
Dynamic mesh partitioning: a unified optimisation and
load-balancing algorithm

C. Walshaw, M. Cross and M. G. Everett
�

Centre for Numerical Modelling and Process Analysis,
University of Greenwich,

London, SE18 6PF,
UK.

Mathematics Research Report 95/IM/06

December ’95

Abstract

A parallel method for dynamic partitioning of unstructured meshes is described. The method employs
a new unified iterative optimisation technique which both balances the workload and attempts to minimise
the interprocessor communications overhead. Experiments on a series of adaptively refined meshes indi-
cate that the algorithm provides partitions of an equivalent quality to static partitioners (which do not reuse
the existing partition) and much more quickly. Perhaps more importantly, the algorithm results in only a
small fraction of the amount of data migration compared to the static partitioners.
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1 Introduction

The use of unstructured mesh codes on parallel machines can be one of the most efficient ways to solve large
Computational Fluid Dynamics (CFD) and Computational Mechanics (CM) problems. Completely general
geometries and complex behaviour can be readily modelled and, in principle, the inherent sparsity of many
such problems can be exploited to obtain excellent parallel efficiencies. However, unlike their structured
counterparts, one must carefully address the problem of distributing the mesh across the memory of the
machine at runtime so that the computational load is evenly balanced and the amount of interprocessor
communication is minimised. It is well known that this problem is NP complete, so in recent years much
attention has been focused on developing suitable heuristics, and some powerful methods, many based on
a graph corresponding to the communication requirements of the mesh, have been devised, e.g. [8].

An increasingly important area for mesh partitioning arises from problems in which the computational load
varies throughout the evolution of the solution. For example, time-dependent unstructured mesh codes
which use adaptive refinement can give rise to a series of meshes in which the position and density of the
data points varies dramatically over the course of an integration and which may need to be frequently repar-
titioned for maximum parallel efficiency. This dynamic partitioning problem has not been nearly as thor-
oughly studied as the static problem but related work can be found in [4, 5, 6, 15, 25].�
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The dynamic evolution of load has three major influences on possible partitioning techniques; cost, reuse
and parallelism. Firstly, the unstructured mesh may be modified every few time-steps and so the load-
balancing must have a low cost relative to that of the solution algorithm in between remeshing. This may
seem to restrict us to computationally cheap algorithms but fortunately, if the mesh has not changed too
much, it is a simple matter to interpolate the existing partition from the old mesh to the new and use this
as the starting point for repartitioning, [25]. In fact, not only is the load-balancing likely to be unnecessarily
computationally expensive if it fails to use this information, but also the mesh elements will be redistributed
without any reference to their previous ‘home processor’ and heavy data migration may result. Finally, the
data is distributed and so should be repartitioned in situ rather than incurring the expense of transferring it
back to some host processor for load-balancing and some powerful arguments have been advanced in sup-
port of this proposition, [15]. Collectively these issues call for parallel load-balancing and, if a high quality
partition is desired, a parallel optimisation algorithm.

Load-balancing of this nature is referred to as quasi-dynamic, [27], or synchronous, [18], as it is carried out
by all processors working collectively. A more dynamic or asynchronous type of load-balancing can occur
when the partitioning runs in conjunction with the solver, i.e. the partitioner takes an iteration at every time-
step to diffuse excess load away to neighbouring processors. For example, in simulating the process of met-
als casting, the code may be called on to solve for flow in the molten metal and stress where it has solidified,
[1], and these regions may be constantly changing. The partitions therefore need to adapt dynamically to
reflect the changing workload and, if the solvers act simultaneously, this may be possible by weighting the
graph. (Note that if the solvers act independently, however, each different part of the domain may need to
be partitioned separately and in this case graph weights may not work, [16].)

In this paper we describe a localised optimisation technique which marries a Kernighan Lin type optimisa-
tion method with a distributed load-balancing algorithm. It can be used for quasi-dynamic or, in principle,
dynamic load-balancing, although we have not tested the latter case. The algorithm works both in serial and
in parallel and we describe the parallel version in particular detail.

2 Notation and Definitions

We use a graph to represent the data dependencies in the mesh arising from the discretisation of the domain.
Thus, let

�������	��

���
be an undirected graph of

�
vertices &

�
edges and � be a set of processors. In a slight

abuse of notation we use
�

,
�

& � to represent both the sets of vertices, edges & processors and the number
of vertices, edges & processors, with the meaning clear from the context. We assume that both vertices and
edges are weighted (with positive integer values) and that � ��� denotes the weight of a vertex � ; � ����
 � � � the
weight of an edge; � ����� ����� �"! � �#� the weight of a subset ��$ �

; and � %&�'� �(�*),+"- �/.0�21 � �3�4
 � � � the weight of
a subset %5$ �

. We define 67� �98 � to be a partition of
�

and denote the resulting subdomains by �;: ,
for <*=�� . The optimal subdomain weight is given by > � �@? � � � AB�DC . We denote the set of cut (or inter-
subdomain) edges by

�DE
and the border of each subdomain, FG: , is defined as the set of vertices in �#: which

have an edge in
� E

.

We shall use the notation H to mean ‘is adjacent to’. For example, for
�4
 �I= �

,
� HJ� iff K �3�4
 � � = �

. Also
if �L= �

and � 
 %M$ �
, �NH@� iff K ����
 � � = �

with
� =O� and similarly �PHQ% iff K ����
 � � = �

with
� =R� &�S=I% . We then denote the neighbourhood of a set of vertices � (the vertices adjacent to � ) by T � � � and thus

the halo of subdomain � : by U : � � T � � : � . Table 1 gives a summary of these definitions.

We assume throughout the rest of this paper that the graph is connected (i.e. for all
��
 �V= �

there exists
a path of edges from

�
to � ). If this is not the case there are several possible options, such as running the

partitioning code on each connected subgraph or even adding edges of zero weight to the graph to make it
connected. We also assume that the application from which the graph arises is such that the computational
load can be expressed by weighting the graph vertices although this may not always be the case if, for ex-
ample, the underlying application uses a frontal solver, [21]. Finally note that we work in the data-parallel
paradigm so that the vertices in each subdomain, � : , are assigned to processor < , which also holds a one
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Notation Name Definition�XWY� weight function? W C ceiling function
?YZ C[� � smallest integer \ Z

H adjacency operator
� H]�&^_K ����
 � � = �

T � � � neighbourhood function `a��= �cb �d�e�fHg�ih6(� �j8 � partition function� E
cut edges ` ����
 � � = � �B6 �3�#�lk� 6 � � � h� : subdomain < `a��= � �B6 � � ��� <mhF : border of subdomain < `a��=L� : �nK � � 
o��� = � E hU : halo of subdomain < T � � : �p� `a�q= �*b � : �2�fHg� : h> optimal subdomain weight

? � � � AB�DC
Table 1: Definitions

deep halo, U : , or read only copy of vertices adjacent to � : .

2.1 The graph-partitioning problem

The definition of the graph-partitioning problem is to find a partition which evenly balances the load or
vertex weight in each subdomain whilst minimising the communications cost. More precisely we seek 6
such that ��:crs> (although this is not always possible for graphs with non-unitary vertex weights) for<L=t� and such that � �lE � is approximately minimised. The definition of the partition optimisation problem
is the same but working from an initial (unbalanced) partition 6lu . It is a matter of contention whether � �vE �
is the most important metric for minimisation but see w 3.1 for a further discussion on this topic.

2.2 Localisation and the subdomain graph

An important aim for any parallel algorithm is to keep communication as localised as possible to avoid con-
tention and expensive global operations; this issue becomes increasingly important as machine sizes grow.
Throughout the optimisation algorithm we localise the vertex migration with respect to the partition 6 by
only requiring subdomains to migrate vertices to neighbouring subdomains. Thus a subdomain � : will only
need to migrate vertices to �4x if � : Hs�mx .
In this way the partition 6 induces a subdomain graph on

�
which we shall refer to as 6 �3�[�y� 6 �3�[�z� � 

{|�

,
an undirected graph of � subdomains (vertices) and

{
connections (edges). There is an edge

� < 
~}e� = {
if� : H��;x . In addition, the weight on each processor <O=�� is given by � <�� � � � : � and so � �S� �M� : �2� � � : � �� � � . Figure 1 gives an example of a partitioned graph (with unit vertex and edge weights) and the resulting

subdomain graph (with vertex and edge weights as shown).
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Figure 1: An example graph and the resulting subdomain graph (vertex & edge weights as shown)
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3 The optimisation algorithm

3.1 The gain and preference functions

A key concept in the following method is the idea of gain and preference functions. Loosely, the gain � � � 
~}e�
of a vertex ��=�� : can be calculated for every subdomain, �4x , }�k� < , and expresses some ‘estimate’ of how
much the partition would be ‘improved’ were � to migrate to � x . The preference � � � � is then just the value
of

}
which maximises the gain – i.e. � � � ����}

where
}

attains ���B�'� �2� � � � 
o�e� .
The gain is usually directly related to some cost function which measures the quality of the partition and
which we aim to minimise. Typically the cost function used is simply the total weight of cut edges, � � E � , and
then the gain expresses the change in � �DE � . More recently, however, there has been some debate about the
most important quantity to minimise and in [20], Vanderstraeten et al. demonstrate that it can be extremely
effective to vary the cost function based on a knowledge of the solver. Meanwhile, in [24] we show that
the architecture of the parallel machine and how the partition is mapped down onto its communications
network can also play an important role. Whichever cost function is chosen, however, the idea of gains is
generic.

For the purposes of this paper we shall assume that the gain � � � 

}e� just expresses the reduction in the cut-
edge weight. Thus in Figure 1 (assuming unit edge weights) there would be one less edge cut if vertex

�
migrated to subdomain < and so � ����
 < �����

. Similarly � �3�4

}e�����
and hence � ������� < . For vertex � , � � � 
 < ���b|�

and � � � 
~�e����b|�
and so a random choice must be made for � � � � . Note that here we do not allow the

preference of a vertex to be its current subdomain since we may have to migrate vertices even if the net gain
is negative.

3.2 Load-balancing

The load-balancing problem, i.e. how to distribute � tasks over a network of � processors so that none
have more than

? ��Ae�DC , is a very important area for research in its own right with a vast range of applica-
tions. The topic is introduced in [18] and some common strategies described. Much work has been carried
out on parallel or distributed algorithms recently and, in particular, on diffusive algorithms, [3, 10]. Here,
however, we use an elegant technique recently developed by Hu & Blake, [13], which converges faster than
diffusive methods and minimises the Euclidean norm of the transferred weight. The algorithm simply in-
volves solving the system �y� �9�

where � is the Laplacian of the subdomain graph, ( ��:�: �
degree

� ��: � ;��: x ��b|�
if ��:VH�� x 
 ��: x �g�

otherwise), �
: � � �':�� b > and the weight to be transferred across edge� ��: 
 � x � is then given by
Z : bIZ x . Note that this method is closely related to diffusive algorithms except that

the diffusion coefficients are not fixed but are determined at each iteration by a conjugate gradient search.

This algorithm (or, in principle, any other distributed load-balancing algorithm) thus defines how much
weight to transfer across edges of the subdomain graph and we use the optimisation technique to decide
which vertices to move. We employ the algorithm as suggested in [13], solving iteratively with a parallel
conjugate gradient solver, except that here we calculate the flow iteratively from the updates of � (rather
than from the converged values of � ). In this case it is important for convergence to keep the Laplacian fixed
and thus to

(a) restart the algorithm if an existing edge disappears from the subdomain graph (as can sometimes hap-
pen as vertices migrate)

(b) not include edges which have appeared since the most recent restart (or alternatively restart if a new
edge appears).
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3.3 A parallel optimisation mechanism

An algorithm which comes to mind for optimisation purposes is the Kernighan-Lin (KL) heuristic, [14],
which maintains load-balance by employing pairwise exchanges of vertices. Unfortunately it has � �����m���2�y�;�
complexity but a linear-time variant has been proposed by Fiduccia & Mattheyses (FM), [9]. The FM algo-
rithm achieves this reduction partially by calculating swaps one vertex at a time rather than in pairs. Both
algorithms have the possibility of escaping local minima traps by continuing to compute swaps even if the
swap gain is negative in the hope that some later total gain may be positive. Here we introduce an algorithm
largely inspired by the KL/FM algorithms but with several modifications to better suit our purposes.

Sublinearity. In common with Hendrickson & Leland, [12], we remark that the gains of each vertex do not
have to be recalculated at each pass of the algorithm – having calculated them initially, we need only re-
calculate gains for migrating vertices and their immediate neighbours. However we extend the simplifica-
tion by noting that, since edge weights are always positive integers, any vertex internal to a subdomain (i.e.=�� : b F : ) will have negative gain. Although it is possible to devise arbitrary graphs in which an internal
vertex may have maximum gain over the subdomain it seems to very occur very rarely for our sort of ap-
plications. Thus we only calculate initial gains for border vertices and thereafter for vertices coming in to
the border. Of course, the full KL/FM algorithm continues to evaluate swaps even when the step gain is
negative and if it explores the entire graph in this way it must eventually calculate the gain of every vertex.
However, if as suggested by several authors, [11, 12], we terminate this process at some early stage, it is very
likely that much of the graph will remain unexplored and this can make the whole algorithm cost sublinear
and potentially insignificant for very coarse granularities.

Data organisation. It might seem that there is no saving in only calculating gains for border vertices (as the
cost of calculating the gain is about the same as detecting border vertices) but this is not the case as every
processor maintains a list of local vertices divided into three parts: internal, border and the hotlist (which
are vertices either migrating or adjacent to migrating vertices and which may or may not be in the border).
Thus, if a vertex moves from one subdomain to another it is moved into the hotlist of its destination sub-
domain and, in addition, any vertices adjacent to that vertex are moved into the hotlists of their respective
subdomains. After all migration for that iteration has taken place each subdomain has simply to examine
all the vertices in its hotlist and move them into the border or internal lists as required. Neither does this
process absorb a lot of memory – just one double linked list per subdomain and hence one pair of pointers,
forward and backward, per vertex. The list is ordered to have all the internal vertices, followed by the bor-
der vertices followed by the hotlist; two additional pointers, one to the start of the border vertices and one
to the start of the hotlist, are kept. There is no need for sorting: transferring a vertex into a hotlist just means
moving it to the end of the list, transferring a vertex out of the hotlist into the internal list means moving it
to the start of the list and rather than transferring vertices out of the hotlist, we reset the hotlist start pointer
to point to the end of the subdomain list after the rebordering phase. This means that detection of border
vertices by testing all vertices need only take place once at the start of the optimisation.

Multi-way optimisation. A further simplification arises in extending the algorithm to arbitrary � . Previ-
ously, [19], authors have implemented this by employing pairwise exchanges (e.g. for 4 subdomains, 1 pairs
with 2 & 3 pairs with 4; then 1 with 3 & 2 with 4 and finally 1 with 4 & 2 with 3). However we note that it is
unlikely that an overall gain will accrue by transferring a vertex to a subdomain which it is not adjacent to
in the subdomain graph. Thus we only consider exchanges between neighbouring subdomains.

These simplifications considerably ease the effort of finding the vertex gains since we need only calculate
them for the borders of each subdomain. Also most vertices in F : will only be adjacent to one subdomain,}

say, and in this case the preference is simply
}
. Where 3 or more subdomains meet, the preferences need

to be explicitly calculated and if more than one subdomain attains the maximum gain, a pseudo-random
choice is made (see below).

Duplication. For either algorithm, the swapping of vertices between two subdomains is an inherently non-
parallel operation and hence there are some difficulties in arriving at efficient parallel versions, [17]. For our
parallel implementation we overcome some of the problems by replicating the transfer decision process on
both sides of each subdomain interface. Thus a processor < examines both its border and halo vertices to
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decide not only which of its vertices should migrate to neighbour
}
, but also which vertices should transfer

from
}

to < . It does not use the information about transfers of vertices that it does not own, but the dupli-
cation of this transfer scheme allows any pair of processors to arrive independently at the same optimisation.
Although this may be computationally inefficient (because the workload is doubled) it avoids both the need
for a ‘hand-shaking’ communication for each pair of vertices and also for pairwise exchanges between neigh-
bouring processors.

3.4 A unified optimisation and load-balancing algorithm

We combine the load-balancing and optimisation as follows.

At each iteration a processor, < , calculates the preference and gain of its own border vertices and a halo up-
date is carried out to inform the neighbouring processors. Next, for each � : - �mx interface with a neighbouring
processor

}
, it calculates the flow across the edge

� � : 
 �mx � and creates a list of border vertices � =LF : which
have preference � � � ����}

and a list of halo vertices
� =tU : which have preference � �3�#��� < . Vertices are then

iteratively selected from either list so as to firstly satisfy the flow as far as possible and secondly maximise
the gain as much as possible. The algorithm for this inner loop is shown in Figure 2. The whole optimisation
terminates when the load is balanced and no further gains in cost are possible (although simple checks need
to be included to trap cyclic behaviour).

optimum flow = flow
optimum gain = 0
while (untested border vertices) {
find vertex to minimise |flow| & maximise gain
gain = gain + vertex gain
flow = flow +/- vertex weight
adjust adjacent vertex gains
if (|flow| < |optimum flow|
|| (|flow| == |optimum flow|

&& gain > optimum gain)) {
optimum flow = flow
optimum gain = gain
optimum migration = vertices tested so far
}

}

Figure 2: The unified optimisation and load-balancing algorithm

Suppose, for example, that the required flow from � : to �mx is ¡ , a positive integer. The processor (on either
side of the interface) searches the list of vertices owned by < for a vertex, � , which minimises the absolute
value of � ��� b ¡ (i.e. if possible we choose a vertex with weight ¡ , or if ¡ is larger than all the vertex weights
we look for the largest weight, or if smaller we look for the smallest weight). In the case of several appro-
priate vertices we choose the one with the highest gain, and, in the case of another tie, a pseudo-random
choice is made (see below). If ¡ ���

both lists are searched (with the same criterion – in this case we want to
minimise � �#� ). Having selected a vertex � , it is removed from its list and the flow, total gain and the gains of
all vertices adjacent to � are adjusted as if � had migrated (as in the Kernighan-Lin algorithm). If the current
flow is smaller in magnitude than the optimal flow or, if equal in magnitude, if the gain is greater than the
optimal gain then the optimal migration is recorded to be all vertices that have been selected so far and the
optimal flow and gains are updated. The algorithm terminates when a list that is to be searched is exhausted
and then vertices included in the optimal schedule are migrated.

Example flow and gain evolution is shown in Figure 3 and demonstrate how these quantities can vary as
each vertex is selected and how the algorithm essentially has three (indistinct) phases. The first phase, cor-
responding to the left hand side of the chart, occurs when the required flow is greater than the total weight
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Figure 3: Example flow and gain

of all the vertices in the appropriate border and in this case no searching is necessary as all will be migrated.
The third phase, corresponding to the left hand side of the chart, is when the load is balanced and the algo-
rithm is just looking to optimise the gain while the flow oscillates around zero (much in the same way that
the FM algorithm works). The middle phase is a mixture of balancing and optimisation. At the end of the
iterations, optimal flow occurs at all points where the flow is zero (or as small in magnitude as possible if
the border weight is not large enough) and the optimal migration is then the point of optimal flow where
the gain is maximised.

There are a couple of implementation details to be noted about this method. Firstly, whenever a subdomain
makes a decision about sorting (or randomly selecting the starting list) it is essential that its neighbour makes
the same choice; otherwise they might reach different migration schemes and increase the cut-edge weight.
Thus when searching, if two vertices have the same weight and gain, they are sorted on some other factor
(and for this reason it is of no benefit to use the bucket sort of Fiduccia and Mattheyses). For simplicity we
use the vertex index although we have also tried using a random number generator (seeded with the vertex
index) without any great change in behaviour. For a similar reason, when adjusting the gain of vertices in F[:
on the �': - � x interface, we do not adjust those vertices which have a different preference

�
as this could have

a knock-on effect on the migration scheme for �#: which would not be seen by subdomains � x and ��� . Also
for adjusting the gain of vertices in the halo U�: , note that processor < needs to know about edges between
vertices within the halo.

4 Experimental results

The software tool written at Greenwich and which we have used to test the new optimisation technique is
known as JOSTLE. For the purposes of this paper it is run in two configurations, dynamic and static. The
dynamic configuration reads in an existing partition and uses the algorithm described here to balance and
optimise the partition. The static version employs the greedy algorithm, [7], to generate an initial partition
and, in addition to the algorithm described here, uses an optimisation technique, fully described in [23],
which attempts to minimise the ‘surface energy’ of the subdomains.

In order to demonstrate the quality of the partitions we have compared the method with two of the most
popular partitioning algorithms, Greedy and Multilevel Recursive Spectral Bisection (MRSB). The Greedy
algorithm, [7], is actually performed as part of the JOSTLE code. It is fast but not particularly good at min-
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imising either or � � E � . MRSB, on the other hand, is a highly sophisticated method, good at minimising � � E �
but suffering from relatively high runtimes, [2]. The MRSB code was made available to us by one of its au-
thors, Horst Simon, and run unchanged with a contraction thresholds of 100.

The test meshes have been taken from an example contained in the DIME (distributed irregular mesh en-
vironment) software package, [26], freely available by anonymous ftp from ftp.ccsf.caltech.edu in
dime/dime.src.tar.Z. The particular application solves Laplace’s equation with Dirichelet boundary
conditions on a square domain with an S-shaped hole and using a triangular finite element discretisation.
The problem is repeatedly solved by Jacobi iteration, refined based on this solution and then load-balanced.
A very similar set of meshes has previously been used for testing mesh partitioning algorithms and details
about the solver, the domain and DIME can be found in [27].

The following experiments were carried out on a Sun 20 with a 75 MHz CPU and 128 Mbytes of memory.
The code runs in parallel using MPI for message passing but at the time of writing the authors are only able
to test it on ethernet connected workstations and parallel performance results are therefore deferred to [22].
We use three metrics to measure the performance of the algorithms – the total weight of cut edges, � �[E � , the
execution time in seconds of each algorithm, ¢ �¤£¥� , and the percentage of vertices which need to be migrated.

imbalance % � � E �
mesh V initial final initial final migrated %

1 1552 30.93 0.00 133 150 13.72
2 2134 36.57 0.00 167 179 14.76
3 2886 19.34 0.00 206 206 8.00
4 3917 10.61 0.00 248 248 6.36

Table 2: The dynamic results over the 4 meshes

Table 2 shows the results for the dynamic technique on the series of meshes partitioned into 16 subdomains.
The initial mesh, mesh 0, is partitioned with the static version of JOSTLE. Subsequently at each refinement,
the existing partition is interpolated onto the new mesh using the techniques described in [25] (essentially,
new elements are owned by the processor which owns their parent). The new partition is then optimised
and balanced with the dynamic version of JOSTLE. The third and fourth columns of the table give the per-
centage imbalance before and after partitioning and show that it is always driven down to zero (although
the fact that the load is discrete rather than continuous may prevent it from reaching zero). The fifth and
sixth columns show the weight of cut edges, � � E � , before and after repartitioning. In two cases there has
been a slight increase and this is because suboptimal migration has been made to satisfy the load-balancing
requirements. Finally, the last column shows the percentage of vertices that have been migrated by the par-
titioner.

method � � E � ¢ �¤£¥� migrated
JOSTLE (dynamic) 196 0.04 10.71%
JOSTLE (static) 165 0.87 89.21%
MRSB 158 1.93 89.96%
GREEDY 273 0.02 88.14%

Table 3: Average results over the 4 meshes: average
�

= 2622, average
�

= 3812

Table 3 compares the four different partitioning methods with the results averaged over the 4 meshes. The
three high quality partitioners all give similar values for � �|E � with MRSB giving marginally the best results.
The dynamic algorithm provides slightly lower quality partitions than the other two. In terms of execution
time, the dynamic method is far faster than MRSB (˜50 times), considerably faster than static JOSTLE (˜20
times) and about twice as slow as the GREEDY algorithm although providing a far better partition. It is the
final column which is perhaps the most telling though. Because the static partitioners take no account of the
existing distribution they result in a vast amount of data migration. The dynamic algorithm, on the other
hand, migrates very few of the vertices despite balancing from an average initial imbalance of 24.36%.
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It is worth remarking here that the dynamic algorithm can provide higher quality partitions when used in
conjunction with a graph reduction/multilevel technique which gives it a more global perspective by con-
tracting the graph down to a much smaller size. However, there is a trade off between the quality of the
partition and the amount of data needed to be migrated to obtain it and illustrative results are to be found
in [22].

5 Conclusion

We have described a new method for optimising and load-balancing graph partitions with a specific focus
on its application to the dynamic mapping of unstructured meshes onto parallel computers. In this context
the graph-partitioning task can be very efficiently addressed by reoptimising the existing partition, rather
than starting the partitioning from afresh. For the experiments reported in this paper, the procedures are an
order of magnitude faster than static techniques, provide partitions of similar quality and, in comparison,
involve the migration of a fraction of the data.
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