
Future Generation Computer Systems 17 (2001) 601–623

Multilevel mesh partitioning for heterogeneous
communication networks

C. Walshaw∗, M. Cross
Computing and Mathematical Sciences, University of Greenwich, Park Row, Greenwich, London SE10 9LS, UK

Received 28 April 2000; received in revised form 15 August 2000; accepted 24 August 2000

Abstract

Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem for
distributing unstructured meshes onto parallel computers. They usually combine a graph contraction algorithm together with
a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost
exclusively to minimise the cut edge weight in the graph with the aim of minimising the parallel communication overhead,
but recently there has been a perceived need to take into account the communications network of the parallel machine. For
example the increasing use of SMP clusters (systems of multiprocessor compute nodes with very fast intra-node communi-
cations but relatively slow inter-node networks) suggest the use of hierarchical network models. Indeed this requirement is
exacerbated in the early experiments with meta-computers (multiple supercomputers combined together, in extreme cases
over inter-continental networks). In this paper therefore, we modify a multilevel algorithm in order to minimise a cost function
based on a model of the communications network. Several network models and variants of the algorithm are tested and we
establish that it is possible to successfully guide the optimisation to reflect the chosen architecture. © 2001 Elsevier Science
B.V. All rights reserved.

Keywords:Graph partitioning; Mesh partitioning; Multilevel optimisation; Mapping; Meta-computing; SMP clusters

1. Introduction

The need for mesh partitioning arises naturally in
many finite element (FE) and finite volume (FV) appli-
cations. Meshes composed of elements such as trian-
gles or tetrahedra are often better suited than regularly
structured grids for representing completely general
geometries and resolving wide variations in behaviour
via variable mesh densities. Meanwhile, the modelling
of complex behaviour patterns means that the prob-
lems are often too large to fit onto serial computers,

∗ Corresponding author. Tel.:+44-20-8331-8142;
fax: +44-20-8331-8665.
E-mail address:c.walshaw@gre.ac.uk (C. Walshaw).

either because of memory limitations or computational
demands, or both. Distributing the mesh across a par-
allel computer so that the computational load is evenly
balanced and the data locality maximised is known as
mesh partitioning. It is well known that this problem
is NP-complete, so in recent years much attention has
been focused on developing suitable heuristics, and
some powerful methods, many based on a graph cor-
responding to the communication requirements of the
mesh, have been devised, e.g. [13].

A particularly popular and successful class of algo-
rithms which address this mesh partitioning problem
are known as multilevel algorithms. They usually
combine a graph contraction algorithm which creates
a series of progressively smaller and coarser graphs

0167-739X/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0167-739X(00)00107-2

602 C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623

together with a local optimisation method which,
starting with the coarsest graph, refines the partition
at each graph level. To date these algorithms have
been used almost exclusively to minimise the cut edge
weight, a cost which approximates the total commu-
nications volume in the underlying solver. This is an
important goal in any parallel application in order
to minimise the communications overhead, however,
this edge cut model, in itself somewhat inadequate
[12], assumes a flat or homogeneous communications
network. In fact the trend for connecting together
multi-processor machines results in architectures
which exhibit significant network heterogeneities.
For example the increasing use of SMP clusters (sys-
tems of multiprocessor compute nodes with very
fast intra-node communications but relatively slow
inter-node networks) suggest the use of hierarchical
network models. Indeed this requirement is exacer-
bated in the early experiments with meta-computers
(multiple supercomputers combined together, in ex-
treme cases over inter-continental networks). In this
paper therefore, we modify the multilevel algorithms
in order to minimise a cost function based on a model
of the communications network supplied by the user
at run-time. We aim to make the optimisation as
generic as possible so that, if and when different ar-
chitectures appear, the algorithms still apply and can
be used simply by changing the network model.

1.1. Overview

This paper is organised as follows. First we define
both the partitioning and mapping problems and dis-
cuss some of the architectures for which we wish to
optimise mappings of unstructured meshes. In Section
2, we discuss the multilevel paradigm and outline a
multilevel partitioning algorithm which optimises for
cut-weight. In Section 3, we describe how different
components of this algorithm, in particular the ini-
tial partition (Section 3.2) and the gain and prefer-
ence functions (Sections 3.3 and 3.4), can be modified
to take account of network costs. A large proportion
of this paper, Section 4, is given over to experimen-
tal results and, having presented several metrics (Sec-
tion 4.1), we discuss different ways of modelling the
network (Section 4.2), present the results of the map-
ping algorithm (Section 4.3), test different versions of
the preference function (Section 4.4) and in Section

4.5 give a comparison with a combined partitioning
and processor assignment algorithm. Finally, we sum-
marise the findings in Section 5 and suggest some fu-
ture research.

The main contribution of this paper is to describe a
multilevel optimisation algorithm which can be influ-
enced to take account of a user supplied model of the
communications network. As part of that, the princi-
pal innovations are as follows:

• In Section 3.1, we motivate why the multilevel
paradigm is so good at this task and why we believe
it to provide a powerful solution to the mapping
problem.

• In Section 3.4, we suggest a simplification of the
preference function without the requirement for
O(P 2) operations (whereP is the number of pro-
cessors).

• In Section 3.4, we describe an algorithm for deter-
mining which processors are adjacent in an arbitrar-
ily processor graph.

• In Section 4.2, we discuss how to construct network
models which can achieve certain mappings.

1.2. Notation and definitions

Let G = G(V, E) be an undirected graph of
verticesV , with edgesE which represent the data
dependencies in the mesh. The graph vertices can
either represent mesh nodes (the nodal graph), mesh
elements (the dual graph), a combination of both (the
full or combined graph) or some other special pur-
pose representation. We assume that both vertices and
edges can be weighted (with positive integer values)
and that|v| denotes the weight of a vertexv and sim-
ilarly for edges and sets of vertices and edges. Given
that the mesh needs to be distributed toP processors,
let P be the set of processors and define a partition
π : V → P to be a mapping ofV into P disjoint
subdomainsSp such that∪P Sp = V . The weight of
a subdomain is just the sum of the weights of the
vertices in the subdomain,|Sp| = ∑

v∈Sp
|v| and we

denote the set of inter-subdomain or cut edges (i.e.
edges cut by the partition) byEc (note that|Ec| =
|L|). Vertices which have an edge inEc (i.e. those
which are adjacent to vertices in another subdomain)
are referred to asborder vertices. Finally, note that
we use the words subdomain and processor more or

C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623 603

less interchangeably: the mesh is partitioned intoP

subdomains; each subdomainSp is assigned to a pro-
cessorp and each processorp owns a subdomainSp.

The definition of the graph partitioning problem
is to find a partition which evenly balances the load
or vertex weight in each subdomain whilst minimis-
ing the communications cost. To evenly balance the
load, the optimal subdomain weight is given byS̄ :=
d|V |/P e 1 and theimbalanceis then defined as the
maximum subdomain weight divided by the optimal
(since the computational speed of the underlying ap-
plication is determined by the most heavily weighted
processor). It is a normal practice in graph partition-
ing to approximate the communications cost by|Ec|,
the weight of cut edges or cut-weight and, if we define
the cost functionΦ = Φ(π, G) := |Ec|, the usual (al-
though not universal) definition of the graph partition-
ing problem is therefore to findπ such that|Sp| ≤ S̄

and such thatΦ is minimised.

1.3. The mapping problem

As stated, the usual practice in graph partitioning
is to approximate the communications cost byΦ, the
cut-weight, and then attempt to minimise this quantity.
However, for the purposes of this paper we are inter-
ested in parallel machines or networks in which the
communications cost (both latency and bandwidth) is
not uniform across the inter-processor network and in
this case the cut-weight is certainly an inadequate mea-
sure. For instance, a cut edge between two processors
which are ‘neighbouring’ in some sense will contribute
far less to the overall cost than an edge between two
processors which are ‘far apart’. Unfortunately, how-
ever, modelling the true communication cost in detail
is close to impossible as it depends not only on the
latency and bandwidth of point-to-point communica-
tions (a cost which can be instrumented), but also on
the network loading and congestion at any given time,
a factor which is at best highly complex and indeed
which can be easily affected by entirely independent
applications competing for the same resources. For
this reason, and to give us a cost function for which
optimisation is tractable, we assign a weight to the link
between every pair of processors giving us a network

1 Where the ceiling functiondxe returns the smallest integer
greater thanx.

N represented by a weighted graphN(P,L), whereP
is the set ofP processors andL the set of interproces-
sor edges which is complete (i.e. there is an edge for
every pair of processors) and weighted. We can then
define the contribution to the cost function from every
cut edge(v, w) with v ∈ Sp andw ∈ Sq to be|(v, w)|·
|(p, q)|, the weight of the cut edge multiplied by the
weight of the link over which it passes. Thus given a
partitionπ : V → P, the cost function is given by

Γ =
∑

(v,w)∈Ec

|(v, w)| · |(π(v), π(w))|. (1)

Note that for an interconnect with uniform links, we
have|(p, q)| = C, a constant for allp, q ∈ P and then
this cost just reduces to the cut-weight (moduloC).

Using this new cost function we can then define the
mappingproblem similarly to the partitioning problem
as: given a graphG(V, E) and a processor network
N(P,L), find π : V → P, a mapping of vertices to
processors, such that|Sp| ≤ S̄ for all subdomainsSp

and such thatΓ is minimised.
Note that we distinguish the mapping problem,

which is an extension of the partitioning problem,
from the processor assignment problem(sometimes
also called the mapping problem) which, given a
partition of a graph, deals with assigning theP sub-
domains to theP processors again to minimise a cost
function such asΓ , but typically without changing
the assignment of vertices to subdomains. We discuss
this processor assignment problem further in Section
3.2 and compare mapping to partitioning combined
with processor assignment in Section 4.5.

1.4. The network cost matrix: modelling the
communications overhead

In order to address the mapping problem we first
consider how to represent the communications net-
work in terms ofN the weighted complete graph.
Firstly it is useful to motivate some of the ideas with
the terminologycompute nodewhich we use to refer
to a group of tightly coupled processors. Typically
this might be a shared memory multi-processor —
sometimes known as a symmetric multi-processor
(SMP) — or in the case of meta-computing, any
form of supercomputer. We shall generally assume
that communications between compute nodes, or

604 C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623

Fig. 1. Example processor graphs: (a) 1D array; (b) 2D array; (c) cluster hub; (d) meta-computer.

inter-nodecommunications are relatively slow, whilst
those within a compute node, orintra-nodecommu-
nications, are relatively fast and uniform. However,
the model we use is general and non-uniformity could
even be built into intra-node links.

Fig. 1 shows some typical processor graphs which
model machine interconnection networks. For exam-
ple, Fig. 1(a) is a 1D array, a configuration which may
not actually occur in practice as a physical machine
interconnect, but which nonetheless can be a useful
concept, particularly for machines with very high com-
munication latencies, since if the mesh can be success-
fully mapped onto this topology, each subdomain will
have at most two neighbours. Fig. 1(b) is a 2D array,
a topology which has in fact been realised in the past
for the Intel Paragon (and similarly in 3D for the Cray
T3D). More recently, however, and of particular inter-
est for the purposes of this paper, machines have ap-
peared which have a hierarchical network. For exam-
ple, Fig. 1(c) shows an SMP cluster of four compute
nodes (each of four processors) with all inter-node
communications passing through a hub. Meanwhile a
meta-computer is illustrated in Fig. 1(d). Such ma-
chines are not physically assembled as such but consist
of two or more compute nodes (typically supercom-

puters) connected together. For example in [10] experi-
mentation was carried out on a meta-computer consist-
ing of a Cray T3E in Stuttgart, Germany, connected to
a Cray T3E in Pittsburgh, USA. In this respect they are
more extreme examples of network heterogeneities.

Even given relatively simple processor graphs such
as those shown in Fig. 1, choosing the weighting of
links to model the machine is by no means straight-
forward, e.g. [6]. However, for the example proces-
sor graphs shown here we might start by weighting
all normal width edges by 1 and the thicker edges
by 2. To weight a link between two processors with-
out an explicit edge between them, we can then just
sum the weights of the shortest path between them.
For example, the weight of the link between the two
processors at either end of the 1D array, Fig. 1(a), is
then 5, whilst the link weight between the two pro-
cessors at the extreme right- and left-hand side ends
of the meta-computer, Fig. 1(c), is 4(= 1 + 2 + 1). It
turns out (see Section 4.2) that thislinear path length
(LPL) weighting is not sufficiently distinct and so an-
other possibility which we use is to square the path
lengths to give thequadratic path length(QPL).

This then gives us the complete weighted graphN

described above. In practice, however, we can describe

C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623 605

Fig. 2. Example network matrices: (a) 1D array; (b) cluster of two compute nodes each with four processors.

the network sufficiently by simply providing anetwork
cost matrix(NCM), aP × P matrix of weights mod-
elling the cost of communication between every pair of
processors. In fact the matrix is symmetric (since we
assume that communication in either direction across
the link is equally expensive) and has zeroes down the
diagonal (since no communication is required from a
processor to itself) and so we actually only need to
specify the upper diagonal part of the matrix to the
partitioning code. Some example network matrices are
shown in Fig. 2 using the QPL model described above.
Fig. 2(a) shows the matrix for a 1D array of eight pro-
cessors, whilst Fig. 2(b) shows that of a cluster of two
compute nodes each with four processors.

1.5. Related work

Despite the fact that the partitioning problem has
received a lot of attention in recent years, the map-
ping problem has been relatively little studied. Even in
those papers which have considered it the additional
complexity of the problem have led to approaches
which are either very limited in application or which
focus on particular architectures such as the hyper-
cube. For example, in [8] Dormanns and Heiss de-
scribe an approach to map onto grid like networks (e.g.
the 1D and 2D arrays that we consider) which uses
self-organising maps to geometrically ‘fit’ the proces-
sor grid onto the graph; vertices are then assigned to
their nearest processor. Unfortunately, however, it is a
slow process and it is difficult to see how it could be
adapted for more irregular networks such as the SMP
cluster and meta-computer.

In an earlier attempt to address this problem, Wal-
shaw et al. [26] used graph-based distance function to
calculate the ‘width’ of a subdomain (in graph terms)

and then migrated vertices farthest away from the cen-
tre of the subdomain to an adjacent processor. This
technique worked reasonably well for mapping onto
1D and 2D arrays but again it is difficult to see how it
could be extended to SMP clusters or meta-computers.
Perhaps more interestingly, in tests with a solver using
the resulting mappings on parallel machine with 2D
array type architecture, McManus et al. [19] showed
that despite an increase in cut-weight the applica-
tion scalability and efficiency was much increased us-
ing a 2D array mapping as compared to a partition-
ing/processor assignment approach (see Section 4.5).
Indeed the same was true even for a 1D array mapping
with a far greater cut-weight and for certain experi-
ments the efficiency of the 1D mapping even exceeded
that of the 2D [18].

Another more general approach to the mapping
problem was developed by Pellegrini and Roman
[20,21] and Hendrickson et al. [14,15]. The technique
uses recursive bisection of both the mesh (or source
graph) and the processor graph (or target graph).
This means that the partition of the mesh somehow
reflects the natural partition of the network. How-
ever, additionally within each bisection, apart from
the cut-weight, vertices are also assigned to proces-
sors based on which portion of the parallel machine
their neighbours have already been assigned to. Pelle-
grini tests the algorithms on a number of architecture
models and provides some interesting results, whilst
Hendrickson et al. incorporate the technique within
a multilevel framework (although unlike here as re-
cursive bisection based method) and generalise the
idea which (they callskewed graph partitioning) to
address other partitioning problems [15].

More recently, Teresco et al. [23] have discussed a
hierarchical model of network performance within a

606 C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623

dynamic load-balancing framework, although they do
not describe how the load-balancing is able to incor-
porate the model in order to optimise the mapping.

Perhaps most interesting for the methods described
here is the work of Chen and Taylor. They have inves-
tigated partitioning for distributed systems and, in [6],
provide experimental and theoretical analysis which
suggests that for architectures such as the cluster and
meta-computer, it can be most beneficial to the effi-
ciency if all inter-node communication to/from a given
compute node is done by just one processor of the
node. They have also constructed a parallel mapping
tool called ParaPART which takes into account the net-
work costs [7]. This uses a three stage process; firstly
the mesh is partitioned inton parts (wheren is the
number of compute nodes) and then as a second step
the portion of the mesh assigned to each compute node
is partitioned amongst its processors. In a final step
the partition for each compute node is retrofitted using
simulated annealing to ensure that only one processor
carries out the communication to/from each compute
node and that this processor has a correspondingly
smaller portion of the mesh because of its additional
communication load.

1.6. Related issues

We do not address here the issues of inhomogeneous
CPU performance. In fact this is a somewhat simpler
problem to solve and the software, JOSTLE [25], in
which we have implemented and tested the schemes
presented here is able to take this into account using
its integral load-balancing capabilities. For example,
given a graph of say 75 vertices and two processors,
with processor 1 twice as fast as processor 2, the user
may impose a penalty weight (based on the relative
speeds and the total vertex weight; in this case 25) on
processor 2 to simulate its slower performance. The
load-balancer within JOSTLE then balances the total
graph weight plus any penalty weights (in this example
75+ 25 = 100) and gives an equal share (50) to each
processor. Because processor 2 has a penalty weight
of 25, its share of the vertices is 25 as compared with
the 50 of processor 1 and so the partition is balanced to
reflect the relative performance of the processors. We
have not yet tested this functionality in combination
with the network optimisation ideas described here but
see no reason why it should not work successfully.

A related but more complex issue is addressed by
Chen and Taylor [6], who examines the balancing of
computation and communication. For example, if one
processor within a compute node is having to do all
the communication to external compute nodes then it
should be given less computational load. Once again
we have not explored this problem, but believe that
with a judicious choice of penalty weight, it could be
handled using the functionality described in the pre-
vious paragraph. This is essentially the method that
Chen and Taylor use to address the problem although
it does make the assumption that the extra commu-
nications load can be estimated prior to partitioning.
In fact the extra communications load is a function
of the resulting partition and so this assumption may
not be valid. However, building a true representation
of this function into the partitioning cost model may
be intractable.

2. Multilevel mesh partitioning

In this section, we discuss the multilevel paradigm
in the context of the mesh partitioning problem and
outline our multilevel algorithm, described in [25], for
addressing it. The modifications to the algorithm for
optimising a network based cost function are deferred
to Section 3.

2.1. The multilevel paradigm

In recent years it has been recognised that an effec-
tive way of both speeding up mesh partitioning algo-
rithms and/or perhaps more importantly giving them
a global perspective is to use multilevel techniques.
The idea is to match pairs of vertices to formclus-
ters, use the clusters to define a new graph and re-
cursively iterate this procedure until the graph size
falls below some threshold. The coarsest graph is then
partitioned (possibly with a crude algorithm) and the
partition is successively optimised on all the graphs
starting with the coarsest and ending with the orig-
inal. This sequence of contraction followed by re-
peated expansion/optimisation loops is known as the
multilevel paradigm and has been successfully devel-
oped as a strategy for overcoming the localised nature
of Kernighan–Lin (KL) [17], and other optimisation
algorithms. The multilevel idea was first proposed by

C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623 607

Barnard and Simon [1] as a method of speeding up
spectral bisection and improved by both Hendrickson
and Leland [13] and Bui and Jones [2], who gener-
alised it to encompass local refinement algorithms.
Several algorithms for carrying out the matching have
been devised by Karypis and Kumar [16], while Wal-
shaw and Cross [25] describe a method for utilising
imbalance in the coarsest graphs to enhance the final
partition quality.

Graph contraction: To create a coarser graph
Gl+1(Vl+1, El+1) from Gl(Vl, El) we use a variant
of the edge contraction algorithm proposed by Hen-
drickson and Leland [13]. The idea is to find a maxi-
mal independent subset of graph edges, or amatching
of vertices, and then collapse them. The set is inde-
pendent if no two edges in the set are incident on the
same vertex (so no two edges in the set are adjacent),
and maximal if no more edges can be added to the set
without breaking the independence criterion. Having
found such a set, each selected edge is collapsed and
the vertices,u1, u2 ∈ Vl say, at either end of it are
merged to form a new vertexv ∈ Vl+1 with weight
|v| = |u1| + |u2|.

A simple way to construct a maximal independent
subset of edges is to create a randomly ordered list of
the vertices and visit them in turn, matching each un-
matched vertex with an unmatched neighbouring ver-
tex (or with itself if no unmatched neighbours exist).
Matched vertices are removed from the list. If there
are several unmatched neighbours the choice of which
to match with can be random, but it has been shown
by Karypis and Kumar [16], that it can be beneficial to
the optimisation to collapse the most heavily weighted
edges and our matching algorithm uses this heuristic.

The initial partition: Having constructed the series
of graphs until the number of vertices in the coarsest
graph is smaller than some threshold, the normal prac-
tice of the multilevel strategy is to carry out an initial
partition. Here, following the idea of Gupta [11], we
contract until the number of vertices in the coarsest
graph is the same as the number of subdomains,P ,
and then simply assign vertexi to subdomainSi .
Unlike Gupta, however, we do not carry out repeated
expansion/contraction cycles of the coarsest graphs
to find a well balanced initial partition but instead,
since our optimisation algorithm incorporates bal-
ancing, we commence on the expansion/optimisation
sequence immediately.

Partition expansion: Having optimised the partition
on a graphGl , the partition must be interpolated onto
its parentGl−1. The interpolation itself is a trivial
matter; if a vertexv ∈ Vl is in subdomainSp then the
matched pair of vertices that it represents,v1, v2 ∈
Vl−1, will be in Sp.

2.2. The iterative optimisation algorithm

The iterative optimisation algorithm that we use
at each graph level is a variant of the KL bisection
optimisation algorithm which includes a hill-climbing
mechanism to enable it to escape from local min-
ima. Our implementation uses bucket sorting, the
linear time complexity improvement of Fiduccia and
Mattheyses [9], and the buckets are accessed via a tree
structure, which we refer to as a bucket tree. The algo-
rithm is a partition optimisation formulation; in other
words it optimises a partition ofP subdomains rather
than a bisection (this functionality is sometimes re-
ferred to as multiway,P -way ork-way optimisation).
The algorithm is fully described and tested in [25].

As is typical for KL-type algorithms, the optimisa-
tion has inner and outer iterative loops with the outer
loop terminating when no migration takes place dur-
ing an inner loop. It uses two bucket sorting structures
or bucket trees and is initialised by calculating the
gain — the potential improvement in the cost function
(the cut-weight in the classical graph partitioning con-
text) — for all border vertices and inserting them into
one of the bucket trees. These vertices are referred to
ascandidatevertices and the tree containing them as
thecandidate tree.

The inner loop proceeds by examining candidate
vertices, highest gain first (by always picking vertices
from the highest ranked bucket), testing whether the
vertex is acceptable for migration and then transfer-
ring it to the other bucket tree (the tree ofexamined
vertices). If the candidate vertex is found to be accept-
able (i.e. it does not overly upset the load-balance), it
is migrated, its neighbours have their gains updated
and those which are not already in the examined tree
are relocated in the candidate tree according to this up-
dated gain. This inner loop terminates when the can-
didate tree is empty although it may terminate early if
the partition cost rises too far above the cost of the best
partition found so far. Once the inner loop has termi-
nated any vertices remaining in the candidate tree are

608 C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623

transferred to the examined tree and finally pointers
to the two trees are swapped ready for the next pass
through the inner loop.

The algorithm also uses a KL-type hill-climbing
strategy; in other words vertex migration from subdo-
main to subdomain can beacceptedeven if it degrades
the partition quality and later, based on the subsequent
evolution of the partition, either rejected orconfirmed.
During each pass through the inner loop, a record of
the optimal partition achieved by migration within
that loop is maintained together with a list of vertices
which have migrated since that value was attained. If
subsequent migration finds a ‘better’ partition then the
migration isconfirmedand the list is reset. Note that
it is possible to find better partitions despite selecting
some vertices with negative gain because, as the opti-
miser runs, the gains of adjacent vertices will change
and so the migration of a group of vertices some
or all of which start with negative gain can in fact
decrease the overall cost (i.e. produce a net positive
gain). Once the inner loop is terminated, any vertices
remaining in the list (vertices whose migration has
not been confirmed) are migrated back to the sub-
domains they came from when the optimal cost was
attained.

The algorithm, together with conditions for vertex
migration acceptance and confirmation is fully de-
scribed in [25].

3. Modifying the method for mapping

3.1. Motivation

In this section, we describe the modifications re-
quired to allow the multilevel algorithm to optimise
a cost function based on network costs. In fact the
coarsening algorithm is left unchanged and the cost
function is first taken into account when theP ver-
tices of the coarsest graph are assigned to theP

processors (Section 3.2). The cost is subsequently
optimised on each of the multilevel graphs in suc-
cession by relatively simple changes to the gain and
preference functions (Sections 3.3 and 3.4). A suc-
cessful mapping is then one in which subdomains are
constructed such that adjacent subdomains generally
lie on adjacent processors. The power of the process
to compute such a mapping stems from the global

properties of the multilevel algorithm. Edges which
cross expensive links are penalised heavily within the
cost function and so vertices at either end of such
an edge tend to migrate to more adjacent processors
(more adjacent to the processor owning the vertex at
the other end of the edge) and create a sort of buffer
zone. However, because this occurs high up in the
multilevel process, where each vertexv represents
many vertices in the original graph, the buffer zone
which may start off only one vertex wide, can actu-
ally represent reasonably broad regions in the mesh.
In this way the partition is given a good global qual-
ity on the coarse graphs which is refined on the finer
graphs.

Fig. 3 illustrates this process for the t60k mesh (as
used in the testing, Section 4) on a 1D array of eight
processors. It can be seen (top left) that the coarsest
graph,G15, with eight vertices is fairly linear and so
the initial partition is reasonably good, although there
is a suboptimal cut edge between processor 2 (blue)
and processor 6 (beige). After a couple of optimi-
sations the mapping algorithm has already started to
buffer these two processors away from each other as
shown by the partition on graphG12 with 34 vertices
(top right). By the time the multilevel process reaches
graphG6 with 1488 vertices (bottom left) the map-
ping has succeeded in separating all non-neighbouring
processors although the buffer region of processor 4
(green) is only one vertex wide in some parts. How-
ever, in the final partition (bottom right), on graphG0
with 60 005 vertices, this has been redressed.

3.2. The initial partition

As in the standard multilevel algorithm we contract
the graph until the number of vertices in the coarsest
graph,GL(VL, EL), is the same as the number of pro-
cessors,P , and assign each coarse vertex to a proces-
sor. However, it makes sense at this point to try and
map the vertices so as to minimise the cost function
Γ from (1). In other words we wish to minimise

∑
(vi ,vj)∈EL

|(vi, vj)| · |(π(vi), π(vj))|. (2)

Suppose now that we write the coarsest graphGL as
a matrix with theij th entry equal to the weight of the

C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623 609

Fig. 3. The multilevel mapping illustrated for the mesh t60k on a 1D array with eight processors.

edge between verticesvi andvj so that

gij =



|(vi, vj)| if vi is adjacent tovj ,

0 if vi is not adjacent tovj ,

0 on the diagonal, i.e. if i = j.

Then, since there areP vertices inGL and P pro-
cessors, every edge inEL must be cut and so (2) is
equivalent to minimising

P∑
i=1

P∑
j=1

gijnπ(i)π(j),

whereπ(i) is the shorthand forπ(vi) andnkl is the
klth entry in the NCM (see Section 1.4).

In fact this expression is a simplification (in the
more general case there is also a linear term) of a
well-known optimisation problem, thequadratic as-
signment problem(QAP) [3]. This has been exten-
sively studied since 1957 and is NP-complete [4].
There are many heuristic algorithms which address the
problem, some of which are available in a software li-
brary, QAPLIB.2 For the results in this paper we use

2 Available from http://www.imm.dtu.dk/s̃k/qaplib/.

one such algorithm based on simulated annealing and
described in [5].

3.3. The gain function

Once the initial partition has been computed, the
multilevel approach uses a modification of the opti-
misation algorithm (outlined in Section 2.2) succes-
sively on each of the coarsened graphs and finally on
the original. As is usual for such KL-like optimisation
algorithms, a key concept in the method is the idea of
gain. The gaing(v, q) of a vertexv in subdomainSp

can be calculated for every other subdomain,Sq, q 6=
p, and expresses how much the cost of a given parti-
tion would be improved werev to migrate toSq . Thus,
if π denotes the current partition andπ ′ the partition
if v migrates toSq then for a cost functionΨ , the gain
g(v, q) = Ψ (π)−Ψ (π ′). Normally in mesh partition-
ing the cost function is simply the total weight of cut or
inter-subdomain edges,Ψ (π) = Φ(π) = |{(v, w) ∈
E : v ∈ Sp andw ∈ Sq, p 6= q}| and in this case the
gain is calculated as follows: given a vertexv ∈ Sp,
let eq(v) denote the set of edges fromv to vertices in
Sq , eq(v) = {(v, w) ∈ E : w ∈ Sq}. Then the part of
the cost functionΦ(π) associated withv is

610 C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623∑
r 6=p

|er(v)| =
∑
r∈P

|er(v)| − |ep(v)|.

If v migrates toSq then the part of the new cost,Φ(π ′),
associated withv becomes∑
r 6=q

|er(v)| =
∑
r∈P

|er(v)| − |eq(v)|. (3)

No other part of the cost function is affected so the
gain is simply

gain (v, q) = Φ(π) − Φ(π ′) (4)

=
[∑

r∈P
|er(v)| − |ep(v)| + Φ0

]

−
[∑

r∈P
|er(v)| − |eq(v)| + Φ0

]
(5)

= |eq(v)| − |ep(v)|, (6)

whereΦ0 simply represents the part of the cost func-
tion unaffected byv.

Recall, however, that in this paper we are interested
in the mapping cost in which edges between different
subdomains are weighted differently depending on
the cost of communication between the processors
owning these subdomains. Thus the cost associated
with v ∈ Sp is∑
r 6=p

|er(v)| · |(p, r)|, (7)

where |(p, r)| represents the weight of an edge be-
tween processorsp and r. Eq. (7) can more conve-
niently be written as∑
r∈P

|er(v)| · |(p, r)|,

since we can take|(p, p)| = 0. Similarly to (3)
the new contribution to the cost ifv migrates toSq

is∑
r∈P

|er(v)| · |(q, r)|,

and so the gain is

gain (v, q) = Γ (π) − Γ (π ′) (8)

=
[∑

r∈P
|er(v)| · |(p, r)| + Γ0

]

−
[∑

r∈P
|er(v)| · |(q, r)| + Γ0

]
(9)

=
∑
r∈P

|er(v)| · (|(p, r)| − |(q, r)|). (10)

Note that whilst this expression is not in itself difficult
to evaluate, it has complexity O(P) and is thus con-
siderably more costly than that for the cut-weight gain
function (6). This additional complexity will have a
bearing on the evaluation of the preference below.

3.4. Setting the preference

The preference of a vertexv ∈ Sp expresses
the migration that maximises the gain. Thus, if
gain (v, q) = maxr 6=p gain (v, r) or in other words
the gain of migratingv to subdomainSq produces
the maximum gain in the cost function over all pos-
sible migrations ofv, then the preference ofv is set
to q, pref (v) = q. In the following sections, we
describe three possible ways of setting the preference.

3.4.1. Adjacent subdomain preference
For the cut-weight cost function, it is impossible to

achieve a positive gain by migrating a vertex to a sub-
domain to which it is not adjacent and it is thus quite
usual to make a simplification and only maximise the
gain over subdomains adjacent to the vertex. Indeed
most border vertices will only be adjacent to one sub-
domainSq and then the preference is simply set toq

without the need to find a maximum. For those adja-
cent to more than one subdomain, it is still inexpensive
to find the maximum as the number of neighbouring
subdomains is bounded by the degree of the vertex
(which is usually low for graphs arising from FE and
FV applications).

3.4.2. Full processor preference
For optimising a mapped partition, however, it is no

longer true that migrating a vertex to a non-adjacent
subdomain cannot accrue a positive gain. Consider
the graph in Fig. 4(a) being mapped to the processor
graph in Fig. 4(b) with the edges weighted as shown.
Note that this processor graph is simply a 1D array

C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623 611

Fig. 4. An example mapping: (a) the partitioned graph; (b) the target processor graph; (c) the optimal mapping.

(see Section 1.4) of three processorsp, q andr with
the non-local edge given a weight of 4. Vertexv ∈ Sp

is only adjacent to one other subdomainSr and this
cut edge adds a cost of 4 to the cost function (because
the edge(p, r) is weighted 4 in the processor graph).
However, migration ofv to Sr does not improve the
cost and sogain (v, r) = 0. On the other hand, if,
as in Fig. 4(c),v migrates toSq (to which v is not
adjacent) the cost is improved by 2 (sinceSp and
Sr are no longer adjacent) and sogain (v, q) = 2.
Thus, although one more edge is cut, because of the
migration ofv to a non-adjacent subdomain, the cut
edges map better onto the least costly edges in the
processor graph. It is also interesting to note that this
is the optimal mapping for this graph, despite the fact
that subdomainSq is disconnected.

An obvious conclusion is that the simplification of
limiting the preference to adjacent subdomains is not
appropriate in the mapping case and to set the pref-
erence forv ∈ Sp by maximising the gain over all
r 6= p. This ensures that the method finds the maxi-
mum gain, however, it does mean that, since the gain
calculation has complexity O(P), the preference cal-
culation is O(P 2) because we must calculate the gain
for all P − 1 possible migrations.

3.4.3. Adjacent subdomain/processor preference
For small numbers of processors,P , this is not a se-

rious overhead, however, calculating gains and prefer-
ences is a fairly fundamental operation in the optimi-
sation algorithm and for large numbers of processors
it can be prohibitive to compute so many gains, many
of which may be far from optimal. For this reason we

suggest an alternative simplification which retains the
spirit of the previous one and for a vertexv ∈ SP seek
the maximum gain over a union of subdomains adja-
cent tov together with processors adjacent top in the
processor graph.

Looking at the example processor graphs in Fig. 1,
it is easy to see which processors are adjacent to each
other, however, for an arbitrary processor graph which
is simply specified as12P(P − 1) edge weights (see
Section 1.4) the processor adjacencies must be deter-
mined. To simply say that processorsp andq are ad-
jacent if the edge weight|(p, q)| is 1 is sufficient for
the 1D and 2D arrays and renders the visual represen-
tation shown in Fig. 1(a) and (b). However, it gives
disconnected graphs in the cases of the cluster hub and
meta-computer architectures and this can be deleteri-
ous to the optimisation which ideally should migrate
vertices to near neighbours; if we restrict the prefer-
ence to only the most closely coupled processors, the
algorithm is given no information on how to minimise
the inter-node links.

We therefore determine the processor adjacencies
by sorting the1

2P(P −1) edges into sets distinguished
by weight (i.e. set 1 contains edges of weight 1, set
4 contains edges of weight 4, etc.) and including all
those with minimum weight in the processor adja-
cency graph. We then test if this graph is disconnected
with a breadth first search from any one of the pro-
cessors. If it fails to span the graph (visit all the pro-
cessors), then the graph is disconnected and we add
in the next set of edges. This process is repeated until
a connected graph, the processor adjacency graph, is
recovered.

612 C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623

Note the distinction between the two representa-
tions of the network — the processor graph,N(P,L)

or NCM hasP vertices and1
2P(P − 1) edges and

is a complete graph (i.e. for everyp, q ∈ P there is
an edge(p, q) ∈ L), whilst the processor adjacency
graphN ′(P,L′) hasP vertices but a subset of edges
L′ ⊂ L (the minimally weighted subset of edges suf-
ficient to connectN ′).

3.4.4. Summary
Returning to the preference, this then gives us three

possible functions to choose from. In order of compu-
tational complexity:

• the adjacent subdomain preference function (orfs
for short) where a vertex’s preference for migration
is selected from subdomains to which it is adjacent;

• the adjacent subdomain/processor preference func-
tion (orfsp) where, additionally, the preference can
be selected from processors adjacent in the proces-
sor graph to the processor which owns the vertex;

• the full processor preference function (orfP) where
the preference is selected from among every pro-
cessor.

Of these threefP is always of complexity O(P 2) to
calculate, but is the true representation for calculat-
ing the maximum gain. The other two,fs and fsp
cannot guarantee to find the maximum gain, but ifP

is not too small are unlikely to be O(P 2). In Sec-
tion 4.4, we test the three possibilities and determine
the best function to use in terms of complexity and
results.

4. Results

We have implemented the algorithms described
here within the framework of JOSTLE, a mesh par-
titioning software tool developed at the University
of Greenwich, and freely available for academic and
research purposes under a licensing agreement.3 The
experiments were carried out on a DEC Alpha with a
466 MHz CPU and 1 GB of memory.

The test graphs have been chosen to be a repre-
sentative sample of medium to large scale real-life
problems and include both 2D and 3D examples of

3 Available from http://www.gre.ac.uk/jostle.

nodal graphs (where the mesh nodes are partitioned)
and dual graphs (where the mesh elements are parti-
tioned). None of the graphs are weighted; such graphs
are not widely available since most applications do not
accurately instrument costs and it is difficult to draw
meaningful conclusions from the few examples that
we have access to.

Table 1 gives a list of the graphs, their sizes, the
maximum, minimum and average degree of the ver-
tices and a short description. The degree information
(the degree of a vertex is the number of vertices ad-
jacent to it) gives some idea of the character of the
graphs. These range from the relatively homogeneous
dual graphs, where every vertex represents a mesh el-
ement, in these cases a triangle (2D) or tetrahedron
(3D) and so every vertex has at most three or four
neighbours respectively, to the more complex nodal
graphs with their more irregular interconnections. As
the graphs are not weighted, the number of vertices
in V is the same as the total vertex weight|V | and
similarly for the edgesE.

4.1. Metrics

Unfortunately, there is no clear metric to measure
the quality of a partition and so we use a variety as
follows:

• Cut-weight (Φ): As discussed in Section 1.2 the
classical, although disputed, measure for partition
quality is the total weight of cut edges or cut-weight.
Thus if Ec denotes the set of cut edges then the
cut-weightΦ is given by

Φ = |Ec| =
∑

(v,w)∈Ec

|(v, w)|.

This metric approximates the total communication
volume for the sort of homogeneous graphs which
represent meshes (although see [12,22] for further
discussion). However, it is not appropriate for het-
erogeneous networks since a cut edge between ver-
tices on ‘neighbouring’ processors does not have
the same impact on the runtime of the underlying
solver as a cut edge between ‘non-neighbouring’
processors.

• Network cost(Γ): A better metric is the (network)
cost function which we are trying to minimise

C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623 613

Table 1
A summary of the test meshes

Mesh Size Degree Type

V E Maximum Minimum Average

crack 10240 30380 9 3 5.93 2D nodal graph
4elt 15606 45878 10 3 5.88 2D nodal graph
t60k 60005 89440 3 2 2.98 2D dual graph
dime20 224843 336024 3 2 2.99 2D dual graph
144 144649 1074393 26 4 14.86 3D nodal graph
m14b 214765 1679018 40 4 15.64 3D nodal graph
cyl3 232362 457853 4 2 3.94 3D dual graph
mesh1m 1119663 2212012 4 2 3.95 3D dual graph

within the optimisation and which, from (1), is
given by

Γ =
∑

(v,w)∈Ec

|(v, w)| · |(π(v), π(w))|.

Recall from Section 1.3 thatπ is the mapping of
vertices to processors, so thatπ(v) represents the
processor which ownsv and hence the network
edge weight|(π(v), π(w))| = |(p, q)| for two
processorsp, q is just the entrynpq of the NCM.
However, as we will see in Section 4.2, the NCM
is constructed so as to guide the mapping appropri-
ately rather than measured from machine response
times, and in this sense the network cost,Γ , is a
somewhat abstract measure.

• Average dilation(∆): Perhaps a better measure for
comparing different partitions, particularly to quan-
tify the success in following the guidance given
by the NCM, is the average dilation. This measure
describes the average link weight (averaged over
all of the cut edges). In other words, we can define
the average dilation as

∆ =
∑

(v,w)∈Ec
|(π(v), π(w))|

O(Ec)
,

where O(Ec) is just the number of edges inEc. In
fact, because all the meshes have unit edge weights
(i.e. |(v, w)| = 1 for all (v, w) ∈ E and hence all
(v, w) ∈ Ec), the size ofEc is the same as the
cut-weight, O(Ec) = |Ec| = Φ and hence the av-
erage dilation is just the network cost divided by
the cut-weight:

∆ =
∑

(v,w)∈Ec
|(π(v), π(w))|

O(Ec)

=
∑

(v,w)∈Ec
|(v, w)| · |(π(v), π(w))|

O(Ec)
= Γ

Φ
.

However, this is not true for weighted graphs.
• Average path length/unweighted dilation(δ): Re-

lated to the average dilation is the average path
length

δ =
∑

(v,w)∈Ec
l(π(v), π(w))

O(Ec)
,

where l(p, q) is just the minimum path length
(number of edges) in the processor graph between
processorsp andq. In fact if we define the weight
of a link between two processors to be the path
length then∆ and δ are the same. However, we
believe that in order to heavily penalise cut edges
across non-local links, it is better for the link
weights not to be a linear function of path length.

Note that in terms of interpretation of the results,
what we typically look for is low average dilation
(i.e. most of the communication occurs across the
fastest links). For architectures such as the cluster and
meta-computer a certain amount of communication in-
evitably crosses the slower inter-node links, but if we
can keep it to a small proportion then it should not
slow the application too much. Indeed even for ar-
chitectures such as the 1D and 2D arrays, it can be
the case that single message interprocessor latencies
and bandwidths are almost identical for both ‘nearby’
and ‘distant’ processors. However, in this case we still
wish to achieve a good mapping of the mesh to the

614 C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623

network to avoid the congestion which occurs when
most of the processors have to communicate across the
machine rather than locally. Once again success is in-
dicated by lowaveragedilation since a small amount
of non-local communication should not overly impede
the application.

For a final comparison metric we also use the par-
titioning run-time,τ , for some of the tests. We also
measure the imbalance (as defined in Section 1.2), but
we do not record it here since in all the experiments it
did not exceed the specified tolerance (set at run-time)
of 1.03 or 3% imbalance.

4.2. Network modelling

The ultimate aim of this work would be to derive a
generic optimisation technique which can map a mesh
onto a parallel interconnection network given an ap-
propriate NCM. In an ideal world one could imagine
that it should be possible for the optimisation soft-
ware to run some quick tests on the parallel network
in question, measure the response times and derive
an NCM automatically. However, we do not believe
that such a technique would necessarily provide a
good NCM. As mentioned in Section 1.5, Chen and
Taylor [6], suggest that it can be most beneficial to
efficiency if all inter-node communications to/from a
given compute node is done by just one processor of
the node (as we have suggested in the way that we
have drawn Fig. 1(c) and (d)). The NCM should there-
fore be weighted such that one processor per node
has easier access to remote processors. However, any
instrumentation of such architectures (e.g. ping-pong
style tests where messages are passed back and forth

Table 2
Comparison of average path length for a 1D array for different network models:δ2 is the QPL model,δ1 is LPL andδ3 cubic path length

Mesh P = 8 P = 16 P = 32

δ2 δ1/δ2 δ3/δ2 δ2 δ1/δ2 δ3/δ2 δ2 δ1/δ2 δ3/δ2

crack 1.00 1.04 1.00 1.00 1.33 1.00 1.00 1.42 1.00
4elt 1.00 1.24 1.00 1.00 1.61 1.00 1.01 1.66 1.00
t60k 1.00 1.16 1.00 1.00 1.20 1.00 1.00 1.41 1.00
dime20 1.00 1.36 1.00 1.00 1.55 1.00 1.00 1.94 1.00
144 1.00 1.04 1.00 1.02 1.30 0.98 1.13 1.35 0.91
m14b 1.00 1.06 1.00 1.00 1.07 1.00 1.03 1.23 0.99
cyl3 1.00 1.36 1.00 1.00 1.97 1.00 1.01 2.40 1.00
mesh1m 1.00 1.15 1.00 1.00 1.35 1.00 1.00 1.33 1.00
Average 1.18 1.00 1.42 1.00 1.59 0.99

and response times measured) would be likely to
show roughly similar rapidity for all intra-node com-
munications and roughly similar slowness for any
inter-node messages. The NCM would therefore be
a good representation of the network but not a good
enough blueprint for guiding the mapping.

The next question that arises, given that instru-
mentation of the network may be insufficient for the
mapping task, is what value to give the weights. It
is helpful here to consider one of the simplest archi-
tectures, the 1D array. In fact a successful mapping
for a 1D array usually corresponds to a slicing of the
domain and tends to result in long thin subdomains.
However, it is not an entirely unreasonable architec-
ture to map onto and, for example, on systems which
are very heavily latency dominated (e.g. networks of
workstations), the minimum possible number of com-
munication startups per processor is 2 (except for those
at the ends of the array) and it can be worth putting up
with longer subdomain boundaries and hence longer
messages in order to achieve this [18]. The 1D array
thus gives us a very simple but not unrealistic archi-
tecture on which to do some initial tests. We can then
define the NCMN , to benpq = |p − q|λ, i.e. the path
length between any two processors to some powerλ.

In Tables 2 and 3, we test three different network
models, the linear, quadratic and cubic path length
models (or in other wordsλ = 1, 2, 3), of a 1D
array. In order to compare them fairly (i.e. in the
same metric) we have run the mapping algorithm
for all the meshes using the three values ofλ and
then for each result measured the average path length
(which is the same as the average dilation for the LPL
model).

C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623 615

Table 3
Comparison of cut-weight for a 1D array for different network models:Φ2 is the QPL model,Φ1 is the LPL andΦ3 the cubic path length

Mesh P = 8 P = 16 P = 32

Φ2 Φ1/Φ2 Φ3/Φ2 Φ2 Φ1/Φ2 Φ3/Φ2 Φ2 Φ1/Φ2 Φ3/Φ2

crack 1179 1.00 1.03 2376 0.78 1.00 5167 0.68 1.01
4elt 1279 0.71 0.92 2430 0.64 1.15 5045 0.57 1.00
t60k 647 0.85 1.24 1353 0.81 1.14 3062 0.68 0.99
dime20 1023 0.94 1.13 2547 0.69 0.84 4555 0.66 1.14
144 47572 0.88 0.92 117826 0.64 0.90 205841 0.62 1.00
m14b 37792 1.29 1.14 76136 0.90 1.39 174113 0.75 0.92
cyl3 14905 0.75 1.04 29819 0.55 1.01 63577 0.41 1.05
mesh1m 22075 0.80 1.02 44841 0.73 1.18 86239 0.70 1.04
Average 0.90 1.05 0.72 1.08 0.63 1.02

Table 2 shows a comparison of these three values
of λ as follows. For each value ofP , the first column
showsδ2, the average path length for the quadratic
model (λ = 2), whilst the second and third columns
show the average path length for the linear(λ = 1)

and cubic(λ = 3) models, respectively, scaled byδ2.
Thus for the crack mesh andP = 8, the valueδ1/δ2 =
1.04 indicates that the average path length for the
linear model is 4% worse than that for the quadratic
model. Since a figure ofδλ = 1.00 indicates complete
success in the mapping task (since no message has to
pass between non-neighbouring processors) we can
see that the quadratic model is very successful with
most values ofδ2 = 1.00 or close to it. In fact the cu-
bic model is marginally better (on average about 1%
better forP = 32 as indicated by the average value
of δ3/δ2 = 0.99). However, the linear model is con-
siderably worse (on an average 18% worse forP = 8
to 59% worse forP = 32). We believe that this is be-
cause cut edges between non-neighbouring processors
are not sufficiently penalised in the cost function.

Looking at the results in Table 3 (which are pre-
sented in the same format as Table 2 with the results
of the linear and cubic models scaled by those of the
quadratic), we see the consequences of the choice of
the model on the cut-weight. It is almost inevitable
that the mapping task will be detrimental in some way
to the cut-weight (this is particularly true for the 1D
array architecture) and so we see conversely that the
linear model which is not so good for mapping is con-
siderably better for optimising the cut-weight (on av-
erage 10% better forP = 8 to 37% better forP =
32). On the other hand, we can also see that the cu-

bic model appears to enforce the mapping too rigidly
and, as a result, ends up with a worse cut-weight than
the quadratic model (on average between 8% worse
for P = 16 to 2% worse forP = 32).

From these two tables (and other experimentation
not reported here), we conclude that the model of
network costs must have weights sufficiently large
to heavily penalise communication across undesirable
links but that enforcing this too rigidly can actually
be detrimental to the partitioning without significantly
enhancing the mapping. On this basis we use the QPL
model for the remainder of the experiments.

In the following sections, we test the algorithms on
four different classes of architecture (as illustrated in
Fig. 1) and on each architecture for three values ofP ,
the number of processors. We informally notate each
architecture as follows:

P = 8 P = 16 P = 32

1D array 8× 1 16× 1 32× 1
2D array 4× 2 4× 4 8× 4
Cluster 2 [4] 4 [4] 8 [4]
Meta-computer 2 [4] 2 [8] 2 [16]

In this notation the networks in Fig. 1 can be
described as: (a) 6×1, (b) 6×4, (c) 4 [4] and (d) 2 [8].

In the corresponding NCMs for the 1D and 2D ar-
rays, given as length× height, processor connections
to the immediate left or right and up or down neigh-
bours have a weight of 1. Any other connections be-
tween processorsp and q say have a weight ofl2,
where l is the minimum path length along edges of

616 C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623

Table 4
The results of the mapping algorithm for a 1D array architecture showing the cut-weightΦ, average dilation∆ and CPU time in seconds,τ

Mesh P = 8 P = 16 P = 32

Φ ∆ τ Φ ∆ τ Φ ∆ τ

crack 1179 1.00 0.27 2376 1.00 0.48 5167 1.01 1.08
4elt 1279 1.00 0.25 2430 1.01 0.53 5045 1.02 1.35
t60k 647 1.00 0.57 1353 1.00 0.68 3062 1.00 1.53
dime20 1023 1.00 2.53 2547 1.00 2.88 4555 1.06 3.55
144 47572 1.00 5.17 117826 1.06 10.32 205841 1.49 18.03
m14b 37792 1.00 7.48 76136 1.01 8.95 174113 1.12 19.48
cyl3 14905 1.00 7.92 29819 1.00 14.13 63577 1.03 36.85
mesh1m 22075 1.00 24.03 44841 1.00 50.42 86239 1.00 65.90

unit weight. For the cluster and meta-computer archi-
tectures, the notationn[c] refers ton compute nodes
each ofc processors. Each compute node is a com-
pletely connected subgraph and any intra-node edges
have a path length of 1. For each compute node one of
the processors is nominated as being responsible for
remote communications and all inter-node edges be-
tween two of these nominated processors have a path

Table 5
The results of the mapping algorithm for a 2D array architecture showing the cut-weightΦ, average dilation∆ and CPU time in seconds,τ

Mesh P = 8 P = 16 P = 32

Φ ∆ τ Φ ∆ τ Φ ∆ τ

crack 882 1.01 0.20 1527 1.01 0.27 2272 1.03 0.43
4elt 765 1.00 0.22 1481 1.02 0.35 2391 1.02 0.57
t60k 527 1.00 0.55 1240 1.00 0.68 1992 1.00 1.08
dime20 817 1.00 2.55 1457 1.00 2.72 3014 1.00 3.30
144 40159 1.02 5.07 61461 1.03 6.07 93511 1.06 9.43
m14b 37772 1.02 6.83 56920 1.02 8.05 102969 1.04 11.85
cyl3 9107 1.00 5.08 14697 1.00 7.52 22409 1.00 10.60
mesh1m 14021 1.00 20.95 29333 1.00 26.03 48926 1.00 36.73

Table 6
The results of the mapping algorithm for a cluster architecture showing the cut-weightΦ, average dilation∆ and CPU time in seconds,τ

Mesh P = 8 P = 16 P = 32

Φ ∆ τ Φ ∆ τ Φ ∆ τ

crack 940 1.67 0.20 1597 1.74 0.30 2781 1.87 0.47
4elt 811 1.51 0.22 1478 1.82 0.37 2531 1.84 0.57
t60k 581 1.46 0.50 1197 1.66 0.75 2161 1.78 1.08
dime20 922 1.79 2.47 1854 1.83 2.78 3190 1.78 3.33
144 35068 1.62 4.88 67452 1.92 7.38 106394 2.03 9.88
m14b 29580 1.48 6.45 65217 1.76 8.38 129350 1.94 13.70
cyl3 10157 1.73 5.02 16743 1.85 8.55 25842 1.87 12.57
mesh1m 19017 1.79 22.28 30860 1.74 28.88 59443 1.88 49.78

length of 2. The value of the corresponding entry in
the NCM,npq, is once again defined asl2, wherel is
the minimum path length betweenp andq.

4.3. Mapping results

In Tables 4–7 we show the mapping results for the
four different architecture classes, 1D and 2D arrays,

C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623 617

Table 7
The results of the mapping algorithm for a meta-computer architecture showing the cut-weightΦ, average dilation∆ and CPU time in
seconds,τ

Mesh P = 8 P = 16 P = 32

Φ ∆ τ Φ ∆ τ Φ ∆ τ

crack 940 1.67 0.20 1506 1.45 0.30 2143 1.32 0.42
4elt 811 1.51 0.20 1203 1.38 0.35 1817 1.23 0.47
t60k 581 1.46 0.50 1045 1.26 0.65 1702 1.19 0.88
dime20 922 1.79 2.48 1594 1.46 2.58 2658 1.31 3.17
144 35068 1.62 4.85 53289 1.44 5.62 77251 1.39 7.83
m14b 29580 1.48 6.43 49699 1.24 7.42 75928 1.18 10.63
cyl3 10157 1.73 4.98 14893 1.54 7.20 19224 1.37 11.33
mesh1m 19017 1.79 22.35 29880 1.41 26.70 42338 1.28 33.32

cluster and meta-computer. For each value ofP we
give the cut-weight,Φ, the average dilation,∆, both as
described in Section 4.1, and the partitioning time in
seconds,τ . Although the cut-weight figures are fairly
meaningless in isolation, we will see in Section 4.5
(by comparing them to those from the standard par-
titioning for cut-weight) that partitioning for network
mapping does not impose too great a penalty on the
cut-weight (e.g. about 25% for a 16 processor cluster
and only around 12% for a meta-computer).

More interesting are the average dilation figures.
For example, for a 1D array, an average dilation of
∆ = 1.00 would indicate complete success in the map-
ping task as no message would have to pass between
non-neighbouring processors. In that respect we can
see that the figures in Table 4 are very good indeed —
in all cases forP = 8 and most forP = 16 the value
for ∆ is indeed 1.0. Obviously, the mapping is more
difficult as P increases (since the subdomains must
become longer and thinner), but in only two cases for
P = 32 (for the meshes 144 and m14b) does the value
of ∆ exceed 1.1.

The 2D results in Table 5 are perhaps even better.
Once again an average dilation of∆ = 1.00 indicates
complete success, however, this is not easy to achieve
for an unstructured mesh (as compared to a structured
mesh with a simple stencil) as a result of the diagonal
processor links. For the NCMs we have chosen, these
diagonal links (i.e. those which run between neigh-
bouring processors one link to the left or right of each
other and one link up or down) have weight of 4 (the
path length squared). Since it appears to be almost im-
possible to partition certain of these meshes so that no

diagonal neighbours are adjacent across a subdomain
interface, diagonal communication is bound to arise.
However, it can be seen from the dilation figures that
this is kept relatively very low since the values for∆

never rise above 1.06.
The cluster and meta-computer architectures

(Tables 6 and 7) are a somewhat different prospect
since there is a certain amount of traffic which must
travel across the slower inter-node links (which are
weighted with a value of at least 4 in the NCMs).
However, in all cases but one (cluster architecture,
P = 32, mesh 144) the average dilation is below 2.00
indicating the success of the mapping (contrast this
with the unmapped figures in Section 4.5).

With regard to timings, as can be seen the mapping
algorithm is very fast. Ever for mesh1m (with over a
million vertices) it normally takes less than a minute
and for the smaller meshes it can be just fractions of
a second. The timings also give a hint as to the ad-
ditional complexity of the problem. For example, the
1D array mapping is probably the most challenging
and takes the longest to partition, whilst the 2D and
meta-computer architecture, where the relative con-
nectivity of the processor graph is much greater, are
fastest to compute. Once again we will contrast this
with a standard cut-weight partitioner in Section 4.5.

4.4. Preference tests

In Tables 8 and 9 we compare the different versions
of the preference function as described in Section
3.4. Here we just consider their effect on the optimi-
sation cost function,Γ , and partitioning time,τ , and,

618 C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623

Table 8
Comparison of mapping costs,Γ , for a cluster architecture for different preference functions:Γsp is where the preference is chosen from
neighbouring subdomains and processors,Γs from neighbouring subdomains andΓP from all processors

Mesh P = 8 P = 16 P = 32

Γsp Γs/Γsp ΓP /Γsp Γsp Γs/Γsp ΓP /Γsp Γsp Γs/Γsp ΓP /Γsp

crack 1567 1.04 0.99 2782 1.03 1.00 5208 1.14 0.98
4elt 1228 1.00 1.00 2690 1.21 1.06 4655 1.17 1.08
t60k 851 1.11 1.03 1986 1.15 0.97 3841 1.35 1.00
dime20 1648 1.37 1.02 3396 1.52 0.90 5674 1.31 0.97
144 56839 1.00 1.00 129839 1.02 1.03 216042 0.97 0.99
m14b 43875 0.98 0.99 114975 0.99 0.97 250616 0.99 0.92
cyl3 17531 1.09 1.08 31050 1.07 0.99 48372 1.19 1.06
mesh1m 34131 0.99 0.85 53741 1.14 1.04 111661 1.10 1.00
Average 1.07 1.00 1.14 1.00 1.15 1.00

Table 9
Comparison of mapping times,τ , for a cluster architecture for different preference functions:τsp is where the preference is chosen from
neighbouring subdomains and processors,τs from neighbouring subdomains andτP from all processors

Mesh P = 8 P = 16 P = 32

τsp τs/τsp τP /τsp τsp τs/τsp τP /τsp τsp τs/τsp τP /τsp

crack 0.20 1.10 1.85 0.30 1.10 4.17 0.47 0.96 12.66
4elt 0.22 1.00 1.45 0.37 1.00 3.84 0.57 0.96 14.60
t60k 0.50 1.04 1.40 0.75 0.89 2.56 1.08 0.97 11.00
dime20 2.47 1.04 1.13 2.78 0.97 1.45 3.33 0.94 4.90
144 4.88 1.01 1.91 7.38 1.01 2.54 9.88 1.05 7.39
m14b 6.45 0.99 1.43 8.38 0.97 2.69 13.70 1.01 5.85
cyl3 5.02 1.09 1.93 8.55 0.93 3.31 12.57 0.85 13.78
mesh1m 22.28 1.04 1.55 28.88 0.92 2.88 49.78 0.99 14.49
Average 1.04 1.58 0.97 2.93 0.97 10.58

Table 10
Averages over all meshes of partition cost ratios and partitioning time ratios for different preference functions:fsp chooses the preference
from neighbouring subdomains and processors,fs from neighbouring subdomains andfP from all processors

Architecture P = 8 P = 16 P = 32

fs/fsp fP /fsp fs/fsp fP /fsp fs/fsp fP /fsp

Partition costs, Γ

1D array 1.23 1.02 1.65 0.96 1.71 0.99
2D array 1.07 1.00 1.05 1.00 1.10 1.01
Cluster 1.07 1.00 1.14 1.00 1.15 1.00
Meta-computer 1.07 1.00 1.11 0.98 1.11 0.98
Partitioning times, τ

1D array 1.00 1.91 0.89 3.59 0.89 13.63
2D array 0.98 1.48 0.95 3.56 0.98 10.67
Cluster 1.04 1.58 0.97 2.93 0.97 10.58
Meta-computer 1.06 1.59 0.98 2.86 0.92 7.78

C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623 619

as an example, we focus on the cluster architecture.
Table 10, meanwhile, summarises results for all the
four architectures under scrutiny. Recall that the pref-
erence function selects which subdomain a vertex
would prefer to migrate to and, if computed so as
to take every possibility into consideration, results in
an O(P 2) operation which must be carried out many
times throughout the course of an optimisation. We
denote the cost function and partitioning time for
this full preference evaluation,fP , by ΓP and τP .
However, we have also (in Section 3.4) suggested
two variants (approximations) with lower complex-
ity, the adjacent subdomain preference,fs (as used
in cut-weight optimisation) with metrics denoted
by Γs and τs and the adjacent subdomain/processor
preference,fsp, a search over adjacent subdomains
and processors adjacent in the processor graph (with
metrics denoted byΓsp andτsp).

Table 8 shows the cost function results for the clus-
ter architecture broadly presented in the same format
as Table 2. For each value ofP , the first column gives
the results forfsp, whilst the second and third columns
show those forfs andfP scaled byfsp. Thus for the
crack, mesh andP = 8, Γ is 4% worse forfs than
it is for fsp(Γs/Γsp = 1.04). However, it is the aver-
ages (bottom row) which shows the overall trend of
the results. For all values ofP , bothfsp andfP give
the same cost function results on average (although
there is up to 15% variation in the individual figures)
indicating that the simplification offP to fsp does
not significantly affect the overall quality. However,
simplifying further tofs does impact on the quality
(on average rendering it 7% worse forP = 8 to 15%
worse forP = 32).

Considering the timings shown in Table 9, however,
we see that, as we would expect,fsp with complexity
O(P) is considerably faster thanfP with its O(P 2)

complexity and that this difference is greatly exagger-
ated asP increases (e.g. the mapping is over 10 times
faster on average forP = 32). Interestingly,fs, which
is simpler again thanfsp, although generally faster can
sometimes be slower (up to 15% forP = 32 with the
cy13 mesh). We believe that this is because the algo-
rithm is unable to produce such high quality partitions
and thus the outer loop of the optimisation (see Sec-
tion 2.2) takes longer to converge.

To demonstrate that these figures hold for all four of
the architectures under consideration, Table 10 sum-

marises each by presenting the averages (i.e. the final
row of Tables 8 and 9 are duplicated). As before, the
Γsp results are on average almost identical to theΓP

results and are sometimes even better than them (1D
array,P = 8 and 2D array,P = 32). However, the
Γs results can be considerably worse, particularly for
the 1D array (up to 71% worse on average forP =
32). The timings also confirm those in Table 9;fs
is marginally faster overall thanfsp, but fP is much
slower (over 13 times slower for the 1D array and
P = 32).

In summary then, these results demonstrate that
not only is fsp, the adjacent subdomain/processor
preference function, a valid simplification offP ,
the full preference function, but also thatfP can be
prohibitively expensive to use. Meanwhile,fs, the
simplification that a cut-weight partitioner could use
without performance degradation, does not produce
mappings of the same quality and does not even ap-
pear to offer much of an advantage in terms of faster
partitioning times. For these reasons, all the other
results in this paper have been computed usingfsp.

4.5. Comparison with processor assignment

In this final section of results we compare the map-
ping algorithm with the two stage approach of par-
titioning for cut-weight followed by the mapping of
the subdomains to processors (often known as proces-
sor assignment). The partitioning algorithm is just the
multilevel algorithm outlined in Section 2 (and fully
described in [25]), whilst the processor assignment
which seeks to map the subdomains graph onto the
processor graph, whilst minimising the cost is once
again the QAP described in Section 3.2 and uses the
algorithm outlined there.

This type of two stage approach has been suggested
previously (e.g. [26]), but since the network costs are
not taken into account during the partitioning stage, the
subdomains are not ‘shaped’ so as to take into account
of the processor topology and the overall combination
may be far from optimal.

The tests also give a good comparison of the map-
ping algorithm against standard cut-weight partition-
ing (with no consideration of network cost) since the
assignment stage is very rapid (an O(P) algorithm
where the number of processorsP � V , the num-
ber of graph vertices) and does not increase the par-

620 C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623

Table 11
The average dilation for processor assignment,∆P , compared with
that for mapping,∆m, on a cluster architecture

Mesh P = 8 P = 16 P = 32

∆P ∆P /∆m ∆P ∆P /∆m ∆P ∆P /∆m

crack 3.86 2.31 4.15 2.39 5.76 3.08
4elt 3.44 2.28 4.85 2.66 4.76 2.59
t60k 2.40 1.64 3.95 2.38 4.84 2.72
dime20 3.58 2.00 3.84 2.10 4.08 2.29
144 4.23 2.61 5.79 3.02 6.38 3.14
m14b 3.79 2.56 4.03 2.29 5.85 3.02
cyl3 5.26 3.04 6.18 3.34 6.69 3.58
mesh1m 3.84 2.15 4.24 2.44 5.75 3.06
Average 2.32 2.58 2.93

titioning time very much. In addition, the processor
assignment algorithm does not change the cut-weight
achieved by the partitioner (since it merely reassigns
subdomains to processors). The cut-weight partitioner
alone would therefore produce the same cut-weight re-
sults and marginally faster timings, but mapping costs
and average dilation figures that are never better and
may be considerably worse than if the processor as-
signment algorithm is used in addition.

Tables 11 and 12 focus on a comparison of results
for the cluster architecture and show average dilation,
∆, and cut-weight,Φ. As previously the first column
for each value ofP shows the average dilation,∆P and
cut-weight,ΦP , respectively, for the combined par-
titioning/processor assignment algorithm, whilst the
second column shows these figures scaled by the re-
spective figures from Table 6, for the mapping algo-

Table 12
The cut-weight for processor assignment,ΦP , compared with that
for mapping,Φm, on a cluster architecture

Mesh P = 8 P = 16 P = 32

ΦP ΦP /Φm ΦP ΦP /Φm ΦP ΦP /Φm

crack 751 0.80 1191 0.75 1804 0.65
4elt 656 0.81 1012 0.68 1687 0.67
t60k 530 0.91 984 0.82 1588 0.73
dime20 636 0.69 1274 0.69 2282 0.72
144 28150 0.80 41842 0.62 60467 0.57
m14b 30663 1.04 45988 0.71 72997 0.56
cyl3 6798 0.67 10188 0.61 15179 0.59
mesh1m 13798 0.73 24522 0.79 35178 0.59
Average 0.81 0.71 0.63

Table 13
The average dilation for processor assignment,∆P , compared with
that for mapping,∆m, on a meta-computer architecture

Mesh P = 8 P = 16 P = 32

∆P ∆P /∆m ∆P ∆P /∆m ∆P ∆P /∆m

crack 3.86 2.31 2.83 1.95 2.48 1.88
4elt 3.44 2.28 2.94 2.13 2.20 1.79
t60k 2.40 1.64 2.02 1.60 1.75 1.47
dime20 3.58 2.00 2.51 1.72 1.99 1.52
144 4.23 2.61 3.62 2.51 2.65 1.91
m14b 3.79 2.56 2.05 1.65 1.90 1.61
cyl3 5.26 3.04 4.23 2.75 3.40 2.48
mesh1m 3.84 2.15 3.26 2.31 2.86 2.23
Average 2.32 2.08 1.86

rithm (denoted∆m andΦm). Thus for the crack, mesh
andP = 8, the partitioning/processor assignment al-
gorithm has average dilation 2.31 times worse than the
mapping algorithm. In fact, on average the situation is
worse and the average dilation is between 2.32 times
worse forP = 8 and 2.93 times worse forP = 32
indicating that the mapping algorithm certainly makes
a considerable difference.

As stated previously mapping does have a negative
impact on the cut-weight, but as we can see from Ta-
ble 12, only fairly minimally forP = 8, i.e. just 19%
on average, rising to around 37% forP = 32.

Tables 13 and 14 present the same information for
the meta-computer architecture. In fact, with the rel-
atively richer structure in the processor graph (recall
that this features only two fully connected compute
nodes rather than the multiple compute nodes of the

Table 14
The cut-weight for processor assignment,ΦP , compared with that
for mapping,Φm, on a meta-computer architecture

Mesh P = 8 P = 16 P = 32

ΦP ΦP /Φm ΦP ΦP /Φm ΦP ΦP /Φm

crack 751 0.80 1191 0.79 1804 0.84
4elt 656 0.81 1012 0.84 1687 0.93
t60k 530 0.91 984 0.94 1588 0.93
dime20 636 0.69 1274 0.80 2282 0.86
144 28150 0.80 41842 0.79 60467 0.78
m14b 30663 1.04 45988 0.93 72997 0.96
cyl3 6798 0.67 10188 0.68 15179 0.79
mesh1m 13798 0.73 24522 0.82 35178 0.83
Average 0.81 0.82 0.87

C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623 621

Table 15
Averages of processor assignment compared with mapping for
average dilation ratios, cut-weight and partitioning times

Architecture Assignment/mapping

P = 8 P = 16 P = 32

Average dilation
1D array 4.28 8.01 15.52
2D array 1.96 2.57 3.43
Cluster 2.32 2.58 2.93
Meta-computer 2.32 2.08 1.86
Cut-weight
1D array 0.63 0.50 0.38
2D array 0.84 0.77 0.73
Cluster 0.81 0.71 0.63
Meta-computer 0.81 0.82 0.87
Partitioning times
1D array 0.95 0.71 0.53
2D array 1.06 0.97 0.85
Cluster 1.08 0.88 0.75
Meta-computer 1.11 1.00 0.91

cluster architecture), the differences between parti-
tioning/assignment compared to mapping are less
marked. Even though the average dilation figures are
still around 2 times worse on average for partition-
ing/assignment, whilst the cut-weight figures only
show approximately 13–19% degradation for the
mapping algorithm.

Table 15 summarises these four previous tables
and includes similar comparisons for the 1D and 2D
arrays and for partitioning times. Here we can clearly
see that the mapping algorithm has the greatest effect
for the 1D array with its very sparse processor graph,
particularly asP increases. For example, the average
dilation is over 15 times worse forP = 32. This, how-
ever, impacts on the cut-weight figures and mapping
to a 1D array inevitably involves a greater increase in
cut-weight than for other architectures (although this
may not affect run-time or scalability of the underlying
application [18]). Similarly, since the mapping task is
more complicated, the mapping algorithm takes on av-
erage about twice as long to run forP = 32. However,
none of the other architectures with richer structure
in the processor graph, exhibit such extreme results.
Typically, then we see that for architectures other than
the 1D array the mapping algorithm can halve the
average dilation compared to partitioning/assignment,
whilst adding only around 13–37% more cut edges.

The partitioning times are comparable and indeed for
P = 8 the mapping algorithm is faster on average
although we have not yet been able to explain this
properly.

5. Summary and future research

In this paper, we have modified a multilevel algo-
rithm to minimise a cost function based on a model of
the (heterogeneous) communications network. This
has been motivated by the increasing use of SMP clus-
ters (systems of multiprocessor compute nodes with
very fast intra-node communications but relatively
slow inter-node networks) and the development of
meta-computers (multiple supercomputers combined
together, in extreme cases over inter-continental net-
works). The model of the communications network is
supplied by the user at run-time and in this sense the
technique is fairly generic since, if and when different
architectures appear, the mapping algorithm should
still apply and can be used simply by changing the
NCM.

The mapping algorithm is an adaptation of a stan-
dard multilevel partitioner (outlined in Section 3) with
modifications to the initial partition (Section 3.2) and,
in particular, the gain and preference functions (Sec-
tions 3.3 and 3.4), to take account of network costs.
The power of the process to compute such a mapping
stems from the global properties of the multilevel al-
gorithm. Edges which cross expensive links are pe-
nalised heavily within the cost function and so ver-
tices at either end of such an edge tend to migrate to
more adjacent processors (more adjacent to the pro-
cessor owning the vertex at the other end of the edge)
and create a sort of buffer zone. However, because
this occurs high up in the multilevel process, where
each vertexv represents many vertices in the original
graph, the buffer zone which may start off only one
vertex wide, can actually represent reasonably broad
regions in the mesh. In this way the partition is given
a good global quality on the coarse graphs which is
refined on the finer graphs.

The algorithm was tested in a number of ways
and initially we demonstrated (Section 4.2) that the
NCM requires weights sufficiently large to heav-
ily penalise communication across undesirable links
but that enforcing this too rigidly can actually be

622 C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623

detrimental to the partitioning without significantly
enhancing the mapping. On this basis we used the QPL
model.

Results for the mapping algorithm on four different
classes of architecture were given (Section 4.3) and
shown to provide low average dilation figures and fast
run-times. Inevitably, the mapping requirement tends
to increase the cut-weight, but in fact, in comparison
with a standard cut-weight version of the multilevel
algorithm in combination with a processor assignment
algorithm, the mapping algorithm gave average dila-
tion results 2 times better with only an approximately
10–30% increase in cut-weight and similar run-times.
We noted at several points that these differences tend
to be more exacerbated for a sparse processor adja-
cency graph such as the 1D array and less so for net-
works with a richer communications structure.

Internally within the mapping algorithm we also
tested three different preference functions (Sec-
tion 4.4) and showed that the adjacent subdo-
main/processor preference function is a valid simpli-
fication and avoids the need for an O(P 2) operation
deeply embedded within the code.

The network cost matrices that we have used here
to model the parallel architectures have been based
on previous research which suggest that, for exam-
ple, with certain latency dominated architectures a 1D
mapping with its relatively high cut-weight can still
provide the best application run-times and scalability
[18]. Meanwhile, the hierarchical models are based
on work which shows that parallel efficiency can be
increased if all inter-node communications are han-
dled by one processor per compute node [6]. Nonethe-
less, having established that our algorithm can respond
well to a given NCM, the next step is to test the
mappings with a genuine application on various net-
works to establish exactly how to weight the network
cost matrices. However, for the reasons stated in Sec-
tion 3.1, we do not believe that this process can be
automated.

A further extension to this work would be to paral-
lelise the mapping algorithm. In fact we do not believe
that this to be a very difficult task given that we have
described three parallel optimisation algorithms (for
use in the context of a multilevel partitioner) in [24].
Although slightly different in nature to the serial mul-
tilevel algorithm outlined in Section 2, all three also
rely on the same gain and preference functions and we

believe that it should be easy enough to simply insert
the versions derived here (in Sections 3.3 and 3.4).

References

[1] S.T. Barnard, H.D. Simon, A fast multilevel implementation
of recursive spectral bisection for partitioning unstructured
problems, Concurrency: Pract. Experience 6 (2) (1994) 101–
117.

[2] T.N. Bui, C. Jones, A heuristic for reducing fill-in in sparse
matrix factorization, in: R.F. Sincovec, et al. (Eds.), Parallel
Processing for Scientific Computing, SIAM, Philadelphia, PA,
1993, pp. 445–452.

[3] R.E. Burkard, E. Cela, P.M. Pardalos, L.S. Pitsoulis,
The quadratic assignment problem, SFB-Report 126, Inst.
Mathematik B, Tech. Univ. Graz, Austria, 1998.

[4] R.E. Burkard, S.E. Karisch, F. Rendl, QAPLIB — a quadratic
assignment problem library, J. Global Optim. 10 (4) (1997)
391–403.

[5] R.E. Burkard, F. Rendl, A thermodynamically motivated
simulation procedure for combinatorial optimization
problems, Eur. J. Oper. Res. 17 (2) (1984) 169–174.

[6] J. Chen, V. Taylor, Mesh partitioning for distributed systems:
exploring optimal number of partitions with local and remote
communication, in: B. Hendrickson et al. (Eds.), Proc.
9th SIAM Conference on Parallel Processing and Scientific
Computing, SIAM, Philadelphia, 1999. CD-rom.

[7] J. Chen, V. Taylor, ParaPART: parallel mesh partitioning for
distributed systems, in: Proc. Irregular’98: Solving Irregularly
Structured Problems in Parallel, San Juan, Puerto Rico,
Lecture Notes in Computer Science, Vol. 1586, Springer,
Berlin, 1999.

[8] M. Dormanns, H.-U. Heiss, Mapping large-scale FEM-graphs
to highly parallel computers with grid-like topology by
self-organization, Technical Report, Dept. Informatics, Univ.
Karlsruhe, D-76128 Karlsruhe, Germany, February 1994.

[9] C.M. Fiduccia, R.M. Mattheyses, A linear time heuristic for
improving network partitions, in: Proceedings of the 19th
IEEE Design Automation Conference, IEEE, Piscataway, NJ,
1982, pp. 175–181.

[10] E. Gabriel, M. Resch, T. Beisel, R. Keller, Distributed
computing in a heterogeneous computing environment, in:
Proceedings of the Euro PVM/MPI’98, Liverpool, 1998.

[11] A. Gupta, Fast and effective algorithms for graph partitioning
and sparse matrix reordering, IBM J. Res. Dev. 41 (1/2)
(1996) 171–183.

[12] B. Hendrickson, T.G. Kolda, Graph partitioning models for
parallel computing, Parallel Comput. 26 (2000) 1519–1534.

[13] B. Hendrickson, R. Leland, A multilevel algorithm for
partitioning graphs, in: S. Karin (Ed.), Proceedings of the
Supercomputing’95, San Diego, ACM, New York, 1995.

[14] B. Hendrickson, R. Leland, R. Van Driessche, Enhancing data
locality by using terminal propagation, in: Proceedings of
the 29th Hawaii International Conference on System Science,
1996.

C. Walshaw, M. Cross / Future Generation Computer Systems 17 (2001) 601–623 623

[15] B. Hendrickson, R. Leland, R. Van Driessche, Skewed graph
partitioning, in: M. Heath, et al. (Eds.), Proc. 8th SIAM
Conf. on Parallel Processing for Scientific Computing, SIAM,
Philadelphia, PA, 1997, CD-rom.

[16] G. Karypis, V. Kumar, A fast and high quality multilevel
scheme for partitioning irregular graphs, SIAM J. Sci.
Comput. 20 (1) (1998) 359–392.

[17] B.W. Kernighan, S. Lin, An efficient heuristic for partitioning
graphs, Bell Syst. Tech. J. 49 (1970) 291–308.

[18] K. McManus, M. Cross, C. Walshaw, S. Johnson, P. Leggett,
A scalable strategy for the parallelization of multiphysics
unstructured mesh-iterative codes on distributed-memory
systems, Int. J. High Perform. Comput. Appl. 14 (2) (2000)
137–174.

[19] K. McManus, C. Walshaw, M. Cross, P. Leggett, S. Johnson,
Evaluation of the JOSTLE mesh partitioning code for
practical multiphysics applications, in: A. Ecer, et al. (Eds.),
Parallel Computational Fluid Dynamics: Implementations
and Results Using Parallel Computers, Elsevier, Amsterdam,
1996, pp. 673–680 (Proc. Parallel CFD’95, Pasadena, 1995).

[20] F. Pellegrini, J. Roman, Experimental analysis of the dual
recursive bipartitioning algorithm for static mapping, TR
1038-96, LaBRI, URA CNRS 1304, Univ. Bordeaux I, 351,
Cours de la Libération, 33405 Talence, France, 1996.

[21] F. Pellegrini, J. Roman, SCOTCH: a software package
for static mapping by dual recursive bipartitioning of
process and architecture graphs, in: H. Liddell, et al.
(Eds.), High-performance Computing and Networking, Proc.
HPCN’96, Brussels, Lecture Notes in Computer Science, Vol.
1067, Springer, Berlin, 1996, pp. 493–498.

[22] K. Schloegel, G. Karypis, V. Kumar, Graph partitioning
for high performance scientific simulations, in: J. Dongarra,
et al. (Eds.), CRPC Parallel Computing Handbook, Morgan
Kaufmann, Los Altos, CA, in press.

[23] J.D. Teresco, M.W. Beall, J.E. Flaherty, M.S. Shephard,
A hierarchical partition model for adaptive finite element
computation, Comput. Meth. Appl. Mech. Eng. 184 (2000)
269–285.

[24] C. Walshaw, M. Cross, Parallel optimisation algorithms for
multilevel mesh partitioning, Parallel Comput. 26 (2000)
1635–1660. (originally published as Univ. Greenwich Tech.
Rep. 99/IM/44).

[25] C. Walshaw, M. Cross, Mesh partitioning: a multilevel
balancing and refinement algorithm, SIAM J. Sci. Comput.
22 (1) (2000) 63–80 (originally published as Univ. Greenwich
Tech. Rep. 98/IM/35).

[26] C. Walshaw, M. Cross, M. Everett, S. Johnson, K. McManus,
Partitioning and mapping of unstructured meshes to parallel
machine topologies, in: A. Ferreira, J. Rolim (Eds.),
Proceedings of the Irregular’95 on Parallel Algorithms for
Irregularly Structured Problems, Lecture Notes in Computer
Science, Vol. 980, Springer, Berlin, 1995, pp. 121–126.

Chris Walshaw is a senior research fellow in
the School of Computing and Mathematical
Sciences at the University of Greenwich. He
graduated from Bath University with a BSc
in Mathematics and then moved to Edinburgh
where he gained an MSc from Edinburgh Uni-
versity and a PhD from Heriot-Watt University
where his doctoral thesis concerned parallel

algorithms for systems of differential equations. His postdoctoral
work has extended this theme into parallel methods for adaptive
unstructured meshes and, in particular, mesh partitioning. Since
joining the University of Greenwich in 1993, he has developed
the publically available JOSTLE mesh partitioning software. He
is the author of some 60 research papers.

Mark Cross is a Professor of Numerical Mod-
elling and Director of the Centre for Numer-
ical Modelling and Process Analysis in the
School of Computing and Mathematical Sci-
ences at the University of Greenwich. The
centre has about 100 staffs and graduate stu-
dents of which about 10 are associated with
the Parallel Processing Group whose work is
focussed on the development of software tools

to support the exploitation of such systems by computational mod-
elling software. Professor Cross was educated at the University
of Wales, Cardiff and received his PhD in 1972 for work on the
modelling of semiconductor lasers. Since then he has worked in
industry and academia in both the UK and USA and has been at
Greenwich since 1982. His research interests cover computational
modelling of metals/materials processes, computational mechanics
algorithms and software tools and the exploitation of HPC sys-
tems. He is Editor of the Archival Journal, Applied Mathematical
Modelling, published by Elsevier, and is the author of some 200
research publications.

