Multilevel Refinement for Combinatorial
Optimisation: Boosting Metaheuristic
Performance

Chris Walshaw

Computing and Mathematical Sciences, University of Greenwich, Old Royal Naval
College, Greenwich, London, SE10 9LS, UK. C.Walshaw@gre.ac.uk

1 Introduction

The multilevel paradigm as applied to combinatorial optimisation problems
is a simple one, which at its most basic involves recursive coarsening to create
a hierarchy of approximations to the original problem. An initial solution
is found, usually at the coarsest level, and then iteratively refined at each
level, coarsest to finest, typically by using some kind of heuristic optimisation
algorithm (either a problem-specific local search scheme or a metaheuristic).
Solution extension (or projection) operators can transfer the solution from
one level to another.

As a general solution strategy, the multilevel paradigm has been in use
for many years and has been applied to many problem areas (for example
multigrid techniques can be viewed as a prime example of the paradigm).
Overview papers such as [39] attest to its efficacy. However, with the excep-
tion of the graph partitioning problem, multilevel techniques have not been
widely applied to combinatorial problems and in this chapter we discuss recent
developments.

In this chapter we survey the use of multilevel combinatorial techniques
and consider their ability to boost the performance of (meta)heuristic opti-
misation algorithms.

1.1 Fundamentals

The last 50 years have seen a huge amount of research effort devoted to the
study of combinatorial optimisation problems. Spanning applied mathemat-
ics, through operations research, to management sciences, such problems are
typically concerned with the allocation of resources in some way and are used
in many diverse applications including scheduling, timetabling, logistics and
the design of computer components.

2 Chris Walshaw

There are now a bewildering array of (meta)heuristic optimisation algo-
rithms (e.g. ant colony optimisation, genetic algorithms, simulated annealing,
tabu search, variable neighbourhoods, etc., [4]) to address such problems and
for any given application, the practitioner must often answer the question
‘which is likely to be the best algorithm for my problem?’

In considering the multilevel paradigm however, a different question oc-
curs. Since the multilevel framework is a collaborative one, which always acts
in concert with some other technique, the question that arises is ‘given that
I am using algorithm X for addressing my problem, can its performance be
boosted by using a multilevel version of algorithm X?

As we shall see, very often the answer appears to be emphatically yes,
either in terms of the solution quality, or the computational runtime, or both.

Indeed, in certain instances, it does seem to be the case that, in terms of
performance, the decision to use a multilevel scheme is far more important
then the actual choice of the underlying search algorithm.

Even more encouragingly, anecdotal evidence suggests that, in developing
a full-blown multilevel scheme, the multilevel framework (which at its most
basic requires a coarsening algorithm and a projection/extension operator) is
generally far easier to implement than a high-quality optimisation algorithm
for the problem. In fact, it is often the case that a coarsening algorithm can
be built from components found in solution construction heuristics, i.e. those
which are usually used to find an initial feasible (although poor quality) so-
lution, whilst the solution extension operator is usually a trivial reversal of
coarsening.

1.2 Overview

The rest of the chapter is organised as follows.

First we motivate the ideas and, via some sample results, consider evidence
for the strengths of the multilevel paradigm by describing by discussing the
widespread use of multilevel graph partitioning schemes. Multilevel techniques
have been employed in this field since 1993 and enable very high quality
solutions to be found rapidly. Thus, in Sect. 2, we provide sample results
which demonstrate that the multilevel approach when used in combination
with a state-of-the-art (single-level) local search strategy can dramatically
improve the asymptotic convergence in solution quality.

In Sect. 3, we then survey the use of multilevel techniques, both in the
field of graph-partitioning and also their increasing use in other combinatorial
optimisation problems. We also look at related ideas. In Sect. 4, we look
at generic features and extract some guiding principles that might aid the
application of the paradigm to other problems. Finally we summarise the
chapter in Sect. 5.

Multilevel Refinement for Combinatorial Optimisation 3
2 Extended Example: the Graph Partitioning Problem

The k-way graph partitioning problem (GPP) can be stated as follows: given
a graph G(V, E), possibly with weighted vertices and/or edges, partition the
vertices into k disjoint sets such that each set contains the same (or nearly
the same) vertex weight and such that the cut-weight, the total weight of
edges cut by the partition, is minimised. In combinatorial optimisation terms,
the cut-weight is the objective function whilst balancing the vertex weight is
a constraint (the balance constraint) and it is well known that this problem
is NP-hard.

The GPP has a number of applications, most notably the partitioning
of unstructured meshes for parallel scientific computing (often referred to as
mesh partitioning).

2.1 Multilevel Graph Partitioning

The GPP was the first combinatorial optimisation problem to which the mul-
tilevel paradigm was applied and there is now a considerable volume of liter-
ature about multilevel partitioning algorithms which we survey in Sect. 3.1.
Initially used as an effective way of speeding up partitioning schemes, it was
soon recognised as, more importantly, giving them a more ‘global’ perspec-
tive [21], and has been successfully developed as a strategy for overcoming
the localised nature of the Kernighan-Lin (KL) [26] and other optimisation
algorithms.

Typically, multilevel implementations match and coalesce pairs of adjacent
vertices to define a new graph and recursively apply this procedure until the
graph size falls below some threshold. The coarsest graph is then partitioned
(possibly with a crude algorithm) and the partition is successively refined on
all the graphs starting with the coarsest and ending with the original. At each
change of levels, the final partition of the coarser graph is used to give the
initial partition for the next level down.

The use of multilevel combinatorial refinement for partitioning was first
proposed by both Hendrickson & Leland [19] and Bui & Jones [10], inspired
by Barnard & Simon [2], who used a multilevel numerical algorithm to speed
up spectral partitioning.

Fig. 1 shows an example of a multilevel partitioning scheme in action. On
the top row (left to right) the graph is coarsened down to 4 vertices which
are (trivially) partitioned into 4 sets (bottom right). The solution is then
successively extended and refined (right to left; each graph shows the final
partition for that level). Although at each level the refinement is only local in
nature, a high quality partition is still achieved.

Graph Coarsening

A common method to create a coarser graph Giy1(Viy1, Ej41) from Gi(V;, Ey)
is the edge contraction algorithm proposed by Hendrickson & Leland [19]. The

4 Chris Walshaw

Fig. 1. An example of multilevel partitioning

idea is to find a maximal independent subset of graph edges, or a matching
of vertices, and then collapse them. The set is independent if no two edges
in the set are incident on the same vertex (so no two edges in the set are
adjacent), and maximal if no more edges can be added to the set without
breaking the independence criterion.

Having found such a set, each selected edge is collapsed and the vertices,
u1,u2 € V) say, at either end of it are merged to form a new vertex v € V41
with weight ||v|| = ||u1|| + ||uz||- Edges which have not been collapsed are
inherited by the child graph, G;+1, and, where they become duplicated, are
merged with their weight summed. This occurs if, for example, the edges
(u1,u3) and (u2,u3) exist when edge (u1,us2) is collapsed. Because of the
inheritance properties of this algorithm, it is easy to see that the total vertex
weight remains the same, ||Vi41|| = ||Vi]|, and the total edge weight is reduced
by the sum of the collapsed edge weights.

1

Fig. 2. An example of coarsening via matching and contraction

Fig. 2 shows an example where, on the left, two pairs of vertices are
matched (indicated by a dotted line). On the right, the resulting coars-
ened graph is shown, with numbers illustrating the resulting vertex and edge
weights (assuming that the original graph had unit weights).

A simple way to construct a maximal independent subset of edges is to
create a randomly ordered list of the vertices and visit them in turn, matching

Multilevel Refinement for Combinatorial Optimisation 5

each unmatched vertex with an unmatched neighbour (or with itself if no
unmatched neighbours exist). Matched vertices are removed from the list. If
there are several unmatched neighbours the choice of which to match with
can be random, but it has been shown by Karypis & Kumar [21] that it can
be beneficial to the optimisation to collapse the most heavily weighted edges.

As discussed below (Sect. 4.1), coarsening has the effect of filtering the
solution space. To see this suppose that two vertices u,v € (; are matched
and coalesced into a single vertex v' € Gj41. When a refinement algorithm is
subsequently used on G;y; and whenever v’ is assigned to one of the partition
subsets, both u and v are also both being assigned to that subset. In this way
the matching restricts a refinement algorithm working on Gj41 to consider
only those configurations in the solution space in which u and v lie in the
same subset, although the particular subset to which they are assigned is
not specified at the time of coarsening. Since many vertex pairs are generally
coalesced from all parts of G; to form Gj, this set of restrictions is equivalent
to filtering the solution space and hence the surface of the objective function.

The Initial Partition

The hierarchy of graphs is constructed recursively until the number of vertices
is smaller than some threshold and then an initial partition is found for the
coarsest graph. At its simplest, the coarsening is terminated when the number
of vertices in the coarsest graph is the same as the number of subsets required,
k, and then vertex i is assigned to subset S;. However, since the vertices of the
coarsest graph are not generally homogeneous in weight, this does require some
mechanism for ensuring that the final partition is balanced, i.e. each subset has
(approximately) the same vertex weight. Various methods have been proposed
for achieving this, commonly either by terminating the contraction so that the
coarsest graph G, still retains enough vertices, |Vz|, to achieve a balanced
initial partition (i.e. so that typically |Vz| > k) [19, 21], or by incorporating
load-balancing techniques alongside the refinement algorithm, e.g. [46].

Refinement

At each level, the partition from the previous level is extended to give an initial
partition and then refined. Various refinement schemes have been successfully
used including a variety of metaheuristics, which we survey below, Sect. 3.1.
Most commonly, however, the refinement is based on the Kernighan-Lin (KL)
bisection optimisation algorithm [26] which includes the facility (albeit lim-
ited) to enable it to escape from local minima. Recent implementations almost
universally use the linear time complexity improvements (e.g. bucket sorting
of vertices) introduced to partitioning by Fiduccia & Mattheyses [14]. For
more details see one of the many implementations, e.g. [19, 23, 46].

In terms of the multilevel framework, the only requirements are that the
scheme must be able to refine an existing partition (rather than starting from

6 Chris Walshaw

scratch) and must be able to cope with weighted graphs since, even if the
original graph is not weighted, the coarsened graphs will all have weights
attached to both vertices and edges because of the coarsening procedures.

Partition Extension

Having optimised the partition on a graph G, the partition must be extended
onto its parent G;_;. The extension algorithm is trivial; if a vertex v € V] is
in subset S; then the matched pair of vertices that it represents, v1,vs € Vj_1,
are also assigned to S;.

2.2 Multilevel Results

To illustrate the potential gains that the multilevel paradigm can offer, we
give some example results. These are not meant to be exhaustive in any way
but merely give an indication of typical performance behaviour.

In [44], detailed tests are carried out to assess the impact of multilevel
refinement on the GPP. Here we summarise those results.

The experimental data consists of two test suites, one of which is a smallish
collection of 16 sparse, mostly mesh-based graphs, drawn from a number of
real-life applications, and often used for benchmarking. The other test suite
consists of 90 instances, originally compiled to test graph-colouring algorithms
and including a number of randomly generated examples. Although perhaps
not representative of partitioning applications, they reveal some interesting
results. This colouring test suite is further subdivided into 3 density classes;
low (under 33 %) with 58 out of 90 instances, medium (between 33 % and 67
%) with 23 instances and high (over 67 %) with just 9 instances.

In this context, the density, or edge density, of a graph, G(V,E), is
defined as the percentage of all possible edges and given by 2|E|/[|V]-(|]V|-1)],
so that a complete graph (where every vertex is adjacent to every other),
with |V|- (|[V| — 1)/2 edges, has a density of 100 %.

The tests compare the JOSTLE implementation of the Kernighan-Lin
(KL) algorithm [46] against its multilevel counterpart (MLKL). As discussed
in [44], and similar to most local search schemes, the KL algorithm contains
a parameter, A\, known as the intensity, which allows the user to specify
how long the search should continue before giving up (specifically how much
effort the search should make to escape local minima). When A = 0 the refine-
ment is purely greedy in nature, whereas if A — oo the search would continue
indefinitely.

To assess the algorithms, we measure the run-time and solution quality for
a chosen group of problem instances and for a variety of intensities. We then
normalise these values with reference solution quality and run-time values and
finally plot averaged normalised solution quality against averaged normalised
run-time for each intensity value.

Multilevel Refinement for Combinatorial Optimisation

0 20 40 60

=

3 100 — -
g . Kernighan-Lin -
= M multilevel Kernighan-Lin ——
S so0f

= H

< H

o kY

L7 L R ———

B B0 e «
©

o

3

g 40

: L

o) 20

Z

5

o

2

5

80 100 120 140 160

avg runtime (normalised by greedy algorithm)

(a) sparse instances

Ke‘mighan‘-Lin
multilevel Kernighan-Lin ——

0.8

0.6

0.4

0.2

0

avg cut-weight (% excess over best known)

0 200 400 600 800 1000 1200 1400

avg runtime (normalised by greedy algorithm)

(c) medium-density instances

avg cut-weight (% excess over best known)

avg cut-weight (% excess over best known)

10

’,‘,l ' ' ' Kémighah-Lin
multilevel Kernighan-Lin —— 7

0

50 100 150 200 250

300

350

avg runtime (normalised by greedy algorithm)

(b) low-density instances

0.14 [} ~ kernighan-Lin e j
multilevel Kernighan-Lin ——

0.12 f

0.1 H

0.08 L
0.06 |}
0.04 |

0.02

5

0) n :
0 200 400 600 800 1000 1200 1400 1600

avg runtime (normalised by greedy algorithm)

(d) high-density instances

Fig. 3. Plots of convergence behaviour for the partitioning test suites

Fig. 3(a) shows the results for the sparse suite and the dramatic improve-
ment in quality imparted by the multilevel framework is immediately clear.
Even for purely greedy refinement (i.e. the extreme left-hand point on either
curve) the MLKL solution quality is far better than KL and it is results like
these that have helped to promote multilevel partitioning algorithms to the
status they enjoy today.

Figs. 3(b)—(d) meanwhile show the partitioning results for the colouring
test suite. Fig. 3(b) more or less confirms the conclusions for the sparse results
and although the curves are closer together, MLKL is the clear winner. For
the medium and high-density examples however, it is a surprise (especially
considering the widely accepted success of multilevel partitioning) to find that
these conclusions are no longer valid. For the high-density instances, Fig. 3(d),
MLKL is still the leading algorithm, although only very marginally. However
for the medium-density results, Fig. 3(c), MLKL fails to achieve the same
performance as KL and the multilevel framework appears to actually hinder
the optimisation. We discuss this further in the following section.

8 Chris Walshaw
2.3 Iterated Multilevel Results

Although the medium density results are disappointing, in fact a simple res-
olution does exist which works by reusing the best partitions that have been
found. Indeed, given any partition of the original problem we can carry out
solution-based recoarsening by insisting that, at each level, every vertex v
matches with a neighbouring vertex in the same set. When no further coars-
ening is possible this will result in a partition of the coarsest graph with the
same cost as the initial partition of the original. Provided the refinement al-
gorithms guarantee not to find a worse partition than the initial one, the
multilevel refinement can then guarantee to find a new partition that is no
worse than the initial one.

This sort of technique is frequently used in graph-partitioning for dynamic
load-balancing, e.g. [36, 45], although if the initial partition is unbalanced, the
quality guarantee can be lost in satisfying the balance constraint. However it
can also be used to find very high quality partitions, albeit at some expense,
and the multilevel procedure can be iterated via repeated coarsening and
uncoarsening. At each iteration the current best solution is used to construct a
new hierarchy of graphs, via recoarsening, and guarantees not to find a worse
solution than the initial one. However, if the matching includes a random
factor, each iteration is very likely to give a different hierarchy of graphs to
previous iterations and hence allows the refinement algorithm to visit different
solutions in the search space.

We refer to this process as an iterated multilevel algorithm (see
Sect. 3.1 for further discussion). It requires the user to specify an additional
intensity parameter, namely the number of failed outer iterations (i.e. the
number of times the algorithm coarsens and uncoarsens the graph without
finding a better solution).

Fig. 4 illustrates the results for the iterated multilevel algorithm (IMLKL)
alongside the MLKL and KL results for the two test suites. These plots contain
exactly the same information about MLKL and KL as Fig. 3, only here it is
more compressed because of the long IMLKL run-times.

In fact the results for the sparse and high-density instances are not so
interesting; for the sparse suite, Fig. 4(a), IMLKL more or less continues
the MLKL curve in Fig. 3(a) with a few percentage points improvement and
very shallow decay, whilst for the high-density instances, Fig. 4(d), IMLKL
does not appear to offer much improvement at all. However for the low and
medium-density subclasses, in Figs. 4(b) and 4(c) respectively, the asymp-
totic performance offered by IMLKL is impressive and worthy of further and
more thorough investigation. In both cases IMLKL dramatically improves on
MLKL and, for the medium-density instances, even appears to overcome the
shortcomings of MLKL and significantly improves on the KL results.

Multilevel Refinement for Combinatorial Optimisation 9

= =

2 100 - — B — -

g . Kernighan-Lin - g . Kernighan-Lin

oy multilevel Kernighan-Lin —— = 10 multilevel Kernighan-Lin

§ 80 & iterated multilevel Kernighan-Lin s | § iterated multilevel Kernighan-Lin

5 i g 8

3 H 3

@ 60 e S - @

0 d (%] 6

8 8

3 3

g % s al

g L :

T 20 [N 3 L

: : ¢’

5 5

© 0 L L L L © 0 L L L L

=2 =2

F 0 50 100 150 200 250 F 0 500 1000 1500 2000 2500
avg runtime (normalised by greedy algorithm) avg runtime (normalised by greedy algorithm)

_ (a) sparse instances _ (b) low-density instances

c c

H 1 . . . H

< Kernighan-Lin S 014 Kernighan-Lin

< . ! ! £ . . ! !

oy multilevel Kernighan-Lin oy multilevel Kernighan-Lin

& iterated multilevel Kernighan-Lin - & iterated multilevel Kernighan-Lin

a8 08 a8 0.12

g g

3 3 01

g 06]

o @ 0.08 @

%] %] q

3 3

g 0.4 g 0.06

£) £ 0.04 H

2 o2} e S

H 2 002

© 0 L L L L L © 0 T

=2 =2

F 0 500 1000 1500 2000 2500 3000 F 0 500 1000 1500 2000 2500 3000 3500

avg runtime (normalised by greedy algorithm) avg runtime (normalised by greedy algorithm)

(c) medium-density instances (d) high-density instances

Fig. 4. Plots of convergence behaviour including iterated multilevel partitioning
results

Summary

It is clear that the multilevel framework can enormously benefit the perfor-
mance of a state-of-the-art local search scheme. Its task is made more difficult
if the graphs are dense, but nevertheless, via the simple technique of recoars-
ening, an iterated multilevel scheme seems to be able to overcome this.

3 Survey of Multilevel Implementations

In this section we survey existing literature about multilevel implementations
in a variety of contexts.

The survey is broken up into three categories: graph-partitioning, other
combinatorial problems and related ideas. As mentioned above, multilevel
graph-partitioning has been widely investigated and so Sect. 3.1 affords a
number of general observations about multilevel strategies. Indeed it is be-
cause of its success in this area that the multilevel paradigm has started to
be utilised elsewhere and so Sect. 3.2 takes a look at the increasing numbers
of multilevel algorithms for other combinatorial problems. Finally Sect. 3.3
considers similar concepts such as smoothing.

10 Chris Walshaw
3.1 Survey of Multilevel Graph-Partitioning

As has been mentioned in Sect. 2, graph-partitioning has been by far the most
common application area for multilevel refinement and it is now a de facto
standard technique to use. Furthermore, it has been tested with a wide variety
of metaheuristic and local refinement schemes and gives a good indication
of how robust the multilevel framework can be. In addition, a number of
enhancements and extensions have appeared, all of which demonstrate the
flexibility of the paradigm.

Table 1. Multilevel graph-partitioning algorithms and variants

Feature of interest References

Multilevel metaheuristics
Ant Colony Optimisation = Langham & Grant [28]; KoroSec et al. [27]

Cooperative Search Toulouse et al. [40]

Genetic Algorithms Kaveh & Rahimi [25]; Soper et al. [38]

Tabu Search Battiti et al. [3]; Vanderstraeten et al. [41]
Simulated Annealing Romem et al. [32]; Vanderstraeten et al. [41]

Multilevel enhancements
Coarsening Homogeniety Abou-Rjeili & Karypis [1]; Gupta [17]

Constraint Relaxation Walshaw & Cross [46]
Inexact Coarsening Bui & Jones [10]
Recoarsening Gupta [17]; Toulouse et al. [40]; Walshaw [44]

Related problems

Aspect Ratio Optimisation ~Vanderstraeten et al. [41]; Walshaw et al. [48]
Hypergraph Partitioning Karypis & Kumar [24]
Multi-constraint/objective ~ Karypis & Kumar [22]; Schloegel et al. [37]
Network Mapping Walshaw & Cross [47]

Table 1 shows a summary of some of the implementations. This list is
far from comprehensive; indeed a survey of multilevel graph-partitioning al-
gorithms could fill a paper in itself. However, here the aim is to highlight a
variety of interesting cases and we focus on three different classes: multilevel
metaheuristics, multilevel enhancements and related problems that
have been successfully addressed by multilevel algorithms.

Multilevel Metaheuristic Refinement Schemes

A first point to note is the variety of optimisation algorithms with which the
multilevel framework has been used. Apart from the commonly used problem-
specific algorithm of Kernighan & Lin (KL) [26], mentioned above, a wide
variety of well-known metaheuristics have been applied. These are normally

Multilevel Refinement for Combinatorial Optimisation 11

used to refine the solution at each level and, provided they can operate on
weighted graphs, essentially require no modifications. Specifically, ant colony
optimisation [28, 27], cooperative search [40], evolutionary/genetic algorithms
[25], simulated annealing [32, 41] and various flavours of tabu search [3, 41],
have been successfully applied, generally with great success.

Although space precludes a more detailed study, positive comments by au-
thors are common. For example, Vanderstraeten et al., referring to multilevel
simulated annealing and multilevel tabu search, state that the ‘contraction
procedure not only speeds up the ... partitioning method, but also results in
better mesh decompositions’ [41]. Meanwhile, KoroSec et al., in their imple-
mentation of multilevel ant colony optimisation, state that ‘with larger graphs,
which are often encountered in mesh partitioning, we had to use a multilevel
method to produce results that were competitive with the results given by other
algorithms’ [27].

Multilevel Enhancements

Perhaps of more interest, especially in terms of applying the multilevel frame-
work to completely different problem areas, is the development of a number
of multilevel enhancements which can be used to improve performance still
further.

For example, a number of authors have noted that the coarsest graphs
can become very inhomogeneous in terms of vertex weight [1, 17]. This is
particularly noticeable for so-called scale-free graphs', which often arise
when modelling links between web pages. In the worst cases, the coarsening
may start to form star graphs, with one very large ‘super-vertex’ attached to
many small vertices. Most coarsening schemes cannot cope with this type of
graph and will only manage to collapse one edge at each level (i.e. a multilevel
scheme for a star graph with 1,000 vertices will have 1,000 levels) resulting in
very poor runtime performance. As a result, coarsening algorithms have been
introduced to ensure that the vertex weights stay relatively homogeneous,
usually by merging clusters of two (or more) vertices which are not adjacent,
e.g. [1, 17]. We refer to this as coarsening homogeneity and although it
might seem very specific to partitioning, a similar idea has recently been used
in a multilevel algorithm for the Vehicle Routing Problem [30] (see below,
Sect. 3.2).

Another multilevel enhancement is developed in [46], where it is demon-
strated that by relaxing the balancing constraint (i.e. that the subsets are all
of the same size) at the coarsest graph levels, and tightening it up level by
level, higher quality results can be found. This idea of constraint relaxation
has also been used for the Vehicle Routing Problem [30] (see also Sect. 3.2).

! Typically in scale-free graphs the degree distribution follows a power-law rela-
tionship so that some vertices are highly connected, although most are of low
degree.

12 Chris Walshaw

In one of the first multilevel graph partitioning implementations [10], Bui
& Jones collapsed edges and merged vertices without taking account of ver-
tex or edge weights (see Sect. 2.1). As a result, the coarsened graph did not
represent the original problem with complete accuracy (e.g. since an edge in
a coarsened graph might equally represent one or one hundred edges of the
original graph and so it is no longer obvious which cut edges to prefer). We
refer to this as inexact coarsening and although it is not necessarily recom-
mended, especially in the case of graph partitioning where it is fairly easy
to create exact coarse representations of the problem, it is interesting to see
that this kind of coarsening could still ‘dramatically improve the performance
of the Kernighan-Lin and greedy algorithms’ [10]. This is especially encourag-
ing for other combinatorial problems, where it may not even be possible to
create an exact coarsened representation.

Finally, as we have seen in Sect. 2.3, a powerful, and very straightforward
technique is to use solution-based recoarsening. Indeed this feature can be
used in two different ways: either, as in [44], as an outer loop which treats
the multilevel partitioner almost as a black-box and iterates its use; or, as in
[17], where the framework cycles up and down through the coarser levels to
find a very high quality initial solution for very little computational expense
(since the coarse graphs are very small). In Sect. 3.2, we classify these as either
external or internal recoarsening, respectively.

Related Partitioning Problems

The multilevel paradigm has also been successfully extended to a range of
partitioning problem variants.

In particular, the development of successful multilevel hypergraph? par-
titioning schemes has sparked a great deal of interest in the VLSI/circuit
partitioning community, e.g. [11]. Indeed, Karypis and Kumar, pre-eminent
developers of such schemes state that ‘the power of [their algorithm] is primar-
ily derived from the robustness of the multilevel paradigm that allows the use
of a simple k-way partitioning refinement heuristic instead of the [commonly
used] O(k?) complezity k-way FM refinement’ [24].

Similarly, in [22, 37], multilevel graph partitioning techniques have been
successfully modified to deal with other, more generalised graphs such as those
which have multiple vertex weights (multi-constraint problems) or multiple
edge weights (multi-objective problems).

Finally and more specifically, multilevel graph partitioning techniques have
been shown to adapt well to modified objective functions. For example, in [41,
48], the aspect ratio (shape) of the subdomains is optimised as an alternative
to the cut-weight. Meanwhile, [47] considers the problem mapping graphs
onto parallel networks with heterogeneous communications links — a successful

2 A hypergraph is a generalisation of a graph in which an edge describes a relation-
ship between an arbitrary number of vertices.

Multilevel Refinement for Combinatorial Optimisation 13

mapping is then one in which adjacent subsets generally lie on ‘adjacent’
processors.

An important point about these last two problems is that, in both cases,
the coarsening scheme requires almost no modifications and the new prob-
lem class is optimised solely by changes to the objective function (and hence
the refinement scheme). This makes an interesting point: using the multilevel
framework, the global layout of the final partition can be radically changed
just by modifying the local cost function. This corroborates the suggestion
that the multilevel framework adds a global perspective to (local) partition-
ing schemes.

3.2 Survey of Multilevel Combinatorial Optimisation

Apart from its wide uptake in the graph-partitioning area, multilevel refine-
ment schemes are increasingly appearing for other combinatorial problems.
Typically, the results are early indicators and the ideas not yet fully devel-
oped, but in most applications authors report successes, either in speeding up
a metaheuristic or local search algorithm, or in improving the quality of its
results. Furthermore, it is often seen as an appropriate method for addressing
larger-scale problem instances which, hitherto, have not been tractable.

To survey these implementations, we first describe each one briefly, high-
lighting the multilevel techniques that it employs, and then, at the end of this
section, attempt to summarise and classify the approaches.

Biomedical Feature Selection. In [29], Oduntan investigates multi-
level schemes for feature selection and classification in biomedical data. Two
possible coarsening strategies are suggested, one of which clusters decision
variables, in a manner akin to multilevel partitioning, and represents them
as a single variable and another, ‘feature pre-setting’, which recursively ex-
cludes features (decision variables) from each level. This second approach is
unlike most multilevel implementations in that it is essentially evaluating only
partial solution spaces at each level (as opposed to restricted spaces), but,
because of the computational cost of maintaining an exact cost evaluation for
the clustering version, random feature pre-setting is used for most of the ex-
perimentation. Nonetheless, the multilevel technique is ‘outstandingly better’
and ‘generates higher and more stable average classification accuracies’ than
the other evaluated feature selection techniques.

Capacitated Multicommodity Network Design (CMND). In [12],
Crainic et al. implement a multilevel cooperative search algorithm for the
CMND problem. The coarsening is achieved via fixed edges which are com-
puted from an initial solution calculated by a tabu search (solution-based
coarsening) and a form of iterated multilevel refinement is performed by prop-
agating elite solutions up through the multilevel hierarchy (as well as down).
The authors discuss the issue of how rapidly to coarsen the problem and the
compromise between a high number of levels and large coarsening factors, and
cite this as a future research challenge. Nonetheless, the initial results are very

14 Chris Walshaw

encouraging and experiments on a set of benchmark problems showed that the
approach yields ‘solutions comparable to those obtained by the current best
metaheuristics for the problem’ and that the multilevel framework ‘appears to
perform better when the number of commodities is increased (which, normally,
increases the difficulty of the problem)’.

Covering Design. Another problem that has recently been investigated
with multilevel cooperative techniques is that of covering design in which the
aim is to minise the number subsets of a given size which ‘cover’ the problem
instance (i.e. so that every member of the problem instance is contained in at
least a given number of the subsets). This problem is extremely difficult to
solve to optimality and in [13], Dai et al. use multilevel cooperative tabu search
to improve upper bounds (in order, for example, to improve the efficiency of
enumeration techniques such as branch-and-cut). They use solution-based re-
coarsening and a ‘direct interpolation’ operator, which projects elite solutions
found at the coarsest level directly down to the the original problem. The
results are impressive — the methods succeed in computing new upper bounds
for 34 out of 158 well-known benchmark problems — and the authors confirm
that, for this problem, ‘multilevel search and cooperation drastically improve
the performance of tabu search’. Furthermore, since similar cost functions and
neighbourhood structures exist in other problems such as packing design, t-
design and feature selection in bio-informatics and data mining, the authors
suggest that ‘the main framework of the re-coarsening and direct interpolation
operations can be applied in a multilevel cooperative search algorithm for such
problems’.

DNA Sequencing by Hybridization. Blum & Yébar use a multilevel
framework to enhance an ant colony algorithm for the computational part
of this problem [5, 6]. It is closely related to the selective travelling sales-
man problem, a variant in which only a subset of the vertices are visited,
and the authors use a similar coarsening approach to that mentioned below,
in which edges are fixed to create tour segments or paths. In experiments,
the algorithms (both single- and multilevel) solve all benchmark problems to
optimality, but the multilevel version substantially reduces the computation
time of the ant colony optimisation, and is between 3 to 28 times faster. Fur-
thermore the authors believe that for larger problem instances, the multilevel
framework ‘may also improve the quality of the obtained solutions’.

Graph Colouring Problem. In [44], Walshaw discusses the develop-
ment of multilevel graph colouring schemes. The coarsening uses similar vertex
matching to the graph partitioning, with one important difference: since the
objective here is to colour each vertex differently to any of its neighbours, the
matching is carried out between non-adjacent vertices (so that all vertices in
a coarsened cluster can be given the same colour). The experimentation illus-
trates that, for sparse and low-density graphs at least, the multilevel paradigm
can either speed up or even give some improvements in the asymptotic con-
vergence of well known algorithms such as tabu search. However, the impact
of the multilevel framework is less impressive than for other problems and the

Multilevel Refinement for Combinatorial Optimisation 15

paper concludes with a number of suggestions that might help to improve the
results.

Graph Ordering. One problem area that has received a fair amount
of interest from multilevel practitioners is that of graph ordering. This is
almost certainly because the applications from which it arises (such as the
efficient solution of linear systems) are closely related to those in which graph
partitioning occurs (e.g. parallel scientific computing) and the two problems
have some overlap.

For example, Boman & Hendrickson describe the use of a multilevel algo-
rithm for reducing the envelope of sparse matrices [7], a technique which aims
to place all the non-zeroes as close as possible to the diagonal of a matrix and
which can help to speed up the solution of sparse linear systems. They re-
port good results, better than some of the commonly used methods, although
they conclude that their scheme would probably be better if combined with a
state-of-the-art local search algorithm. This conclusion is confirmed by Hu &
Scott who have also developed a multilevel method for the same problem and
which uses such a scheme, the hybrid Sloan algorithm, on the coarsest graph
only [20]. They report results which are of similar quality to the standalone
hybrid Sloan algorithm (i.e. as good as the best known results) but which, on
average, can be computed in half the time.

Both of these approaches use a coarsening algorithm based on vertex
matching, and similar to those used for multilevel graph partitioning schemes.
More recently, however, Safro et al. discuss the use of a multilevel algorithm
for the linear arrangement problem [35], which has the aim of ordering the
vertices of a graph so that the sum of edge lengths in the corresponding lin-
ear arrangement is minimised, a problem with several diverse applications. In
this work, the coarsening is described as ‘weighted aggregation’ (as opposed to
‘strict aggregation’) in which each vertex can be divided into fractions which
are then merged. In other words, a coarsened vertex will in general consist
of fractions of several vertices from the original graph, rather than a discrete
set of two (or more). In experiments, the authors found that their algorithm
generally outperformed standard methods on most test cases, although it had
some problems on uniform random graphs. This echoes some of the findings
for multilevel graph partitioning which seems to prefer certain types of graph.

Finally, it is worth noting that unlike most problems discussed in this sec-
tion, the schemes described in all three papers produce inexact representations
of the problem in coarsened spaces. This is due to the nature of the graph or-
dering problem and may be inevitable, but see the classification section below
(page 17) for further discussion.

Travelling Salesman Problem (TSP). The TSP is a prototypical (ar-
guably the prototypical) combinatorial problem and consequently is one of the
first on which new algorithms are tested.

In the earliest multilevel approach to the TSP, Saab, using a technique de-
scribed as ‘dynamic contraction’; applied algorithms to recursively construct
chains of cities and then implemented a simple local search algorithm [34].

16 Chris Walshaw

The results demonstrate that ‘the improvement due to contraction’ (in our
context, the improvement due to the multilevel framework) ‘is significant in
all cases and ranges from 33.1 % to 108.4 % although possibly, as the author
acknowledges, this is because the local search is a very basic heuristic in this
case. This paper is also interesting because it proposes dynamic contraction
as a generic strategy for combinatorial problems and, apart from the TSP,
also demonstrates the approach on the graph bisection problem.

Subsequently, Walshaw independently applied a similar coarsening ap-
proach using fixed edges to build a multilevel version of the well-known
chained Lin-Kernighan algorithm (together with a more powerful variant, Lin-
Kernighan-Helsgaun) [42, 44]. The multilevel results showed significant im-
provement on the single-level versions and are ‘shown to enhance considerably
the quality of tours for both the Lin-Kernighan and Chained Lin-Kernighan
algorithms, in combination the TSP champion heuristics for nearly 30 years’.

Finally, in [8], Bouhmala combined a multilevel approach with a genetic
algorithm adapted for the TSP. Interestingly, and in contrast to the two pre-
vious approaches, the coarsening is based on merging pairs of cities and aver-
aging their coordinates. Although this is a simpler approach to fixing edges, it
means that any coarsened version does not represent the original problem in-
stance exactly and, because of the modified coordinates, the cost of a solution
in one of the coarsened spaces is not the same as the cost if that solution is
projected back to the original. Nonetheless, the results indicate that ‘the new
multilevel construction algorithm’ (i.e. just using the coarsening without any
refinement) ‘produces better results than the Clark-Wright algorithm, and that
the multilevel genetic algorithm was found the clear winner when compared to
the traditional genetic algorithm’.

Vehicle Routing Problem (VRP). A problem closely related to the
TSP (although significantly complicated by additional side constraints) is the
VRP and in [30], Rodney et al. demonstrate that it too is susceptible to
multilevel techniques. The coarsening scheme is similar to that used previously
for the TSP [34, 42] and recursively fixes edges into potential routes (whilst
additionally respecting vehicle capacity constraints).

The resulting framework is tested with a variety of problem-specific local
search heuristics and it is found that, for a test suite of well-known benchmark
problems, the best multilevel solutions are on average within 7.1 % of opti-
mality as compared with 18.4 % for the single-level version of the algorithm.
Although this is not quite so good as results from a state-of-the-art genetic
algorithm code, it has since been shown that an iterated version (see below
and Sect. 2.3) of the multilevel scheme finds solutions within 2.6 % of optimal,
comparable with the genetic algorithm and considerably faster (especially as
the problem size increases).

As part of this work on the VRP, two multilevel enhancement techniques
are developed and tested.

The first employs constraint relaxation (referred to in [30] as ‘route
overloading’), as discussed in Sect. 3.1. In the context of the VRP, this means

Multilevel Refinement for Combinatorial Optimisation 17

allowing routes in the coarser level to exceed the vehicle capacity constraint.
This is then tightened up gradually as the multilevel scheme approaches the
finer levels and, ultimately, the original problem.

The second enchancement (referred to as ‘segment balancing’) tried to
balance the fixed edge segments in terms of demand and cost in order to
provide more homogeneous coarsening (see also Sect. 3.1).

Combined together, these two enhancements provide the best results and
are useful ideas in the generic application of multilevel techniques.

Other Problems. The above list is not comprehensive and, for exam-
ple, multilevel techniques have been applied to other problems such as sat-
isfiability [33] and the still life problem [15]. Unfortunately, neither example
showed significant benefits, either because the work is only in its preliminary
stages and still requires further development, or possibly because the prob-
lem is simply not suitable for multilevel coarsening. In either case, it seems
appropriate to exclude it from generalisations about the multilevel framework
pending further investigation (since, as is common with heuristics, we merely
seek evidence that multilevel techniques can be used successfully, rather than
proof that they will always be successful). However, it is worth noting, as is
discussed in [44], that although the multilevel paradigm seems to assist in
most problems to which it has been applied, the benefits are not necessarily
universal.

Summary and Classification

Because of the flexibility of the paradigm, multilevel schemes can appear in
a variety of guises. Nonetheless, it is still possible to draw out some common
features from the schemes listed above. Table 2 summarises the above ap-
proaches and aims to help classify them, both by the optimisation algorithm
they use for refinement, and in terms of the multilevel techniques they em-
ploy: the coarsening strategy (coarsen); whether they produce exact coarse
representations of the problem; and what type, if any, of recoarsening they
use (recoarsen).

One of the most obvious classifications then is the refinement algorithm
used to optimise the solution at each level. Often these are special-purpose
or problem-specific, but in many cases a ‘standard’ metaheuristic is used
(although it should be understood that in the context of combinatorial opti-
misation there is no such thing as a standard metaheuristic and all will require
some modification or, at the very least, parameter tuning).

A second way of classifying the schemes is by their coarsening strategy
(the column headed coarsen). Although this is always problem-specific, it
will generally depend on whether the problem requires a solution based on an
ordering or a classification of the vertices. In the case of ordering problems
(such as the travelling salesman and vehicle routing problems), it is usual to
recursively fix edges between vertices, a path-based coarsening. For classifi-

18 Chris Walshaw

Table 2. Multilevel algorithms for combintorial problems

Problem, [reference] refinement coarsen exact recoarsen

Biomedical feature selection [29] Tabu Search sett yes
Capacitated multicommodity = Cooperative Search path yes internal
network design [12]

Covering design [13] Cooperative Search set yes internal
DNA sequencing [5, 6] Ant Colonies path yes
Graph colouring [44] Tabu Search set yes
Graph ordering (envelope) [7] problem-specific set no
Graph ordering (wavefront) [20] problem-specific set no
Graph ordering (linear) [35] Simulated Annealing set* mno external
Travelling salesman [34] problem-specific path yes
Travelling salesman [42] problem-specific path yes
Travelling salesman [8] Genetic Algorithms set mno
Vehicle routing [30] problem-specific path yes external

cation problems (such as graph partitioning and graph colouring), it is usual
to merge vertices, a set-based approach.

Although it might seem that these are very similar operations, in practice
path-based coarsening generates a set of fixed path-segments in the coarsened
spaces and each path-segment contains an ordering of its internal vertices.
Meanwhile, set-based coarsening usually generates a weighted graph; edges
that are internal to each merged set of vertices are collapsed.

Note that two variant approaches were also employed: in biomedical fea-
ture selection [29], as an alternative to set-based clustering the implementation
also coarsens by recursively excluding decision variables and hence evaluating
only partial solutions, denoted as ‘set™’ in the table; meanwhile the multi-
level approach to the linear graph ordering problem [35] uses an aggregated
set-based approach, denoted as ‘set*’ in the table — see above for details.

A third way of comparing schemes is by considering whether coarsened
versions of the problem instance give an exact or an inexact approximation of
the original solution space. In this context, by exact we mean that evaluation
of the objective function for a solution of a coarsened space is exactly the
same as if that solution were extended back into the original space and the
objective function evaluated there.

Note that even for problems where exact representation is possible, it is
usually also possible to generate inexact representations. As we have seen in
Sect. 3.1, at its simplest this can just be by ignoring vertex and or edge weights
when coarsening graphs for partitioning purpose. Alternatively, if nearby ver-
tices are merged to create a coarsened version of a travelling salesman problem
(as mentioned above), then the inter-vertex distances will be incorrect and
hence the coarsed problem is inexact.

Usually, employing an exact coarsening is more accurate but will involve
some modifications to the optimisation scheme (for example, to take account

Multilevel Refinement for Combinatorial Optimisation 19

of vertex weights or fixed edges). Conversely, an inexact coarsening is easier
to implement and the optimisation scheme can often be used without modifi-
cation.

Interestingly, all of the approaches to graph ordering use set-based coars-
ening and merge vertices, rather than employing the path-based fixed edges
that might be expected from an ordering problem, and as a result they all
end up with an inexact representation of the problem. It is intriguing to ask
whether an exact representation might be more effective in these cases.

A final method we have used to classify the work is to look at whether the
approach employs recoarsening (the column labelled recoarsen), possibly
as part of an iterated multilevel scheme. As we have seen in Sect. 2.3 this
can be extremely easy to implement and highly effective. However we also
distinguish here between external and internal recoarsening.

In this context, internal recoarsening can propagate elite solutions wup
through the multilevel hierarchy (as well as down) and the scheme may only
ever carry out one refinement phase on the original uncoarsened problem (i.e.
once it believes that a very high quality solution has been found at the coarser
levels).

Conversely, external recoarsening takes place as part of repeated multilevel
cycles (see Fig. 6), in an iterated multilevel scheme (in this case refinement
will take place on the original uncoarsened problem at the end of every cycle).
Of course, the distinction is not completely clear and it is possible for a scheme
using internal recoarsening to return repeatedly to the original problem and
thus resemble an iterated scheme.

3.3 Other Related Work

Because multilevel algorithms are well-known in many areas of mathemat-
ics other than combinatorial optimisation, there is a large body of literature
which could be said to be related to the methods presented here. In particular,
multigrid methods are often used to solve partial differential equations on a
hierarchy of grids or meshes, whilst multi-scale or multi-resolution meth-
ods typically address continuous problems by viewing them at a number of
different levels. However, because of the nature of the problems the operators
which transfer solutions from one scale to another are necessarily somewhat
different from the discrete techniques discussed here. For interested readers a
good start is Brandt’s review paper [9] and for an analysis of the fundamental
similarities of all these ideas see Teng [39].

Another related idea is that of aggregation which can be used either
to approximate an intractable problem with a smaller one or, sometimes, to
provide decision-makers with models at different levels of detail. In that sense,
it tends to deal more with the modelling aspects of optimisation problems (as
opposed to finding a solution for a given model). However, it is certainly true
that, when combined with disaggregation there is a degree of crossover with

20 Chris Walshaw

multilevel ideas. For further information see the survey paper of Rogers et al.
[31].

An idea particularly related in scope and design to the principles behind
multilevel refinement is the search space smoothing scheme of Gu and Huang
[16]. This uses recursive smoothing (analogous to recursive coarsening) to
produce versions of the original problem which are simpler to solve. Thus in
the example application Gu and Huang apply their technique to the TSP by
forcing the inter-city edges to become increasingly uniform in length at each
smoothing phase (if all edges between all cities are the same length then every
tour is optimal). The obvious drawback is that each smoothing phase distorts
the problem further (so that a good solution to a smoothed problem may not
be a good solution to the original). In addition, the smoothed spaces are the
same size as the original problem, even if the solution is potentially easier to
refine, and hence may be equally as expensive to optimise. By contrast, exact
multilevel coarsening filters the solution space (although with the obvious
drawback that the best solutions may be removed from the coarsened spaces)
and so the coarsened spaces are smaller and hence can be refined more rapidly
(even inexact coarsening reduces the size of the space although strictly it does
not filter it). It is also unclear whether search space smoothing is as general
as coarsening and hence whether it could be applied to problems other than
the TSP.

Finally, multilevel combinatorial optimisation is also closely related to de-
velopments in various semi-discrete optimisation problems. For example, it has
been applied, with great success, to force-directed (FD) graph drawing. This
is not a combinatorial problem, since the optimisation typically minimises
a continuous energy function, but it does share some of the characteristics.
Until recently FD methods were generally limited to small, sparse graphs,
typically with no more than 1,000 vertices. The introduction of the multilevel
framework, however, extended the size of graphs to which they could success-
fully be applied by several orders of magnitude, again through the ‘global’
improvement given by the multilevel scheme [18, 43].

4 Generic Analysis of the Multilevel Framework

In this section we draw together common elements of the examples in the
previous sections. We give an explanation for the strengths of the multilevel
paradigm and derive some generic guidelines for future attempts at other
combinatorial problems.

4.1 Multilevel Dynamics

As we have seen, the multilevel paradigm is a simple one, which at its most
basic involves recursive coarsening to create a hierarchy of approximations to

Multilevel Refinement for Combinatorial Optimisation 21

the original problem. An initial solution is found and then iteratively refined,
usually with a local search algorithm, at each level in reverse order.

Considered from the point of view of the hierarchy, a series of increasingly
coarser versions of the original problem are being constructed. It is hoped
that each problem P, retains the important features of its parent P,_; but
the (usually) randomised and irregular nature of the coarsening precludes any
rigorous analysis of this process.

On the other hand, viewing the multilevel process from the point of view
of the objective function and, in particular the hierarchy of solution spaces,
is considerably more enlightening. Typically the coarsening is carried out by
matching groups (usually pairs) of solution variables together and representing
each group with a single variable in the coarsened space.

Previously authors have made a case for multilevel schemes (and in partic-
ular partitioning) on the basis that the coarsening successively approzimates
the problem with smaller, and hence easier to solve, solution spaces.

In fact it is somewhat better than this; as we have seen in the discussion
about coarsening for the graph-partitioning problem (GPP), Sect. 2.1, pro-
vided that the coarsening is exact, it actually filters the solution space by
placing restrictions on which solutions the refinement algorithm can visit.

A similar argument can be made for path-based coarsening algorithms,
such as those employed for the TSP [44], and in a more general sense, we
can think about combining decision variables so that changing one decision
variable in a coarsened space is equivalent to changing several in the origi-
nal solution space. In all cases, provided that the coarsening is exact, then
coarsening has the effect of filtering the solution space.

Furthermore, an investigation of how the filtering actually performs for the
GPP & TSP is carried out in [49] and it is shown that typically the coarsening
filters out the higher cost solutions at a much faster rate than the low cost
ones, especially for sparse and low-density problems.

We can then hypothesise that, if the coarsening manages to filter the so-
lution space so as to gradually remove the irrelevant high cost solutions, the
multilevel representation of the problem combined with even a fairly simple
refinement algorithm should work well as an optimisation strategy. And when
combined with sophisticated metaheuristics, it can be very powerful indeed.

On a more pragmatic level this same process also allows the refinement to
take larger steps around the solution space (e.g. for graph partitioning, rather
than swapping single vertices, the local search algorithm can swap whole sets
of vertices as represented by a single coarsened vertex). This may be why the
strategy still works even if the coarsening is inexact.

One further general observation about multilevel dynamics, that can be
drawn from experimental evidence, is that the multilevel framework often
seems to have the effect of stabilising the performance of the local search
schemes. In particular, for the graph partitioning and travelling salesman
problems (and the GCP at low intensities) the multilevel versions appear
to have much lower variation in solution quality (in terms of the standard

22 Chris Walshaw

deviation of randomised results) [44]. However, it is not clear why this should
be the case.

4.2 A Generic Multilevel Framework

To summarise the paradigm, multilevel optimisation combines a coarsen-
ing strategy together with a refinement algorithm (employed at each level
in reverse order) to create an optimisation metaheuristic. Fig. 5 contains a
schematic of this process in pseudo-code (here P, refers to the coarsened prob-
lem after [coarsening steps, C; is a solution of this problem and C} denotes
the initial solution).

multilevel refinement(input problem instance Po)
begin
<0 // level counter
while (coarsening)
P41 < coarsen(P,)
I+ 1+1
end
C; = initialise(P,)
while (I > 0)
l+1-1
C? « extend(Ci41, P)
C; + refine(C?, P,)
end
return Cy // solution
end

Fig. 5. A schematic of the multilevel refinement algorithm

The question then arises, how easy is it to implement a multilevel strategy
for a given combinatorial problem?

First of all let us assume that we know of a refinement algorithm for the
problem, which refines in the sense that it attempts to improve on existing so-
lutions. If no such refinement algorithm exists (e.g. if the only known heuristics
for the problem are based on construction) it is not clear that the multilevel
paradigm can be applied.

Typically the refinement algorithm will be either a problem-specific algo-
rithm, or a metaheuristic, and it must be able to cope with any additional
restrictions placed on it by the coarsening (e.g. for the set-based coarsening,
the graphs are always weighted whether or not the original is; for path-based,
the refinement must not change fixed edges in the coarsened levels).

To implement a multilevel algorithm, given a problem and a refinement
strategy for it, we then require three additional basic components: a coarsening

Multilevel Refinement for Combinatorial Optimisation 23

algorithm, an initialisation algorithm and an extension algorithm (which takes
the solution on one problem and extends it to the parent problem). It is
difficult to talk in general terms about these requirements, but the existing
examples suggest that the extension algorithm can be a simple and obvious
reversal of the coarsening step which preserves the same cost.

The initialisation is also generally a simple canonical mapping where by
canonical we mean that a solution is ‘obvious’ (e.g. GPP — assign k vertices
one each to k subsets; GCP — colour a complete graph; TSP — construct a tour
to visit 2 cities) and that the refinement algorithm cannot possibly improve
on the initial solution at the coarsest level (because there are no degrees of
freedom).

Coarsening

This just leaves the coarsening which is then perhaps the key component of
a multilevel implementation. For the existing examples three principles seem
to hold:

e The number of levels need not be determined a priori but coarsening
should cease when any further coarsening would render the initialisation
degenerate.

e A solution in any of the coarsened spaces should induce a legitimate so-
lution on the original space. Thus, at any stage after initialisation the
current solution could simply be extended through all the problem levels
to achieve a solution of the original problem.

e Ideally, any solution in a coarsened space should have the same cost with
respect to the objective function as its extension to the original space (i.e.
the coarsening is exact): this requirement ensures that the coarsening is
truly filtering the solution space. However, the paradigm does seem to work
well even if this is not the case (and indeed, exact coarsening techniques
are not always possible).

This still does not tell us how to coarsen a given problem and the examples
in Sect. 3 suggest that it is very much problem-specific. However, it is often
possible that construction heuristics (traditionally used to construct an initial
feasible solution prior to single-level refinement) can be modified into coars-
ening heuristics (e.g. the TSP & VRP rely on this technique). Furthermore,
it has been shown (for partitioning at least), that it is usually more prof-
itable for the coarsening to respect the objective function in some sense (e.g.
[21, 48]) and most construction heuristics (apart from completely randomised
instances) have this attribute.

Multilevel Enhancements

As we saw in Sect. 3, there are a number of generic ideas that can be used to
improve the performance of a multilevel algorithm (these are discussed in more

24 Chris Walshaw

detail under multilevel enhancements in Sect. 3.1 and also in the summary
of Sect. 3.2). In particular, techniques such as constraint relaxation and
coarsening homogeneity seem to be beneficial and are worth investigation
for other problems.

Perhaps the most powerful, however, is solution-based recoarsening, par-
ticularly if used as part of an iterated multilevel algorithm. This is usually
very easy to implement (relying merely on the coarsening being capable of re-
specting an existing solution) and can often considerably improve the solution
quality of a multilevel scheme (e.g. see Sect. 2.3).

iterated multilevel refinement(input problem instance P)

begin
C + multilevel refinement(P) // initialise best solution
140 // unsuccessful iteration count
while (i< 7v) // for intensity parameter vy
C' + multilevel refinement(P, C)
if (f(C") < f(0)) /] C' has lower cost
C+C // update best solution
1+ 0 /] reset unsuccessful count
else
14 1+1
endif
end
end

Fig. 6. A schematic of the iterated multilevel refinement algorithm

Fig. 6 shows a schematic of a possible iterated multilevel algorithm (al-
though there are other ways to specify the stopping criterion). Thus, after
calculating an initial solution the algorithm repeatedly recoarsens and refines
until no lower cost solution (where f() denotes the objective/cost function)
has been found after « iterations. The only modification required to the mul-
tilevel algorithm of Fig. 5 is that it must take an existing solution as an
additional input and coarsen that.

Summary

It seems likely that the most difficult aspect in implementing an effective mul-
tilevel scheme for a given problem and refinement algorithm is the (problem-
specific) task of devising the coarsening strategy. However, examples indicate
that this is often relatively straightforward.

Multilevel Refinement for Combinatorial Optimisation 25
4.3 Typical Runtime

One of the concerns that might be raised about multilevel algorithms is that
instead of having just one problem to optimise, the scheme creates a whole
hierarchy of approximately O(log, N) problems (assuming that the coarsening
approximately halves the problem size at each level). In fact, it is not too
difficult to show that there is approximately a factor-of-two difference in the
runtime between a local search algorithm (or metaheuristic) at intensity A,
LSy, and the multilevel version, MLLS,. In other words, if T(A) denotes the
runtime of algorithm A, then T'(MLLS,) = 27T (LS,).

Suppose first of all that the LS algorithm is O(N) in execution time and
that the multilevel coarsening manages to halve the problem size at every
step. This is an upper bound and in practice the coarsening rate is actually
slightly lower (e.g. between 5/8 to 6/8 is typical for GPP and TSP examples
[44], rather than the theoretic maximum of 1/2). Let Tt, = T'(LS)) be the time
for LSy to run on a given instance of size N and T¢ the time to coarsen and
contract it. The assumption on the coarsening rate gives us a series of problems
of size N,N/2,N/4,...,0(1) (= N/N) whilst the assumption on LSy having
linear runtime gives the total runtime for MLLSy as T¢+ Tz /N+...+ T /4+
Tr,/2+4Tgr. If X is small then T¢ can take large proportion of the runtime and
so multilevel algorithms using purely greedy refinement policies (i.e. typically
A = 0) tend to take more than twice the runtime of the equivalent local search
although this depends on how long the coarsening takes compared with the
solution construction (typically both O(N)). However, if X is large enough
then typically T < TL and so we can neglect it giving a total runtime of
Tp/N+...+TL/2+ T ~ 2Ty, i.e. MLLS, takes twice as long as LS, to run.

Furthermore, if the local search scheme is also linear in A, the intensity, it
follows from T(MLLS,) ~ 2T'(LS,) that T(MLLS,) =~ T(LS2)). This effect
is particularly visible for the TSP [42], but even for other problems where,
for example A expresses the number of failed iterations of some loop of the
scheme, although this factor of two rule-of-thumb breaks down somewhat, it
still gives a guide figure for the cost of a multilevel scheme.

Finally note that if the multilevel procedure is combined with an O(N?)
or even O(N?) refinement algorithm then this analysis comes out even better
for the multilevel overhead, i.e. T(MLLS)) < 2T'(LS,), as the final refinement
step would requires an even larger proportion of the total.

Of course, this analysis assumes that the intensity of the search scheme
is in some way dependent on the asymptotic convergence rate of the best
solution. However, for local search schemes which are governed by a CPU time-
limit, even tighter controls can be placed on the run-time of the multilevel
version. Indeed, since the size of the problem at each level is known before
any refinement takes place, the CPU time remaining after coarsening could
be shared appropriately between each level and, for example, the multilevel
version could be guaranteed to take the same time as the LS scheme.

26 Chris Walshaw
5 Summary

We have seen evidence that the multilevel paradigm can aid metaheuristics
and local search algorithms to find better or faster solutions for a growing
number of combinatorial problems. We have discussed the generic features of
these implementations and extracted some guidelines for its use. We have also
identified some straightforward multilevel enhancements including recoarsen-
ing/iterated multilevel algorithms, homogeneous coarsening and constraint
relaxation, all of which can boost its performance still further.

Overall this augments existing evidence that, although the multilevel
framework cannot be considered as a panacea for combinatorial optimisation
problems, it can provide a valuable (and sometimes a remarkably valuable) ad-
dition to the combinatorial optimisation toolkit. In addition, and unlike most
metaheuristics, it is collaborative in nature and works alongside a separate
refinement algorithm — successful examples include ant colony optimisation,
cooperative search, genetic algorithms, simulated annealing and tabu search.

With regard to future work, clearly it is of great interest to further validate
(or contradict) the conclusions by extending the range of problem classes. It
is also valuable to identify and generalise those multilevel techniques which
boost a particular application’s performance still further (e.g. such as iterated
multilevel schemes) so that they can become more widely employed.

References

1. A. Abou-Rjeili and G. Karypis. Multilevel algorithms for partitioning power-law
graphs. In Proc. 20th Intl Parallel & Distributed Processing Symp., 2006, page
10 pp. IEEE, 2006.

2. S. T. Barnard and H. D. Simon. A Fast Multilevel Implementation of Recur-
sive Spectral Bisection for Partitioning Unstructured Problems. Concurrency:
Practice & Ezperience, 6(2):101-117, 1994.

3. R. Battiti, A. Bertossi, and A. Cappelletti. Multilevel Reactive Tabu Search for
Graph Partitioning. Preprint UTM 554, Dip. Mat., Univ. Trento, Italy, 1999.

4. C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Computing Surveys, 35(3):268-308, 2003.

5. C. Blum and M. Yébar. Multi-level ant colony optimization for DNA sequencing
by hybridization. In F. Almeida et al., editors, Proc. 8rd Intl Workshop on
Hybrid Metaheuristics, volume 4030 of LNCS, pages 94-109. Springer, Berlin,
Germany, 2006.

6. C. Blum, M. Yabar-Valles, and M. J. Blesa. An ant colony optimization algo-
rithm for DNA sequencing by hybridization. Computers € Operations Research,
2007. (in press).

7. E. G. Boman and B. Hendrickson. A Multilevel Algorithm for Reducing the
Envelope of Sparse Matrices. Tech. Rep. 96-14, SCCM, Stanford Univ., CA,
1996.

8. N. Bouhmala. Combining local search and genetic algorithms with the multilevel
paradigm for the traveling salesman problem. In C. Blum et al., editors, Proc.
1st Intl Workshop on Hybrid Metaheuristics, 2004. ISBN 3-00-015331-4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Multilevel Refinement for Combinatorial Optimisation 27

A. Brandt. Multiscale Scientific Computation: Review 2000. In T. J. Barth,
T. Chan, and R. Haimes, editors, Multiscale and Multiresolution Methods, pages
3-95. Springer, Berlin, Germany, 2001.

T. N. Bui and C. Jones. A Heuristic for Reducing Fill-In in Sparse Matrix
Factorization. In R. F. Sincovec et al., editors, Parallel Processing for Scientific
Computing, pages 445-452. STAM, Philadelphia, 1993.

J. Cong and J. Shinnerl, editors. Multilevel Optimization in VLSICAD. Kluwer,
Boston, 2003.

T. G. Crainic, Y. Li, and M. Toulouse. A First Multilevel Cooperative Algorithm
for Capacitated Multicommodity Network Design. Computers €& Operations
Research, 33(9):2602-2622, 2006.

C. Dai, P. C. Li, and M. Toulouse. A Multilevel Cooperative Tabu Search
Algorithm for the Covering Design Problem. Dept Computer Science, Univ.
Manitoba, 2006.

C. M. Fiduccia and R. M. Mattheyses. A Linear Time Heuristic for Improving
Network Partitions. In Proc. 19th IEEE Design Automation Conf., pages 175—
181. IEEE, Piscataway, NJ, 1982.

J. E. Gallardo, C. Cotta, and A. J. Ferndndez. A Multi-level Memetic/Exact
Hybrid Algorithm for the Still Life Problem. In T. P. Runarsson et al., editors,
Parallel Problem Solving from Nature — PPSN IX, volume 4193 of LNCS, pages
212-221. Springer, Berlin, 2006.

J. Gu and X. Huang. Efficient Local Search With Search Space Smoothing: A
Case Study of the Traveling Salesman Problem (TSP). IEEE Transactions on
Systemns, Man & Cybernetics, 24(5):728-735, 1994.

A. Gupta. Fast and effective algorithms for graph partitioning and sparse matrix
reordering. IBM Journal of Research & Development, 41(1/2):171-183, 1996.
D. Harel and Y. Koren. A Fast Multi-Scale Algorithm for Drawing Large
Graphs. Journal of Graph Algorithms & Applications, 6(3):179-202, 2002.

B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs.
In S. Karin, editor, Proc. Supercomputing ’95, San Diego (CD-ROM). ACM
Press, New York, 1995.

Y. F.Huand J. A. Scott. Multilevel Algorithms for Wavefront Reduction. RAL-
TR-2000-031, Comput. Sci. & Engrg. Dept., Rutherford Appleton Lab., Didcot,
UK, 2000.

G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Par-
titioning Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359—
392, 1998.

G. Karypis and V. Kumar. Multilevel Algorithms for Multi-Constraint Graph
Partitioning. In D. Duke, editor, Proc. Supercomputing ’98, Orlando. ACM
SIGARCH & IEEE Comput. Soc., 1998. (CD-ROM).

G. Karypis and V. Kumar. Multilevel k-way Partitioning Scheme for Irregular
Graphs. Journal of Parallel & Distributed Computing, 48(1):96-129, 1998.

G. Karypis and V. Kumar. Multilevel k-way Hypergraph Partitioning. VLSI
Design, 11(3):285-300, 2000.

A. Kaveh and H. A. Rahimi-Bondarabady. A Hybrid Graph-Genetic Method for
Domain Decomposition. In B. H. V. Topping, editor, Computational Engineering
using Metaphors from Nature, pages 127-134. Civil-Comp Press, Edinburgh,
2000. (Proc. Engrg. Comput. Technology, Leuven, Belgium, 2000).

B. W. Kernighan and S. Lin. An Efficient Heuristic for Partitioning Graphs.
Bell Systems Technical Journal, 49:291-308, 1970.

28

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Chris Walshaw

P. Korogec, J. Silc, and B. Robi¢. Solving the mesh-partitioning problem with
an ant-colony algorithm. Parallel Computing, 30:785-801, 2004.

A.E. Langham and P. W. Grant. A Multilevel k-way Partitioning Algorithm for
Finite Element Meshes using Competing Ant Colonies. In W. Banzhaf et al.,
editors, Proc. Genetic & FEwvolutionary Comput. Conf. (GECCO0-1999), pages
1602-1608. Morgan Kaufmann, San Francisco, 1999.

I. O. Oduntan. A Multilevel Search Algorithm for Feature Selection in Biomed-
ical Data. Master’s thesis, Dept. Computer Science, Univ. Manitoba, 2005.

D. Rodney, A. Soper, and C. Walshaw. The Application of Multilevel Re-
finement to the Vehicle Routing Problem. In D. Fogel et al., editors, Proc.
CISChed 2007, IEEE Symposium on Computational Intelligence in Scheduling,
pages 212-219. IEEE, Piscataway, NJ, 2007.

D. F. Rogers, R. D. Plante, R. T. Wong, and J. R. Evans. Aggregation and
Disaggregation Techniques and Methodology in Optimization. Operations Re-
search, 39(4):553-582, 1991.

Y. Romem, L. Rudolph, and J. Stein. Adapting Multilevel Simulated Annealing
for Mapping Dynamic Irregular Problems. In S. Ranka, editor, Proc. Intl Parallel
Processing Symp., pages 65—-72, 1995.

Camilo Rostoker and Chris Dabrowski. Multilevel Stochastic Local Search for
SAT. Dept Computer Science, Univ. British Columbia, 2005.

Y. Saab. Combinatorial Optimization by Dynamic Contraction. Journal of
Heuristics, 3(3):207-224, 1997.

1. Safro, D. Ron, and A. Brandt. Graph minimum linear arrangement by mul-
tilevel weighted edge contractions. Journal of Algorithms, 60(1):24-41, 2006.
K. Schloegel, G. Karypis, and V. Kumar. Multilevel Diffusion Schemes for
Repartitioning of Adaptive Meshes. Journal of Parallel & Distributed Comput-
ing, 47(2):109-124, 1997.

K. Schloegel, G. Karypis, and V. Kumar. A New Algorithm for Multi-objective
Graph Partitioning. In P. Amestoy et al., editors, Proc. Euro-Par ’99 Par-
allel Processing, volume 1685 of LNCS, pages 322-331. Springer, Heidelberg,
Germany, 1999.

A. J. Soper, C. Walshaw, and M. Cross. A Combined Evolutionary Search and
Multilevel Optimisation Approach to Graph Partitioning. Journal of Global
Optimization, 29(2):225-241, 2004.

S.-H. Teng. Coarsening, Sampling, and Smoothing: Elements of the Multilevel
Method. In M. T. Heath et al., editors, Algorithms for Parallel Processing,
volume 105 of IMA Volumes in Mathematics and its Applications, pages 247—
276. Springer, New York, 1999.

M. Toulouse, K. Thulasiraman, and F. Glover. Multi-level Cooperative Search:
A New Paradigm for Combinatorial Optimization and an Application to Graph
Partitioning. In P. Amestoy et al., editors, Proc. Euro-Par ’99 Parallel Process-
ing, volume 1685 of LNCS, pages 533-542. Springer, Berlin, 1999.

D. Vanderstraeten, C. Farhat, P. S. Chen, R. Keunings, and O. Zone. A Retrofit
Based Methodology for the Fast Generation and Optimization of Large-Scale
Mesh Partitions: Beyond the Minimum Interface Size Criterion. Computer Meth-
ods in Applied Mechanics & Engineering, 133:25-45, 1996.

C. Walshaw. A Multilevel Approach to the Travelling Salesman Problem. Op-
erations Research, 50(5):862-877, 2002.

C. Walshaw. A Multilevel Algorithm for Force-Directed Graph Drawing. Journal
of Graph Algorithms & Applications, 7(3):253-285, 2003.

44

45.

46.

47.

48.

49.

Multilevel Refinement for Combinatorial Optimisation 29

. C. Walshaw. Multilevel Refinement for Combinatorial Optimisation Problems.
Annals of Operations Research, 131:325-372, 2004.

C. Walshaw. Variable partition inertia: graph repartitioning and load-balancing
for adaptive meshes. In S. Chandra M. Parashar and X. Li, editors, Advanced
Computational Infrastructures for Parallel and Distributed Adaptive Applica-
tions. Wiley, New York, 2007. (Invited chapter — in press).

C. Walshaw and M. Cross. Mesh Partitioning: a Multilevel Balancing and Re-
finement Algorithm. SIAM Journal on Scientific Computing, 22(1):63-80, 2000.
C. Walshaw and M. Cross. Multilevel Mesh Partitioning for Heterogeneous
Communication Networks. Future Generation Computer Systems, 17(5):601—
623, 2001.

C. Walshaw, M. Cross, R. Diekmann, and F. Schlimbach. Multilevel Mesh
Partitioning for Optimising Domain Shape. International Journal of High Per-
formance Computing Applications, 13(4):334-353, 1999.

C. Walshaw and M. G. Everett. Multilevel Landscapes in Combinatorial Opti-
misation. Tech. Rep. 02/IM/93, Comp. Math. Sci., Univ. Greenwich, London
SE10 9LS, UK, April 2002.

