
Partitioning & Mapping of Unstructured Meshes to
Parallel Machine Topologies

C. Walshaw, M. Cross, M. G. Everett, S. Johnson, and K. McManus ?

Parallel Processing Group, Centre for Numerical Modelling & Process Analysis,
University of Greenwich, London, SE18 6PF. E-mail: C.Walshaw@gre.ac.uk

Abstract. We give an overview of some strategies for mapping unstructured
meshes onto processor grids. Sample results show that the mapping can make a
considerable difference to the communication overhead in the parallel solution
time, particularly as the number of processors increase.

1 Introduction

The use of unstructured mesh codes on parallel machines can be one of the most efficient
ways to solve large Computational Mechanics problems. Completely general geometries
and complex behaviour can be readily modelled and, in principle, the inherent sparsity
of many such problems can be exploited to obtain excellent parallel efficiencies. An im-
portant issue for such codes is the problem of distributing the mesh across the memory
of the machine at runtime so that the computational load is evenly balanced and the com-
munication overhead is minimised. It is well known that this problem is NP complete, so
in recent years much attention has been focused on developing suitable heuristics, and
some powerful methods, many based on a graph corresponding to the communication
requirements of the mesh, have been devised, e.g. [2].

A pertinent but often ignored factor in parallel processing is the underlying topology
of the machine’s interconnection network. For example, even on machines with small
numbers of processors, it is possible to detect variations between the latencies of proces-
sors which are closely linked and those which are ‘far apart’. Although most machines
now have facilities for ‘wormhole routing’ (i.e. the passing of messages between two
non-adjacent processors without interrupting intermediate processors), high contention
of the interprocessor links can result if adjacent partitions are mapped to, say, opposite
corners of a processor array. As the trend towards massively parallel machines contin-
ues, these effects are likely to be exacerbated and the machine topologies will have an
increasingly important effect on the parallel overhead arising from any given partition.
Most of the current generation of mesh partitioning algorithms, however, take no ac-
count of the topology. The mapping to the machine is either treated as a post-processing
step, applied after the data has been partitioned, or even ignored. For some machines
with small numbers of processors this may be a legitimate simplification, but as ma-
chine sizes increase it is likely that a poor mapping will cause significant performance
degradation.

? In: A. Ferreira and J. Rolim, editors, Proc. Irregular ’95: Parallel Algorithms for Irregularly
Structured Problems, volume 980 of LNCS, pages 121-126. Springer, 1995.



1.1 Overview

The strategy employed here to tackle the partitioning/mapping problem is to derive an
initial partition quickly and cheaply as possible and then use powerful optimisation tech-
niques to achieve a high quality solution. This multi-stage approach has been shown to
provide an efficient and flexible approach to partitioning, [6] and is similar to the work of
Vanderstraeten et al., [5], although the techniques vary in that we employ deterministic
heuristics to optimise the partition.

0 1 2 3

4 5 6 7

8 9 10

1512 13 14

11

Fig. 1. A typical partition with subdomain graph and a 4�4 processor grid

We use an undirected graph G(N;E), of N nodes & E edges, to represent the data
dependencies arising from the unstructured mesh. Any partition of G induces a subdo-
main graph S and loosely the mapping problem can be thought of as the placing of this
S onto the processor topology such that the communication overhead is minimised. We
concentrate here on mapping onto a grid topology where we assume that the processors
are connected as a 1D, 2D or 3D array. This is a realistic restriction as grids can be found
in some of the current range ofparallel machines such as the Intel Paragon (2D) or Cray
T3D (3D). Figure 1 shows a typical partition, the resulting subdomain graph and a 2D
grid topology.

2 The initial partition

The aim of the initial partitioning is to divide up the graph as rapidly as possible prior to
optimisation where most of the work takes place. We use two different initial partitioning
algorithms; the Greedy Algorithm ignores the processor topology completely, whilst the
other, Geometric sorting, does a very crude mapping onto a processor grid.

2.1 The greedy algorithm

The Greedy algorithm used here is a simple variant of that originally proposed by Farhat
and fully described in [1]. It derives its name from the way in which it ‘bites’ into the
mesh; each fresh partition grows out in level sets from a seed node until an appropriate
proportion of the graph has been ‘eaten’ and the next partition is then seeded (if possible)



from a node on the border of the previous subdomain. This is clearly seen to be the fastest
graph-based method as it only visits each graph edge once. However, it takes no account
of the processor topology except for the fact that two contiguously numbered domains
are likely to be (but not necessarily) adjacent. The variant employed here differs from
that proposed by Farhat only in that it works solely with a graph rather than the nodes
and elements of a finite element mesh.

2.2 Geometric sorting

This simple and intuitive algorithm does not use graph connectivity information, but in-
stead partitions solely on the geometric coordinates of the nodes. Thus, to map a graph
onto an p�q processor grid (where p � q) the nodes are first sorted by x-coordinate, say,
and split into p sets each of weight N=p. The nodes of each of these sets are then sorted
by y-coordinate and split into sets ofN=pq. Of course, neglecting connectivity informa-
tion may result in a very poor quality partition and/or mapping, but if nodes which are
adjacent in the graph are also adjacent geometrically, as is frequently the case in graphs
arising from finite element/finite volume discretisations, it can be very successful.

For the results reported in this paper the choice of which coordinate to sort on first is
left to the user. In fact, using x; y; z-coordinates may not be ideal as it takes no account
of the orientation of the mesh and a more successful technique might be to determine the
principal axes of inertia of the graph nodes (as in the commonly used Recursive Inertial
Bisection – see for example, [4]).

3 The optimisation methods

Once the graph is partitioned, optimisation can take place to improve the quality of the
partition. The two methods outlined here have different aims; ‘uniform optimisation’
treats the processor topology as uniform and tries to minimise the number of interpro-
cessor cut-edges. ‘Grid optimisation’, on the other hand, treats the processor topology as
a grid and attempts to optimise the mapping by eliminating non-local communications.
Throughout the optimisation, it is assumed that the final partition will not deviate too
far from the initial one. Thus, in general, only border nodes are allowed to migrate to
neighbouring subdomains.

3.1 Uniform optimisation

This algorithm is fully described in [6] where it is seen that a key part of the technique
is the way in which each subdomain tries to minimise its own surface energy. In the
physical 2D or 3D world the object with the smallest surface to volume ratio is the circle
or sphere. Thus the idea behind the subdomain heuristic is to determine the centre of each
subdomain (in some graph sense) and to then measure the radial distance from the centre
to the edges and attempt to minimise this by migrating nodes which are furthest from the
centre.

Determining the ‘centre’ is relatively easy and can be achieved by moving in level
sets inwards from the subdomain border until all the nodes have been visited. The final



set defines the centre of the subdomain and, the reverse of this process can then be used to
determine the radial distance. Having derived these sets each node can be marked by its
radial distance. The code finally decides which nodes to migrate based on a combination
of radial distance, load-imbalance and the change in cut-edges.

3.2 Grid optimisation

The grid optimisation algorithm is based very much on the uniform optimisation algo-
rithm with some minor changes and a more appropriate method for minimising the sur-
face energy. In summary, the minor changes are that subdomains can only migrate nodes
to their neighbours in the processor grid and that, when assessing the cost of a partition,
interprocessor edges are weighted according to how close together they are in the proces-
sor array. We use the square of the number links between the two processors, so that for
example, in Figure 1, the cost of an interprocessor edge between 0 and 6 is 9 = (2+1)2.

After some experimentation it was found that using the radial distance as a basis for
migrating nodes which are far from the subdomain centre was simply not appropriate
for achieving a grid mapping, as nodes which are relatively far away from the centre
of the subdomain may be well placed for the topology mapping. To see this, consider
the partition of the unit square for a 1D processor array where the topology preserving
partition is just a series of strips. Migrating nodes which are far away from the centre of
the subdomain (i.e. at the extremes of each strip) does not preserve the partition as a 1D
array. However, if we attempt to minimise the width of each strip, rather than the radial
distance, we do find that the partition can preserve the machine topology. Thus, instead
of measuring the radial distance of the subdomain, we measure (in a graph sense) the
distance between the borders with processor on the left and the processor on the right.

This technique can also be extended to higher dimensional arrays by each processor
classifying the other processors as lying, in the 2D case, to either the north, south, east or
west, with processors lying on a diagonal falling into two sets. Thus in Figure 1, relative
to 5, processors 0, 4 & 8 are positioned to the west, 2, 3, 6, 7, 10, 11 & 15 to the east,
0, 1 & 2 to the south and 8, 9, 10, 12, 13, 14 & 15 to the north. After measuring the
width in each direction border nodes are marked with the maximum of the east/west and
north/south distance and in the case where a subdomain does not have nodes on one of
the borders (e.g. in Figure 1 processors 0, 1, 2 & 3 do not have a southern border) nodes
on the opposite border are simply marked with 0. Nodes are then migrated as for uniform
optimisation (as described in [6]).

4 Mapping strategies

Table 1 shows the four mapping strategies tested. The unmapped partitioning com-
pletely ignores processor topology as does the postmapped, although it additionally em-
ploys a simple processor allocation algorithm at the end. This algorithm continually
swaps subdomains between processors until no further improvement in the map cost is
possible. The premapped partitioning method works the other way round; the graph is
initially mapped, albeit crudely, onto the processor grid and then optimised to minimise
the number of interprocessor cut-edges. Because the final partition does not deviate too



Strategy Initial partition Optimisation Processor Allocation
Unmapped Greedy Uniform No
Postmapped Greedy Uniform Yes
Premapped Geometric sort Uniform No
Partition mapped Geometric sort Grid No

Table 1. Mapping strategies

much from the initial one the resulting subdomain graph still ‘fits’ reasonably well onto
the processor grid. Indeed, although processor allocation was not used for these results,
in tests it was very rare that it could find better allocations. The premapping would also
be far more attractive than postmapping if the optimisation algorithm were running in
parallel as the remapping of a distributed partition can involve a vast exchange of data,
with a resulting loss of efficiency. Finally the partition mapping strategy acknowledges
the processor topology throughout.

5 Results

We have tested the mappings using a parallel control volume unstructed mesh flow and
stress code developed at Greenwich and described in [3]. The test mesh came from a
casting simulation and the resulting graph contains 30,064 nodes and 44,693 edges. The
parallel code was run on a Transtech Paramid with i860 processing nodes with an topol-
ogy can be best modelled by a p�2 grid.

Partition Time (s)
Strategy E

c

C D

a

Partition Solution
Unmapped 939 14753 4.17 5.13 154.1
Postmapped 939 2225 4.17 5.19 148.9
Premapped 982 1598 3.92 6.88 144.1
Partition mapped 1061 1069 3.17 11.39 131.7

Table 2. Results for P = 24

Table 2 show some typical partitioning results for P = 16 := 8�2. Here E
c

is the
number of cut edges, C is the partition cost using the distance-squared weighting de-
scribed in x3.2 and D

a

is the average degree of each subdomain. Unfortunately, how-
ever, when compared for several values of P , none of these measures could really be
used to predict the parallel solution time and a future aim is to derive a good cost met-
ric. The timings for the partition come from a Sun 20 workstation and are generally of the
same order (although partition-mapping is always more expensive). However, we don’t
consider these figures particularly relevant as it is intended to parallelise the partition
optimisation algorithm. Far more interesting are the parallel solution times and figure 2



unmapped  

postmapped

premapped 

mapped    

0 5 10 15 20 25
120

140

160

180

200

220

240

no. processors

tim
e 

 (
se

co
nd

s)

Fig. 2. Solution times

shows clearly how much difference a good mapping can make. Although the results are
indistinguishable for small numbers of processors, as might be expected, they rapidly
separate out for 16 or more.

6 Conclusion

The preliminary results of our investigation show that a good mapping can make a con-
siderable difference to the communication overhead in the parallel solution time for un-
structured meshes, particularly as the number of processors increases. Future work on
this technique will include the parallelisation of the optimisation algorithms and an at-
tempt to derive a meaningful cost function.

References

1. C. Farhat. A Simple and Efficient Automatic FEM Domain Decomposer. Comp. & Struct.,
28:579–602, 1988.

2. C. Farhat and H. D. Simon. TOP/DOMDEC – a Software Tool for Mesh Partitioning and Par-
allel Processing. Tech. Rep. RNR-93-011, NASA Ames, Moffat Field, CA, 1993.

3. K. McManus, M. Cross, and S. Johnson. Integrated Flow and Stress using an Unstructured
Mesh on Distributed Memory Parallel Systems. In Parallel CFD’94. Elsevier, 1995.

4. D. Roose and R. Van Driessche. Distributed Memory Parallel Computers and Computational
Fluid Dynamics. Rep. TW 186, Dept. Comp. Sci., Katholieke Universiteit Leuven, 1993.

5. D. Vanderstraeten and R. Keunings. Optimized Partitioning of Unstructured Computational
Grids. Int. J. Num. Meth. Engng., 38:433–450, 1995.

6. C. Walshaw, M. Cross, and M. Everett. A Parallelisable Algorithm for Optimising Unstruc-
tured Mesh Partitions. Tech. Rep. 95/IM/03, University of Greenwich, London SE18 6PF, UK,
1995. (submitted for publication).

This article was processed using the LATEX macro package with LLNCS style


