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Abstract
A parallel method for dynamic partitioning of unstructured meshes is described.

The method employs a new iterative optimisation technique which both balances the
workload and attempts to minimise the interprocessor communications overhead. Ex-
periments on a series of adaptively refined meshes indicate that the algorithm provides
partitions of an equivalent or higher quality to static partitioners (which do not reuse
the existing partition) and much more quickly. Perhaps more importantly, the algo-
rithm results in only a small fraction of the amount of data migration compared to the
static partitioners.

Key words. graph-partitioning, adaptive unstructured meshes, load-balancing, paral-
lel scientific computation.

1 Introduction
The use of unstructured mesh codes on parallel machines can be one of the most efficient
ways to solve large Computational Fluid Dynamics (CFD) and Computational Mechan-
ics (CM) problems. Completely general geometries and complex behaviour can be readily
modelled and, in principle, the inherent sparsity of many such problems can be exploited to
obtain excellent parallel efficiencies. An important consideration, however, is the problem
of distributing the mesh across the memory of the machine at runtime so that the compu-
tational load is evenly balanced and the amount of interprocessor communication is min-
imised. It is well known that this problem is NP complete, so in recent years much attention
has been focused on developing suitable heuristics, and some powerful methods, many
based on a graph corresponding to the communication requirements of the mesh, have
been devised, e.g. [1, 9, 14].

An increasingly important area for mesh partitioning arises from problems in which
the computational load varies throughout the evolution of the solution. For example, time-
dependent unstructured mesh codes which use adaptive refinement can give rise to a series
of meshes in which the position and density of the data points varies dramatically over the
course of an integration and which may need to be frequently repartitioned for maximum
parallel efficiency. This dynamic partitioning problem has not been nearly as thoroughly
studied as the static problem but related work can be found in [3, 4, 5, 11, 15, 18].

The dynamic evolution of load has three major influences on possible partitioning tech-
niques; cost, reuse and parallelism. Firstly, the unstructured mesh may be modified ev-
ery few time-steps and so the load-balancing must have a low cost relative to that of the
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solution algorithm in between remeshing. This may seem to restrict us to computation-
ally cheap algorithms but fortunately, if the mesh has not changed too much, it is a simple
matter to interpolate the existing partition from the old mesh to the new and use this as
the starting point for repartitioning, [18]. In fact, not only is the load-balancing likely to
be unnecessarily computationally expensive if it fails to use this information, but also the
mesh elements will be redistributed without any reference to their previous ‘home proces-
sor’ and heavy data migration may result. Finally, the data is distributed and so should be
repartitioned in situ rather than incurring the expense of transferring it back to some host
processor for load-balancing and some powerful arguments have been advanced in sup-
port of this proposition, [11]. Collectively these issues call for parallel load-balancing and,
if a high quality partition is desired, a parallel optimisation algorithm.

In this paper we describe a parallel optimisation technique (Section 2) which incorpo-
rates a distributed load-balancing algorithm and which provides an extremely fast solu-
tion to the problem of load-balancing adaptive unstructured meshes. In addition, a par-
allel graph contraction technique (outlined in Section 3) can be employed to enhance the
partition quality and the resulting strategy (which can also be applied to static partitioning
problems) outperforms or matches results from existing state-of-the-art static mesh parti-
tioning algorithms.

2 Optimisation
In this section we present a parallel iterative algorithm for load-balancing and optimising
unstructured mesh partitions in order to share the workload equally between all subdo-
mains and to carry out local refinement.

Notation and Definitions. Let
�������	��

���

be an undirected graph of
�

vertices with�
edges which represent the data dependencies in the mesh and let � be a set of processors.

We assume that both vertices and edges are weighted (with positive integer values) and
that � ��� denotes the weight of a vertex � and similarly for edges and sets of vertices & edges.
We define ��� ��� � to be a partition of

�
and denote the resulting subdomains by ��� ,

for ����� . The optimal subdomain weight is given by  � �"! � � �$#%�'& . We denote the set of
cut (or inter-subdomain) edges by

�)(
and the border of each subdomain, *+� , is defined as

the set of vertices in � � which have an edge in
� (

. We shall use the notation , to mean ‘is
adjacent to’, for example, for - 
 �.� � , -/,0� if 1 � - 
 � � � � .

The definition of the graph-partitioning problem is to find a partition which evenly bal-
ances the load or vertex weight in each subdomain whilst minimising the communications
cost. More precisely we seek � such that �2�435 for ����� (although this is not always pos-
sible for graphs with non-unitary vertex weights) and such that � � ( � is minimised (though
see below).

The gain and preference functions. A key concept in the method is the idea of gain
and preference functions. Loosely, the gain 6 � � 

78� of a vertex � in subdomain ��� can be
calculated for every other subdomain, �:9 , 7<;� � , and expresses some ‘estimate’ of how
much the partition would be ‘improved’ were � to migrate to �=9 . The preference > � � � is
then just the value of

7
which maximises the gain – i.e. > � � �?�@7

where 6 � � 

78� attainsA�B%CEDGFIH 6 � � 
KJL� .
The gain is usually directly related to some cost function which measures the quality of

the partition and which we aim to minimise. Typically the cost function used is simply the
total weight of cut edges, � �M( � , and then the gain expresses the change in � �M( � . More recently,
however, there has been some debate about the most important quantity to minimise
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and in [12], Vanderstraeten et al. demonstrate that it can be extremely effective to vary
the cost function based on a knowledge of the solver. Meanwhile, in [17] we show that
the architecture of the parallel machine and how the partition is mapped down onto its
communications network can also play an important role. Whichever cost function is
chosen, however, the idea of gains is generic. For the purposes of this paper we shall
assume that the gain 6 � � 

78� just expresses the reduction in the cut-edge weight, � �'( � .

Localisation and the subdomain graph. An important aim for any parallel algorithm
is to keep communication as localised as possible to avoid contention and expensive global
operations; this issue becomes increasingly important as machine sizes grow. Throughout
the optimisation algorithm we localise the vertex migration with respect to the partition
� by only requiring subdomains to migrate vertices to neighbouring subdomains. In
this way the partition � induces a subdomain graph on

�
, an undirected graph of �

subdomains (vertices) and N connections (edges).
Load-balancing. The load-balancing problem, i.e. how to distribute

�
tasks over a

network of � processors so that none have more than
!O� #%�'& , is a very important area

for research in its own right with a vast range of applications. Here we use an elegant
technique recently developed by Hu & Blake, [8], related to, but with faster convergence
than the commonly used diffusive methods, e.g. [2], and which minimises the Euclidean
norm of the transferred weight. The algorithm simply involves solving the system P�Q �SR
where P is the Laplacian of the subdomain graph, ( PT�
� � degree

� �E� � ; P=�U9 ��VXW
if �Y�Z,

� 9 
 P �[9 �]\ otherwise) ^ � � �$� � � V  and the weight to be transferred across edge
� � � 
 � 9 � is

then given by _`� V _a9 . Note that this method is closely related to diffusive algorithms except
that the diffusion coefficients are not fixed but determined at each iteration by a conjugate
gradient search.

This algorithm (or, in principle, any other distributed load-balancing algorithm) de-
fines how much weight to transfer across edges of the subdomain graph and we then use
the optimisation mechanism to decide which vertices to move.

The parallel optimisation mechanism. Having determined the required flow across
the edges of the subdomain graph we need to migrate vertices from adjacent subdomains
in order to satisfy that flow. Choosing appropriate vertices to migrate is not an easy task
because we also wish to optimise the partition quality with respect to the cost function.
Indeed, in order to obtain partitions of the highest quality, it is likely that vertices will
need to be exchanged even if there is no flow required. Simply moving vertices with the
highest gain is not a satisfactory solution, however, as it means that adjacent vertices may
be swapped simultaneously and this may lead to an increase the cost. We have previously
addressed this problem by using a Kernighan-Lin type algorithm run in the boundary
regions alone, [15, 16], and it has also been addressed by Karypis & Kumar, [10], who colour
the graph vertices to avoid such collisions. Here we introduce a new strategy which uses
the concept of the relative gain.

The first part of each iterative step is to use a simple formula based on both the flow and
the total weight of vertices with positive gain to determine how much load to migrate. This
formula, together with justification for its derivation is presented in full in [13]. Essentially
though, for the interface between subdomains �b� and ��9 , define border regions *+�U9 as the
set of vertices in *+� (the border of �Y� ) whose preference is

7
, i.e. *+�U9 ��c �d��*e�4�L> � � ���S7Lf

and suppose that > �U9 represents the required flow from � to
7

and 6 �U9 the total weight of
vertices in *+�U9 with gain g \

. If h � AiB%C � 6U�U9 V >j�U9Xkl6I9m� V >I9m� 

\L� , which represents
approximately the weight of vertices with positive gain after all flow has been satisfied,
then load to be migrated from � to

7
, is given by no�[9 � >j�U9+k]hE#Ip . Essentially this firstly
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allows the flow to be satisfied and secondly, since the amount to be transferred from
7

to �
is given by n 9m� � > 9m� kqh`#Ip , exchanges an equal amount of weight from � � and � 9 (based
on the weight of vertices with positive gain) in order to both load-balance and optimise the
cost function.

To determine which vertices to migrate we define the relative gain as follows; for a
vertex �r�?*e�U9 let s=9 � � � be the set of vertices in *'9m� adjacent to � , i.e. s=9 � � �)�"c -t�u*)9m�v�
-w,x� f . The relative gain of a vertex � is then defined as 6 � � 

7o�yV{zr| F~}I������� 6 � - 
 � � #b��sy9 � � � �
(where ��sy9 � � � � represents the number of vertices in sT9 � � � ). The relative gain then gives an
indication of which are the best vertices to move in order to avoid collisions and vertices
in each border *+�U9 are sorted by relative gain, largest first, and a weight of no�U9 is migrated
to ��9 according to this ordering.

3 Graph reduction
The algorithm described above provides what is essentially very localised optimisation
and it has been recognised for some time that an effective way of both speeding up opti-
misation and, perhaps more importantly, giving it a more global perception is to use graph
reduction. The idea is to group vertices together to form clusters, use the clusters to define a
new graph, recursively iterate this procedure until the graph size falls below some thresh-
old and then successively optimise these reduced size graphs. It is a common technique
and has been used by several authors in various ways – for example, in a multilevel way
analogous to multigrid techniques, [1, 7], and in an adaptive way analogous to dynamic re-
finement techniques, [18]. Several algorithms for carrying out the reduction can be found
in [9].

Reduction. To create a coarser graph
���O�	�'�m

�X���

from
�i�	��

�4�

we use a variant of
the edge contraction algorithm proposed by Hendrickson & Leland, [7] and improved by
Karypis & Kumar in [9]. The idea is to find a maximal independent subset of graph edges
and then collapse them. The set is independent because no two edges in the set are incident
on the same vertex (so no two edges in the set are adjacent), and maximal because no more
edges can be added to the set without breaking the independence criterion. Having found
such a set, each selected edge is collapsed and the vertices, -�� 
 -a�'� � say, at either end of
it are merged to form a new vertex �.� �X� with weight � ��� � � - � ��k]� - � � . Edges which have
not been collapsed are inherited by the reduced graph and, where they become duplicated,
are merged with their weight summed. This occurs if, for example, the edges

� -T� 
 -a� � and� -�� 
 -a� � exist when edge
� -y� 
 -a� � is collapsed. Because of the inheritance properties of this

algorithm, it is easy to see that the total graph weight remains the same, � � � � � ��� � and the
total edge weight is reduced by an amount equal to the weight of the collapsed edges.

Parallel matching. A simple way to construct a maximal independent subset of edges
is to visit the vertices of the graph in a random order and pair up or match unmatched
vertices with a unmatched neighbour. It has been shown, [9], that it can be beneficial to
the optimisation to collapse the most heavily weighted edges and our matching algorithm
uses this heuristic. For the parallel version we use more or less the same procedure; each
processor visiting in parallel the vertices that it owns. We modify the matching algorithm,
however, by always matching with a local vertex in preference to a vertex owned by
another processor. The local matching can then take place entirely in parallel but usually
leaves a few boundary vertices who have no unmatched local neighbours but possibly
some unmatched non-local neighbours.

The simplest solution would be to terminate the matching at this point. However, in
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the worst-case scenario if the initial partition is particularly bad and most vertices have
no local neighbours (for example a random partition), little or no matching may have
taken place. We therefore continue the matching with an parallel iterative procedure which
finishes only when there are no vertices unmatched. Vertices which are matched across
interprocessor boundaries are migrated to one of the two owning processors and then the
construction of the reduced graph can take place entirely in parallel. The algorithm is fully
described in [13].

4 Experimental results
The software tool written at Greenwich and which we have used to test the optimisation
and graph reduction algorithms is known as JOSTLE. For the purposes of this paper it is
run in three configurations, dynamic (JOSTLE-D), multilevel-dynamic (JOSTLE-MD) and
multilevel-static (JOSTLE-MS). The dynamic configuration, JOSTLE-D, reads in an existing
partition and uses the algorithm described in Section 2 to balance and optimise the parti-
tion. The multilevel-dynamic, JOSTLE-MD, uses the same procedure but additionally uses
graph reduction (Section 3) to improve the partition quality. The static version, JOSTLE-
MS, carries out graph reduction on unpartitioned graph, employs the greedy algorithm,
[6], to generate an initial partition of the coarsest graph and, finally, together with the algo-
rithm described in Section 2, uses an optimisation technique, fully described in [14], which
attempts to minimise the ‘surface energy’ of the subdomains.

In order to demonstrate the quality of the partitions we have compared the method
with three of the most popular partitioning schemes, METIS, GREEDY and Multilevel Re-
cursive Spectral Bisection (MRSB). Of the three METIS is the most similar to JOSTLE, em-
ploying a graph reduction technique and iterative optimisation. The version used here
is kmetis from the most recent public distribution, freely available by anonymous ftp
from ftp.cs.umn.edu in dept/users/kumar/metis/metis-2.0.5.tar.gz. The
GREEDY algorithm, [6], is actually performed as part of the JOSTLE code and is fast but
not particularly good at minimising � �)( � . MRSB, on the other hand, is a highly sophis-
ticated method, good at minimising � �)( � but suffering from relatively high runtimes, [1].
The MRSB code was made available to us by one of its authors, Horst Simon, and run un-
changed with a contraction thresholds of 100.

The test meshes have been taken from an example contained in the DIME (distributed
irregular mesh environment) software package, [19], freely available by anonymous ftp
from ftp.ccsf.caltech.edu in dime/dime.src.tar.Z. The particular application
solves Laplace’s equation with Dirichelet boundary conditions on a square domain with
an S-shaped hole and using a triangular finite element discretisation. The problem is re-
peatedly solved by Jacobi iteration, refined based on this solution and then load-balanced.
A very similar set of meshes has previously been used for testing mesh partitioning algo-
rithms and details about the solver, the domain and DIME can be found in [20].

The particular series of ten meshes and the resulting graphs that we used range in size
from the first one which contains 23,787 vertices and 35,281 edges to the final one which
contains 224,843 vertices and 336,024 edges.

4.1 Comparison Results
The following experiments were carried out in serial on a Sun SPARC Ultra with a 140
MHz CPU and 64 Mbytes of memory. We use three metrics to measure the performance
of the algorithms – the total weight of cut edges, � �)( � , the execution time in seconds of each
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algorithm, � �O�I� , and the percentage of vertices which need to be migrated, � .
For the two dynamic configurations, the initial mesh is partitioned with the static ver-

sion of JOSTLE-MS. Subsequently at each refinement, the existing partition is interpolated
onto the new mesh using the techniques described in [18] (essentially, new elements are
owned by the processor which owns their parent) and the new partition is then optimised
and balanced.

� ��WU� � �S� p � �S�%�
method � ��( � � �O�I� � % � ��( � � �O�I� � % � ��( � � �O�I� � %
JOSTLE-D 917 0.66 0.67 1397 0.81 1.70 2433 1.13 4.31
JOSTLE-MD 811 2.62 5.79 1376 2.89 6.49 2310 3.40 9.55
JOSTLE-MS 838 3.81 94.19 1429 4.24 92.80 2300 4.92 98.98
METIS 867 4.39 94.36 1463 4.49 95.94 2301 4.85 97.95
MRSB 890 51.62 83.54 1494 66.40 90.01 2391 81.94 95.07
GREEDY 1719 0.67 81.62 2746 0.73 90.64 4071 0.91 94.42

TABLE 1
Average results over the 10 meshes

Table 1 compares the six different partitioning methods with the results averaged over
the 10 meshes for � �

16, 32 and 64. The high quality partitioners – both JOSTLE multi-
level configurations, METIS and MRSB – all give similar values for � �'( � with MRSB giving
marginally the worst results. In general, JOSTLE-D (without the benefit of graph reduc-
tion) provides slightly lower quality partitions than the other two configurations, although
for � �S� p it outperforms all the other algorithms except JOSTLE-MD. However, our expe-
rience suggests that this is not normally the case. In terms of execution time, JOSTLE-D is
roughly as fast as GREEDY, and faster than any of the multilevel algorithms. JOSTLE-MD,
however, is considerably faster than JOSTLE-MS and METIS; MRSB is by far the slowest.
It is the final column which is perhaps the most telling though. Because the static partition-
ers take no account of the existing distribution they result in a vast amount of data migra-
tion. The dynamic configurations, JOSTLE-D and JOSTLE-MD, on the other hand, migrate
very few of the vertices. As could be expected JOSTLE-MD migrates somewhat more than
JOSTLE-D since it does a more thorough optimisation.

Taking the results as a whole, the multilevel-dynamic configuration, JOSTLE-MD, pro-
vides the best partitions very rapidly and with very little vertex migration. If a slight degra-
dation in partition quality can be tolerated however, the JOSTLE-D configuration load-
balances and optimises even more rapidly, as fast as the GREEDY algorithm, with even
less vertex migration.

4.2 Parallel timings
Achieving high parallel performance for parallel partitioning codes such as JOSTLE is not
as easy as, say, a typical CFD or CM code. For a start the algorithms use only integer
operations and so there are no MFlops to ‘hide behind’. In addition, most of the work is
carried out on the subdomain boundaries and so very little of the actual graph is used. Also
the partitioner itself may not necessarily be well load-balanced and the communications
cost may dominate on the coarsest reduced graphs. On the other hand, as was explained
in Section 1, partitioning on the host may be impossible or at least much more expensive
and if the cost of partitioning is regarded (as it should be) as a parallel overhead, it is usually
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extremely inexpensive relative to the overall solution time of the problem.

� ��WU� � �S� p� � �K� �O�I� ��� �O�I� speed up �K� �O�I� ��� �O�I� speed up
31172 46309 0.39 0.10 3.9 0.66 0.16 4.1
40851 60753 0.57 0.13 4.3 0.65 0.12 5.4
53338 79415 0.81 0.18 4.5 0.88 0.14 6.3
69813 104034 0.93 0.19 4.9 0.93 0.14 6.6
88743 132329 1.08 0.21 5.1 1.18 0.16 7.3

115110 171782 1.36 0.24 5.7 1.65 0.21 7.9
146014 218014 1.93 0.32 6.0 1.95 0.22 8.9
185761 277510 2.22 0.35 6.3 2.46 0.26 9.5
224843 336024 3.85 0.41 9.4 3.01 0.31 9.7

TABLE 2
Serial and parallel timings for the JOSTLE-D configuration

� ��WU� � �S� p� � � � �O�I� � � �O�I� speed up � � �O�I� � � �O�I� speed up
31172 46309 2.21 0.56 3.9 2.55 0.48 5.3
40851 60753 2.77 0.70 4.0 3.18 0.56 5.7
53338 79415 3.54 0.73 4.8 4.05 0.64 6.3
69813 104034 4.58 0.90 5.1 4.91 0.67 7.3
88743 132329 5.58 1.04 5.3 6.25 0.80 7.8

115110 171782 7.14 1.17 6.1 7.83 0.91 8.6
146014 218014 1.47 1.10
185761 277510 1.63 1.24
224843 336024 2.23 1.39

TABLE 3
Serial and parallel timings for the JOSTLE-MD configuration

Tables 2 and 3 give serial and parallel timings for the JOSTLE-D and JOSTLE-MD
configurations respectively on the Edinburgh Cray T3D. The parallel version uses the MPI
communications library although we are working on a shmem version which could be
expected to show even faster timings. These demonstrate good speedups for this sort of
code and more importantly, very low overheads (no more than a couple of seconds) for
the parallel partitioning. Some of the larger meshes would not fit in the memory for serial
partitioning with JOSTLE-MD and so no serial timings are given. Finally note that the
partitions obtained for the parallel version of JOSTLE are exactly the same as those of the
serial version.

5 Conclusion
We have described a new method for optimising and load-balancing graph partitions
with a specific focus on its application to the dynamic mapping of unstructured meshes
onto parallel computers. In this context the graph-partitioning task can be very efficiently
addressed by reoptimising the existing partition, rather than starting the partitioning from
afresh. For the experiments reported in this paper, the dynamic procedures are much faster



8

than static techniques, provide partitions of similar or higher quality and, in comparison,
involve the migration of a fraction of the data.
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