning times
1D array 0.95 0.71 0.53
2D array 1.06 0.97 0.85
Cluster 1.08 0.88 0.75
Meta-computer 1.11 1.00 0.91

cluster architecture), the differences between parti-
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The partitioning times are comparable and indeed for
P = 8 the mapping algorithm is faster on average
although we have not yet been able to explain this

properly.

5. Summary and future research

In this paper, we have modified a multilevel algo-
rithm to minimise a cost function based on a model of
the (heterogeneous) communications network. This
has been motivated by the increasing use of SMP clus-
ters (systems of multiprocessor compute nodes with
very fast intra-node communications but relatively
slow inter-node networks) and the development of
meta-computers (multiple supercomputers combined
together, in extreme cases over inter-continental net-
works). The model of the communications network is
supplied by the user at run-time and in this sense the
technique is fairly generic since, if and when different
architectures appear, the mapping algorithm should
still apply and can be used simply by changing the

tioning/assignment compared to mapping are less NCM.

marked. Even though the average dilation figures are

still around 2 times worse on average for partition-
ing/assignment, whilst the cut-weight figures only
show approximately 13-19% degradation for the
mapping algorithm.

Table 15 summarises these four previous tables
and includes similar comparisons for the 1D and 2D
arrays and for partitioning times. Here we can clearly

The mapping algorithm is an adaptation of a stan-
dard multilevel partitioner (outlined in Section 3) with
modifications to the initial partition (Section 3.2) and,
in particular, the gain and preference functions (Sec-
tions 3.3 and 3.4), to take account of network costs.
The power of the process to compute such a mapping
stems from the global properties of the multilevel al-
gorithm. Edges which cross expensive links are pe-

see that the mapping algorithm has the greatest effectnalised heavily within the cost function and so ver-

for the 1D array with its very sparse processor graph,
particularly asP increases. For example, the average
dilation is over 15 times worse fat = 32. This, how-
ever, impacts on the cut-weight figures and mapping
to a 1D array inevitably involves a greater increase in
cut-weight than for other architectures (although this
may not affect run-time or scalability of the underlying
application [18]). Similarly, since the mapping task is
more complicated, the mapping algorithm takes on av-
erage about twice as long to run fBr= 32. However,
none of the other architectures with richer structure
in the processor graph, exhibit such extreme results.
Typically, then we see that for architectures other than
the 1D array the mapping algorithm can halve the
average dilation compared to partitioning/assignment,
whilst adding only around 13-37% more cut edges.

tices at either end of such an edge tend to migrate to
more adjacent processors (more adjacent to the pro-
cessor owning the vertex at the other end of the edge)
and create a sort of buffer zone. However, because
this occurs high up in the multilevel process, where
each vertex represents many vertices in the original
graph, the buffer zone which may start off only one
vertex wide, can actually represent reasonably broad
regions in the mesh. In this way the partition is given
a good global quality on the coarse graphs which is
refined on the finer graphs.

The algorithm was tested in a number of ways
and initially we demonstrated (Section 4.2) that the
NCM requires weights sufficiently large to heav-
ily penalise communication across undesirable links
but that enforcing this too rigidly can actually be
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detrimental to the partitioning without significantly believe that it should be easy enough to simply insert
enhancing the mapping. On this basis we used the QPLthe versions derived here (in Sections 3.3 and 3.4).
model.
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