
Load-balancing for parallel
adaptive unstructured grids

C. Walshaw
M. Cross

Centre for Numerical Modelling and Process Analysis,
University of Greenwich,
London, SE18 6PF, UK.
email: C.Walshaw@gre.ac.uk

Abstract

A parallel method for the dynamic partitioning of unstructured meshes is outlined.
The method includes diffusive load-balancing techniques and an iterative optimisa-
tion technique known as relative gain optimisation which both balances the workload
and attempts to minimise the interprocessor communications overhead. It can also
optionally include a multilevel strategy. Experiments on a series of adaptively refined
meshes indicate that the algorithm provides partitions of an equivalent or higher qual-
ity to static partitioners (which do not reuse the existing partition) and much more
rapidly. Perhaps more importantly, the algorithm results in only a small fraction of
the amount of data migration compared to the static partitioners.

Key words. graph-partitioning, adaptive unstructured meshes, load-balancing, par-
allel computing.

1 Introduction

The need for mesh partitioning arises naturally in many finite element (FE) and fi-
nite volume (FV) applications. Meshes composed of elements such as triangles or
tetrahedra are often better suited than regularly structured grids for representing com-
pletely general geometries and resolving wide variations in behaviour via variable
mesh densities. Meanwhile, the modelling of complex behaviour patterns means that
the problems are often too large to fit onto serial computers, either because of mem-
ory limitations or computational demands, or both. Distributing the mesh across a
parallel computer so that the computational load is evenly balanced and the data lo-
cality maximised is known as mesh partitioning. It is well known that this problem is
NP-complete, so in recent years much attention has been focused on developing suit-



able heuristics, and some powerful methods, many based on a graph corresponding
to the communication requirements of the mesh, have been devised.

An increasingly important area for mesh partitioning, however, arises from prob-
lems in which the computational load varies throughout the evolution of the solution.
For example, heterogeneity in either the computing resources (e.g. processors which
are unevenly matched or not dedicated to single users) or in the solver (e.g. solving
for flow or stress in different parts of the domain in a multiphysics casting simula-
tion, [7]) can result in load-imbalance and poor performance. Alternatively, time-
dependent unstructured mesh codes which use adaptive refinement can give rise to a
series of meshes in which the position and density of the data points varies dramati-
cally over the course of an integration and which may need to be frequently reparti-
tioned for maximum parallel efficiency.

The dynamic evolution of load has three major influences on possible partitioning
techniques; cost, reuse and parallelism. Firstly, frequent load-balancing may be re-
quired and so must have a low cost relative to that of the solution algorithm in be-
tween. This could potentially restrict the use of high quality partitioning algorithms
but fortunately, if the mesh has not changed too much, it is a simple matter to inter-
polate the existing partition from the old mesh to the new and use this as the starting
point for repartitioning, [10]. In fact, not only is the load-balancing likely to be un-
necessarily computationally expensive if it fails to use this information, but also (as
can be seen in Section 4) the mesh elements will be redistributed without any refer-
ence to their previous ‘home processor’ and heavy data migration may result. Finally,
the data is distributed and so should be repartitioned in situ rather than incurring the
expense of transferring it back to some host processor for load-balancing. Collec-
tively these issues call for parallel load-balancing and, if a high quality partition is
desired, a parallel optimisation algorithm.

In this paper we outline such a parallel optimisation technique (Section 2) which in-
corporates a distributed load-balancing algorithm and which provides an extremely
fast solution to the problem of dynamically load-balancing unstructured meshes. In
addition, a parallel graph contraction technique (outlined in Section 3) can be em-
ployed to enhance the partition quality and the resulting strategy (which can also be
applied to static partitioning problems) outperforms or matches results from existing
state-of-the-art static mesh partitioning algorithms.

Here, in particular, we focus on adaptively refined meshes where we assume that the
mesh will be repartitioned after each refinement phase. However, the method is also
applicable to the more general case where load may be constantly varying, and in
[1] a method for determining how frequently to partition (for maximum efficiency)
is described, together with examples using the same partitioning techniques.



Notation and definitions.

Let G = G(V;E) be an undirected graph of V vertices with E edges which rep-
resent the data dependencies in the mesh and let P be a set of processors. We as-
sume that both vertices and edges are weighted (with positive integer values) and
that jvj denotes the weight of a vertex v, jSj :=

P

v2S

jvj the weight of a subset
S � V and similarly for edges. Once the vertices are partitioned into P sets we de-
note the subdomains by S

p

, for p 2 P and the optimal subdomain weight is given by
W := djV j=P e. We denote the set of cut (or inter-subdomain) edges by E

c

.

The definition of the graph-partitioning problem is to find a partition which evenly
balances the load or vertex weight in each subdomain whilst minimising the com-
munications cost. More precisely we seek a partition such that S

p

� W for p 2 P

(although this is not always possible for graphs with non-unitary vertex weights) and
such that jE

c

j is minimised (though see x2).

2 Optimisation

In this section we outline a parallel iterative algorithm for load-balancing and opti-
mising unstructured mesh partitions. The method is based on the concept of relative
gain and is described more fully in [9].

Load-balancing: calculating the flow

Given a graph partitioned into unequal sized subdomains, we need some mechanism
for distributing the load equally. To do this we solve the load-balancing problem on
the subdomain graph,G

�

(the graph of connections between subdomains), in order to
determine a balancing flow, a flow along the edges of G

�

which balances the weight
of the subdomains. By keeping the flow localised in this way, vertices are not mi-
grated between non adjacent subdomains and hence (hopefully) the partition quality
is not degraded (since a vertex migrating to a subdomain to which it is not adjacent
is almost certain to have a negative gain).

Much work has been carried out on parallel or distributed algorithms and, in partic-
ular, on diffusive algorithms, e.g. [3], and we use an elegant technique developed
by Hu & Blake, [5], which converges faster than diffusive methods, minimises the
Euclidean norm of the transferred weight and simply involves solving the an O(P )

linear system. This algorithm (or, in principle, any other distributed load-balancing
algorithm) is used to determine how much weight to transfer across edges of the sub-
domain graph and the optimisation technique below is then used to decide which ver-
tices to move.



Relative gain optimisation

A key concept in many graph partition optimisation algorithms is the idea of gain.
Loosely, the gain g(v; q) of a vertex v in subdomain S

p

can be calculated for every
other subdomain,S

q

, q 6= p, and expresses some ‘estimate’ of how much the partition
would be ‘improved’ were v to migrate to S

q

. The gain is usually directly related to
some cost function which measures the quality of the partition and which we aim to
minimise. In this paper, as is typical, the cost function used is simply the total weight
of cut edges, jE

c

j, and then the gain expresses the change in jE
c

j, but see [9] for more
discussion on this point.

Having determined the required flow across the edges of the subdomain graph we
need to migrate vertices between adjacent subdomains in order to satisfy that flow.
Choosing appropriate vertices to migrate is not an easy task because we also wish
to optimise the partition quality with respect to the cost function. Indeed, in order
to obtain partitions of the highest quality, it is likely that vertices will need to be ex-
changed even if there is no flow required. Simply moving vertices with the highest
gain is not a satisfactory solution, however, as it means that adjacent vertices may be
swapped simultaneously (an event often known as a collision) and this may lead to
an increase in the cost. We address this issue with an optimisation algorithm fully de-
scribed in [9] and known as relative gain optimisation. Essentially, the relative gain
of a vertex v is just the gain of v less the average gain of opposing vertices, and gives
an indication of which are the best vertices to move in order to avoid collisions.

3 Graph contraction

The optimisation algorithm provides what is essentially very localised optimisation
and it has been recognised for some time that an effective way of both speeding up
optimisation and, perhaps more importantly, giving it a more global perspective is to
use graph contraction. The idea is to group vertices together to form clusters, use the
clusters to define a new graph, recursively iterate this procedure to produce a series
of graphs G

1

; G

2

; : : : ; G

l

until the graph size falls below some threshold and then
successively optimise these reduced size graphs. The optimisation is carried out on
each graph using the algorithm outlined in Section 2 and we enhance the technique
by using a multilevel balancing schedule. This idea, first described in [8], allows a
given amount of imbalance in each of the reduced graphs (the amount is given by
the balancing schedule and decreases as the procedure progressively optimises the
graphs G

l

; G

l�1

; : : : ; G

1

) with the intention that the leeway given by the imbalance
will allow the optimisation technique to find a better partition. The implementation
of the parallel graph contraction algorithm is fully described in [9].



4 Experimental results

The software tool written at Greenwich and which we have used to test the optimi-
sation and graph contraction algorithms is known as JOSTLE. For the purposes of
this paper it can be run in three configurations, dynamic (JOSTLE-D), multilevel-
dynamic (JOSTLE-MD) and multilevel-static (JOSTLE-MS). The dynamic config-
uration, JOSTLE-D, starts from an existing partition and uses the algorithm outlined
in Section 2 to balance and optimise the partition. The multilevel-dynamic, JOSTLE-
MD, uses graph contraction (Section 3) on the existing partition to a given thresh-
old (in the case of the results given here the threshold is 20 vertices per processor)
while the static version, JOSTLE-MS, carries out graph contraction on the graph par-
titioned with a simple block based partition (the first V=P vertices on processor 0,
etc.). Both multilevel configurations then use the optimisation algorithm from Sec-
tion 2 to successively balance and optimise the partition on each graph.

The test meshes have been taken from an example contained in the DIME (distributed
irregular mesh environment) software package, [11], available by anonymous ftp.
The particular application solves Laplace’s equation with Dirichelet boundary con-
ditions on a square domain with an S-shaped hole and using a triangular finite el-
ement discretisation. The problem is repeatedly solved by Jacobi iteration, refined
based on this solution and then load-balanced. A very similar set of meshes has previ-
ously been used for testing mesh partitioning algorithms and details about the solver,
the domain and DIME can be found in [12]. The particular series of ten meshes
and the resulting graphs that we used range in size from the first one which contains
23,787 vertices and 35,281 edges to the final one which contains 224,843 vertices
and 336,024 edges.

Comparison results

In order to demonstrate the quality of the partitions we have compared the method
with three of the most popular partitioning schemes, METIS, GREEDY and Multi-
level Recursive Spectral Bisection (MRSB). Of the three METIS is the most similar
to JOSTLE, employing a graph contraction technique and iterative optimisation. The
version used here is kmetis, available by anonymous ftp [6]. The GREEDY algo-
rithm, [4], is fast but not particularly good at minimising jE

c

j, while MRSB, on the
other hand, is a highly sophisticated method, good at minimising jE

c

j but suffering
from relatively high runtimes, [2]. The MRSB code was made available to us by one
of its authors, Horst Simon, and run unchanged with a contraction thresholds of 100.

The following experiments were carried out in serial on a Sun SPARC Ultra with
a 140 MHz CPU and 64 Mbytes of memory. We use three metrics to measure the
performance of the algorithms – the total weight of cut edges, jE

c

j, the execution



time in seconds of each algorithm, t(s), and the percentage of vertices which need to
be migrated, M .

For the two dynamic configurations, the initial mesh is partitioned with the static ver-
sion – JOSTLE-MS. Subsequently at each refinement, the existing partition is inter-
polated onto the new mesh using the techniques described in [10] (essentially, new
elements are owned by the processor which owns their parent) and the new partition
is then optimised and balanced.

P = 16 P = 32 P = 64

method jE

c

j t(s) M % jE

c

j t(s) M % jE

c

j t(s) M %
JOSTLE-D 898 0.45 0.84 1568 0.48 1.66 2579 0.55 3.58
JOSTLE-MD 798 2.54 2.17 1399 2.73 3.66 2314 3.10 5.93
JOSTLE-MS 878 2.48 94.69 1506 2.76 98.07 2371 3.29 98.17
METIS 890 4.69 94.29 1519 4.83 95.92 2398 5.15 97.93
MRSB 939 13.02 83.54 1577 16.28 90.01 2520 19.57 95.07
GREEDY 1816 0.63 81.62 2897 0.69 90.64 4300 0.84 94.42

Table 1: Average results over the 9 meshes

Table 1 compares the six different partitioning methods for P = 16, 32 and 64 with
the results averaged over the last 9 meshes (i.e. not including the static partitioning
results for the first mesh). The high quality partitioners – both JOSTLE multilevel
configurations, METIS and MRSB – all give similar values for jE

c

j with MRSB
giving marginally the worst results and JOSTLE-MD giving the best. In general,
JOSTLE-D, without the benefit of graph contraction, provides slightly lower qual-
ity partitions but approximately equivalent to those of MRSB. In terms of execu-
tion time, JOSTLE-D is slightly faster than GREEDY with both of them being much
faster than any of the multilevel algorithms. Of these multilevel algorithms, however,
JOSTLE-MD and JOSTLE-MS are considerably faster than METIS, and MRSB is
by far the slowest. It is the final column which is perhaps the most telling though.
Because the static partitioners take no account of the existing distribution they re-
sult in a vast amount of data migration. The dynamic configurations, JOSTLE-D and
JOSTLE-MD, on the other hand, migrate very few of the vertices. As could be ex-
pected JOSTLE-MD migrates somewhat more than JOSTLE-D since it does a more
thorough optimisation.

Taking the results as a whole, the multilevel-dynamic configuration, JOSTLE-MD,
provides the best partitions very rapidly and with very little vertex migration. If a
slight degradation in partition quality can be tolerated however, the JOSTLE-D con-
figuration load-balances and optimises even more rapidly, faster than the GREEDY
algorithm, with even less vertex migration.



Effect of the multilevel techniques

To further compare the JOSTLE-D and JOSTLE-MD configurations, we can look
at how the results compare as the contraction threshold changes. The contraction
threshold determines at what level the graph contraction procedure terminates and
thus JOSTLE-D can be seen as the same configuration as JOSTLE-MD only with a
very large threshold (so that the contraction never starts).

Figure 1 shows the effects of varying the contraction threshold for the final mesh of
the adaptive series given a reasonably good fixed initial partition. Here the thresh-
old refers to the number of graph vertices per processor below which the contraction
process terminates. As can be seen (despite the noise in the results) the quality of the
partition (as measured by the cut-edge weight) gradually falls off as the threshold in-
creases (i.e. as the partitioner tends towards the JOSTLE-D configuration). Again,
this is to be expected as the multilevel strategy tends to give a more global quality to
the optimisation. Perhaps more interesting, however, is the way the volume of data
migrated drops off very rapidly as the threshold increases. In fact the graph is even
more exponential than shown as the intervals chosen for the threshold are multiples
of 100. This suggests that, in terms of the data migrated, it is of no great benefit to
choose a high threshold and that reasonably good performance can be achieved with
a relatively low setting. It is for this reason that we have chosen a default setting of
20 for JOSTLE-MD as it is felt that this gives a good balance between high partition
quality and low data migration.

Parallel timings

Achieving high parallel performance for parallel partitioning codes such as JOSTLE
is not as easy as, say, a typical CFD or CM code. For a start the algorithms use only
integer operations and so there are no MFlops to ‘hide behind’. In addition, most of
the work is carried out on the subdomain boundaries and so very little of the actual
graph is used. Also the partitioner itself may not necessarily be well load-balanced
and the communications cost may dominate on the coarsest reduced graphs. On the
other hand, as was explained in Section 1, partitioning on the host may be impossible
or at least much more expensive and if the cost of partitioning is regarded (as it should
be) as a parallel overhead, it is usually extremely inexpensive relative to the overall
solution time of the problem.

Table 2 gives serial timings in seconds (t
s

(s)), parallel timings in seconds (t
p

(s))
and speedup (t

s

=t

p

) results for the JOSTLE-MD configuration on the 512 node Cray
T3E at HLRS, the High Performance Computer Centre at the University of Stuttgart.
These demonstrate good speedups for this sort of code and more importantly, very
low overheads (always less than a second) for the parallel partitioning. The results
for JOSTLE-D are similar (see [9] for some examples) only with shorter serial and



P = 16 P = 32 P = 64

V t

s

(s) t

p

(s) t

s

=t

p

t

s

(s) t

p

(s) t

s

=t

p

t

s

(s) t

p

(s) t

s

=t

p

31172 0.71 0.28 2.54 1.02 0.27 3.78 1.80 0.37 4.86
40851 0.88 0.26 3.38 1.26 0.27 4.67 2.00 0.36 5.56
53338 1.16 0.32 3.62 1.56 0.33 4.73 2.41 0.39 6.18
69813 1.46 0.34 4.29 1.88 0.34 5.53 2.68 0.35 7.66
88743 1.76 0.36 4.89 2.26 0.37 6.11 3.16 0.39 8.10

115110 2.27 0.45 5.04 2.87 0.46 6.24 3.83 0.42 9.12
146014 2.83 0.52 5.44 3.45 0.46 7.50 4.53 0.46 9.85
185761 3.55 0.62 5.73 4.32 0.54 8.00 5.41 0.46 11.76
224843 4.29 0.70 6.13 5.03 0.57 8.82 6.06 0.52 11.65

Table 2: Serial and parallel timings for the JOSTLE-MD configuration

parallel runtimes and (usually) slightly better speedups.

5 Conclusion

We have outlined a new method for optimising and load-balancing graph partitions
with a specific focus on its application to the dynamic mapping of adaptive unstruc-
tured meshes onto parallel computers. In this context the graph-partitioning task can
be very efficiently addressed by reoptimising the existing partition, rather than start-
ing the partitioning from afresh. For the experiments reported in this paper, the dy-
namic procedures are much faster than static techniques, provide partitions of similar
or higher quality and, in comparison, involve the migration of a fraction of the data.

Acknowledgements. We would like thank HLRS, the High Performance Computer
Centre at the University of Stuttgart, for access to the Cray T3E.

References

[1] A. Arulananthan, S. Johnson, K. McManus, C. Walshaw, and M. Cross. A
Generic Strategy for Dynamic Load Balancing of Distributed Memory Paral-
lel Computational Mechanics Using Unstructured Meshes. In D. Emerson et
al, editor, Parallel Computational Fluid Dynamics: Recent Developments and
Advances Using Parallel Computers. Elsevier, Amsterdam, 1998. (Proc. Par-
allel CFD’97, Manchester, 1997; in press).

[2] S. T. Barnard and H. D. Simon. A Fast Multilevel Implementation of Recur-
sive Spectral Bisection for Partitioning Unstructured Problems. Concurrency:
Practice & Experience, 6(2):101–117, 1994.



[3] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors.
J. Par. Dist. Comput., 7(2):279–301, 1989.

[4] C. Farhat. A Simple and Efficient Automatic FEM Domain Decomposer.
Comp. & Struct., 28(5):579–602, 1988.

[5] Y. F. Hu and R. J. Blake. An optimal dynamic load balancing algorithm.
Preprint DL-P-95-011, Daresbury Laboratory, Warrington, WA4 4AD, UK. (To
be published in Concurrency: Practice & Experience), 1995.

[6] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Par-
titioning Irregular Graphs. TR 95-035, Computer Science Department, Univer-
sity of Minnesota, Minneapolis, MN 55455, 1995.

[7] K. McManus, C. Walshaw, M. Cross, P. Leggett, and S. Johnson. Evaluation of
the JOSTLE mesh partitioning code for practical multiphysics applications. In
A. Ecer et al, editor, Parallel Computational Fluid Dynamics: Implementations
and Results Using Parallel Computers, pages 673–680. Elsevier, Amsterdam,
1996. (Proc. Parallel CFD’95, Pasadena, 1995).

[8] C. Walshaw and M. Cross. Mesh Partitioning: a Multilevel Balancing and Re-
finement Algorithm. Tech. Rep. 98/IM/35, University of Greenwich, London
SE18 6PF, UK, March 1998.

[9] C. Walshaw, M. Cross, and M. Everett. Parallel dynamic graph-partitioning for
unstructured meshes. J. Par. Dist. Comput., 1998. (in press).

[10] C. H. Walshaw and M. Berzins. Dynamic load-balancing for PDE solvers on
adaptive unstructured meshes. Concurrency: Practice & Experience, 7(1):17–
28, 1995.

[11] R. D. Williams. DIME: Distributed Irregular Mesh Environment. Caltech Con-
current Computation Report C3P 861, 1990.

[12] R. D. Williams. Performance of dynamic load balancing algorithms for un-
structured mesh calculations. Concurrency: Practice & Experience, 3:457–
481, 1991.



0 100 200 300 400 500 600 700 800 900 1000
2300

2320

2340

2360

2380

2400

2420

2440

2460

2480

threshold

cu
t e

dg
es

0 100 200 300 400 500 600 700 800 900 1000
2

4

6

8

10

12

14

16

threshold

%
 m

ig
ra

te
d

Figure 1: The effects of varying the contraction threshold on the cut-edge weight
(top) and data migrated (bottom)


