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Abstract

The Parallel Partition Method for tridiagonal systems is described. It is

noted that, in the local reduction phase, the inherent parallelism is not exploited

to the full and so a Two-Way Parallel Partition Method is introduced. This

new algorithm results in a reduced system of order P=2� 1 compared to P � 1

previously and in particular for 4 processors, a much lower arithmetic count.

Both versions are tested and the results compared.

1 Introduction

1.1 The Parallel Solution of Tridiagonal Systems

Many nearest neighbour problems (for example those involving spatial �nite di�er-

ence approximations) have at their heart a tridiagonal matrix. Their sparsity pattern

suggests that, for large values of n, such systems are ideal candidates for parallelisa-

tion. However, the commonmethods for solving tridiagonal systems, such as Gaussian

elimination or matrix decomposition, tend to be inherently sequential in nature and

as a result, this topic was one of the earliest subjects investigated in the �eld of par-

allel linear algebra. Amongst the �rst such schemes were those introduced by Stone

in the early seventies, [10] & [11] employing a recursive doubling algorithm. An-

other method, odd-even cyclic reduction, was developed by Golub and stabilised by

Buneman, [2] & [3], and since its �rst introduction for symmetric constant coe�cient

matrices it has been extended to general non-symmetric tridiagonal systems, [12].

Figure 1: Matrix transformation for the partition algorithm

In 1981 Wang, [17], introduced what he called a new (partition) method. This

has also been referred to as the spike algorithm as it proceeds by a completely par-

allel local Gaussian elimination to transform the system from a tridiagonal one into
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a diagonal one with spikes or �ll-ins at the inter-processor boundaries. With one

communication at the end of this local reduction phase, the result is a global order

P � 1 tridiagonal system in terms of the boundary variables (the unknowns at the

inter-processor boundaries). Figure 1 shows an example matrix before and after the

elimination phase where the dotted lines represent the inter-processor boundaries and

the bold � symbols are the coe�cients of the O(P � 1) system. This reduced system

can then be solved globally with, for example, cyclic reduction or two-way Gaussian

elimination and �nally the internal values calculated each as a linear combination of

up to two boundary variables.

A variant, the method of Sameh et al., [9] & [6], uses no communication in the

reduction phase but results in a pentadiagonal matrix. However, in a generalisation

to narrow banded systems, Johnsson has shown, [4], that the extra communication is

valuable and preserves positive de�niteness and a form of diagonal dominance (albeit

not in the classical sense { see [16] for further discussion).

The majority of these partition algorithms have a common structure and can be

split into three distinct phases which shall henceforth be referred to as:{

1. The reduction phase { variables are eliminated to reduce the system to O(P ),

with an associated matrix usually known as the reduced matrix.

2. The reduced system is solved.

3. The back-substitution phase { the full solution is constructed from the variables

of the reduced system.

Of these, phases 1 and 3 can be carried out almost completely in parallel with no inter-

processor communication. Phase 2 necessitates solving a system with one unknown

per processor and is inherently a sequential operation. Since di�erent algorithms can

be used for phases 1 and 2 (phase 3 being determined by these) such schemes are best

described as [L][G] algorithms where [L] denotes the local algorithm of phase 1 and

[G] the global phase 2.

The competing methods and their implementation on di�erent architectures have

all been comprehensively reviewed by Johnsson in [5]. He shows that a hybridGECR

(Gaussian Elimination locally, Cyclic Reduction globally) algorithm has similar arith-

metic complexity to the full cyclic reduction algorithm and that the best method

therefore depends on communication considerations.

This report gives a description of the partition method and then goes on to de-

velop a new and more e�cient version. Operation counts are established for both to
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demonstrate the e�ciency and �nally a comparison of timings for the two methods

is given.

1.2 The Algorithms

Three algorithms are presented in this paper, a two-way matrix factorisation algo-

rithm, the Partition Algorithm, and the new Two-Way Partition Algorithm (sections

2-4 respectively). Each will be derived for the solution of the order n tridiagonal

system
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For the purposes of this paper it is assumed that A is diagonally dominant and hence

that the LU matrix decomposition algorithm can be used to factorise any submatrix

of A. The techniques presented should, however, work for A symmetric & positive

de�nite and a Cholesky type decomposition. Either matrix type is very important;

for more general matrices a pivoting strategy may be necessary and on a distributed

memory network this can add such a large communication overhead as to completely

kill any speed-up achieved by parallel solution.

For the global solve of the reduced matrix in phase 2 of the partition algorithm

several techniques, such as two-way Gaussian elimination, cyclic reduction and re-

cursive doubling, are possible. However, the characteristics of the machine used for

testing (see section 5.1.1 and [15, section 3.1.2] & [5, theorem 5.2]), together with

the possibilities for reuse of code suggested the use of two-way matrix factorisation

as described in section 2. The operation counts are based on this choice.

Throughout, the assumption is made that the n equations are distributed on a

chain of P processors. Secondly it is assumed that n � P so that each node has

m = n=P unknowns assigned to it. Superscripts are used to denote the processor a

particular value is stored on and subscripts the position in a vector.

1.3 Operation Counts

For each algorithm an operation count is given and follows the generally accepted

approximations for making theoretical timing estimations, see for example [5]. The

machine dependent parameters are de�ned as:{

3



t

a

def

= time for one oating point operation; +, �, � or �

s

c

def

= start-up time for each inter-processor communication

t

c

def

= time to transmit one number.

For matrices with multiple right hand sides, or which remain constant throughout

many iterations, much work can be saved by generating a matrix decomposition once

and storing it. In the following sections the square brackets [ & ] denote operations

which, for constant matrices, need only be carried out once, rather than at every

iteration. Alternatively, for multiple right hand sides, the costs that are not in square

brackets are those required for each right hand side.

2 A Two-Way Matrix Factorisation Algorithm

In general, the classical algorithms for the solution of tridiagonal systems (such as

Gaussian elimination and matrix decomposition methods) employ a forward sweep

down through the variables followed by a backward sweep up. Whilst apparently

sequential in nature, they actually have an inherent parallel degree of two, [8, page

22]. That is to say, two processes can be applied concurrently with no overlap of

work.

As an example, the system could be partitioned into a upper and lower half with

each assigned to a processor. Then the upper processor can sweep down through

the upper partition whilst the lower processor sweeps up through its partition. Af-

ter an exchange of information, simultaneous back-substitution on each processor

commences outwards from the centre. Alternatively consider a tridiagonal matrix

distributed over a chain of processors, with each processor holding one variable. In

this case the factorisation can sweep in along the chain from both ends and then out

from the centre.

This is not a new idea and, for example, two-sided Gaussian elimination was intro-

duced by Babuska, [1, section 5], and a technique referred to as twisted factorisation

described in [14]. However since this method is central to the Two-Way Partition

Algorithm described below, full details of the two-way factorisation process are given.

Henceforth this algorithm will be known as Two-Way (TW ) Decomposition and for

convenience, these letters will be also used to refer to the two factorisation matrices.
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2.1 The Method

Consider the tridiagonal system (1) and let q = n=2. Echoing the LU decomposition

algorithm, A will be factorised into the matrix product TW , where

T =

2
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:

Thus, in the upper partition,

u

1

= b

1

; v

1

= c

1

=u

1

;

u

i

= b

i

� a

i

v

i�1

; v

i

= c

i

=u

i

; i = 2; . . . ; q;

and similarly in the lower partition,

u

n

= b

n

; v

n

= a

n

=u

n

;

u

i

= b

i

� c

i

v

i+1

; v

i

= a

i

=u

i

; i = n� 1; . . . ; q + 1:

Now let

Wx = z; (2)

so that

Tz = d:

Then in the upper & lower partitions respectively,

z

1

= d

1

=u

1

; z

i

= (d

i

� a

i

z

i�1

)=u

i

; i = 2; . . . ; q;

z

n

= d

n

=u

n

; z

i

= (d

i

� c

i

z

i+1

)=u

i

; i = n� 1; . . . ; q + 1:
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From (2) the two central equations are

x

q

+ v

q

x

q+1

= z

q

;

v

q+1

x

q

+ x

q+1

= z

q+1

;

and to solve these the partitions must exchange information; z

q

[and v

q

for time

dependent matrices] must be passed to the lower partition and z

q+1

[v

q+1

] passed to

the upper partition. Then x

q

; x

q+1

can be calculated from

(1� v

q

v

q+1

)x

q

= z

q

� v

q

z

q+1

;

(1� v

q

v

q+1

)x

q+1

= z

q+1

� v

q+1

z

q

:

(3)

Finally, back-substitution gives

x

i

= z

i

� v

i

x

i+1

; i = q � 1; . . . ; 1;

x

i

= z

i

� v

i

x

i�1

; i = q + 2; . . . ; n:

2.2 Stability of the algorithm

Suppose A is strictly diagonally dominant. Then it is well known that A is non-

singular and the matrix can be factorised into an LU product, see for example [18,

pages 122-124]. In addition this factorisation is strongly stable. The TW algorithm

essentially comprises of two LU decompositions and thus is well de�ned in this event.

The only possible problem arises in the division by (1 � v

q

v

q+1

) in equation (3).

However, a simple check shows that jv

i

j < 1 for all i and hence the decomposition is

stable. A proof of this property is presented in [15, section 3.3].

2.3 Operation Count

The arithmetic costs of this algorithm are:{

� for the decomposition [3q � 2]

� for the inwards sweep 3q � 2

� for the central calculation 3 + [2]

� for the outwards sweep 2q � 2

2.3.1 Two Processors

The communication for a two processor algorithm requires 1 communication start-up

(assuming the processors can exchange data simultaneously) and the transmission of

1 + [1] numbers.
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The total cost for two processors is therefore:{

f5q � 1 + [3q]gt

a

+ 1s

c

+ f1 + [1]gt

c

: (4)

If communication costs are small and n large, this is almost a linear speed-up over

f5n� 4 + [3n� 3]gt

a

, the cost of the sequential LU algorithm.

2.3.2 n Processors

If instead there are n processors each assigned to one of the variables then the com-

munication cost is modi�ed slightly. There are n� 1 communication start-ups; q� 1

each for both inward and outward sweeps plus one extra for the central exchange.

For each communication in the inward sweep and central exchange 1 + [1] numbers

(z

i

& [v

i

]) are transmitted and in the outward sweep 1 number (x

i

) is transmitted.

The total cost for n processors is therefore:{

f5q � 1 + [3q]gt

a

+ f2q � 1gs

c

+ f2q � 1 + [q]gt

c

: (5)

3 The Partition Algorithm

Consider the solution of (1) on an array of P processors. The system can be dis-

tributed consecutively across the processors by partitioning it into P tridiagonal sub-

systems fS

i

: i = 1; . . . ; Pg of order m interspersed with P � 1 boundary equations

fE

i

: i = 1; . . . ; P � 1g. Thus m is de�ned by the relation n = mP + P � 1 and for

simplicity it is assumed that n and P are such that m is an integer.

In this way processor i is assigned the (relabelled) tridiagonal system

a

i

1

e

1

x

i�1

+ T

i

x

i

+ c

i

m

e

m

x

i

= d

i

(S

i

)

where T

i

is a submatrix of A, e

1

& e

m

denote the standard unit basis vectors with

[e

j

]

k

= �

jk

and a

1

1

= c

P

m

= 0. The unknowns x

i�1

and x

i

denote the boundary variables

and each of the boundary equations

a

i

x

i

m

+ b

i

x

i

+ c

i

x

i+1

1

= d

i

(E

i

)

lies between the subsystems (S

i

) and (S

i+1

). The optimal assignment of (E

i

) to a

particular processor (to i or i+ 1 for example) depends on the algorithm used in the

phase 2 of the method.

7



3.1 The Method

As described above the method has three phases: a local reduction phase to eliminate

o�-diagonals in the subsystems (phase 1), the global solution of the reduced matrix

for the boundary variables (phase 2), and (phase 3) the local back-substitution for

the subsystem variables.

3.1.1 Phase 1

The (S

i

) are rearranged to give x

i

as a linear combination of the two bounding

variables x

i�1

and x

i

. Thus each processor `inverts' the matrix T

i

(for example via

LU decomposition or Gaussian elimination) and uses it in (S

i

) to obtain

x

i

= w

i

� r

i

x

i�1

� s

i

x

i

(S

i

)

0

where

w

i

def

= (T

i

)

�1

d

i

;

r

i

def

= a

i

1

(T

i

)

�1

e

1

;

s

i

def

= c

i

m

(T

i

)

�1

e

m

:

The values for x

i

1

, x

i+1

1

, x

i�1

m

and x

i

m

given by (S

i

)

0

can now be substituted into

the boundary equations to yield

�a

i

r

i

m

x

i�1

+ (b

i

� a

i

s

i

m

� c

i

r

i+1

1

)x

i

� c

i

s

i+1

1

x

i+1

= d

i

� a

i

w

i

m

� c

i

w
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1
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i

)

0

and this can then be rewritten as the reduced O(P � 1) tridiagonal system
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The coe�cients are given by:{

~a

i

= �a

i

r

i

m

i = 2; . . . ; P � 1

~

b

i

= b

i

� a

i

s

i

m

� c

i

r

i+1

1

i = 1; . . . ; P � 1

~c

i

= �c

i

s

i+1

1

i = 1; . . . ; P � 2

~

d

i

= d

i

� a

i

w

i

m

� c

i

w

i+1

1

i = 1; . . . ; P � 1:
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3.1.2 Phase 2

The second phase is the solution of this reduced system for the boundary variables.

Again this can be accomplished in a number of ways, but, for the purposes of both

the operation count and the results, the two-way matrix factorisation presented in

section 2 is employed.

3.1.3 Phase 3

When each processor has the value of the two boundary variables of its local tridi-

agonal system it can then substitute them into (S

i

)

0

to construct the solution. Thus

the third phase can start locally as soon as the sweep has passed by.

3.2 Operation Count

Assuming LU decomposition is used, the arithmetic costs of phases 1 & 3 are as

follows:-

Calculation Count Notes

Phase1 [L

i

; U

i

] [3(m� 1)]

w

i

5m� 4

[r

i

] [4m� 3] (1; 2)

[s

i

] [m� 1] (1; 2)

Phase3 x

i

4m (2)

Notes:{

(1) Since T

i

r

i

= a

i

1

e

1

and T

i

s

i

= c

i

m

e

m

, either the forward or the backward sub-

stitution (depending on the implementation of the LU decomposition) involves

signi�cantly fewer arithmetic operations than for a full right hand side such as

w

i

.

(2) Processor 1 need not calculate r

1

and processor P need not calculate s

P

, so

the cost of phase 3 for these two processors is just 2m. This may result in

a saving for the algorithm since, being at either end of the chain for phase

2, they are the last to receive the boundary variables. However the saving is

di�cult to generalise as it depends upon the size of m and on the relative costs

of communication to arithmetic.

Thus the total cost of vector operations in phases 1 and 3 is

f9m� 4 + [8m� 7]gt

a

: (6)
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The calculation of the reduced matrix R and right hand side

~

d
requires 4 + [6]

arithmetic operations per processor plus the transmission of 1 + [2] numbers. No

communication start-ups are required as they can be included in the �rst step of

phase 2. This adds the cost

f4 + [6]gt

a

+ f1 + [2]gt

c

: (7)

For phase 2, it can be seen from (5) that, writing q = (P � 1)=2, the cost can be

expressed as

f5q + 2 + [3q]gt

a

+ f2qgs

c

+ f2q + [q]gt

c

: (8)

The slight modi�cation from (5) arises from solving 2q equations on 2q�1 processors.

Thus, from (6)-(8), the complete cost, in terms of m and q, is

f9m+ 5q + 2 + [8m+ 3q � 1]gt

a

+ f2q � 1gs

c

+ f2q + [q + 2]gt

c

: (9)

3.3 Summary

The algorithm given in this section shall henceforth be referred to as LUTW ; local

LU decomposition, global TW decomposition. It is presented both to demonstrate

this common strain of solver and to use as a building block to demonstrate the new

version. In terms of n and P , the operation count can be summarised as P � 1

communications with 17n=P +4P arithmetic operations for time-dependent matrices

and 9n=P + 5P=2 operations for constant ones.

4 The Two-Way Partition Algorithm

This method combines the algorithms of sections 2 & 3 to obtain a more e�cient

algorithm for solving a tridiagonal system on an array of P processors.

As a starting point consider the LUTW algorithm for P=2 processors and note

that the local LU decomposition of phase 1 does not exploit the fullest parallelism

possible. As seen in section 2 matrix factorisation of this type has a parallel degree of

2. Thus it is possible to assign each tridiagonal subsystem (S

i

) to two processors and

employ the TW algorithm for the local reduction. As a result a boundary equation is

only required at every other inter-processor boundary and hence the reduced matrix

is of order P=2 � 1 rather than P � 1!

A number of advantages manifest themselves:{

(i) It is immediate that the operation count in (9) is reduced. If n � P and P is

small the gain is minimal, however, it can be seen that the algorithm LUTW

is non optimal.
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(ii) If implemented on a chain of processors with additional next-nearest neighbour

connections, the number of communication start-ups can be reduced to P=2.

This is possibly a signi�cant saving.

(iii) Algorithms of the form LUTW have often been demonstrated, see for example

[5], [13] or [17], with a diagram showing a 4 processor version similar to �gure 1

(page 1). These will usually have 3 (or sometimes 4) spikes or boundary �ll-ins.

However, using the TW algorithm for the �rst phase results in only one �ll-in {

see �gure 2. This has a consequence of reducing the operation count for phases

1 & 3 from 17n=P down to 14n=P [9n=P down to 7n=P for constant matrices]

and is a signi�cant saving for 3 or 4 processor implementations.

Figure 2: Two-way reduction for phase 1 using 4 processors

It is also perhaps a more natural algorithm than LUTW since its restriction to

two processors just results in the TW algorithm with an approximate arithmetic op-

eration count of 4n, whereas the restriction of LUTW to two processors still results

in boundary �ll-ins and a count of 7n. This together with (iii) above makes it espe-

cially attractive for 4 or less processors, whilst (i) and in particular (ii) show general

improvements.

4.1 The Method

Again consider the solution of the tridiagonal system (1) on an array of P processors.

For simplicity assume that P is even and that q = P=2. This time the system

is distributed by dividing it up into q order 2m tridiagonal subsystems fS

i

: i =

2; 4; 6; . . . ; Pg interspersed with q�1 boundary equations fE

i

: i = 2; 4; 6; . . . ; P �2g.

Here m, the size of the tridiagonal block stored on each processor, is de�ned by the

relation n = 2mq + q � 1. The subsystems are each assigned to two processors, so

that each pair of processors i� 1 & i store the system

a

i

1

e

1

x

i�1

+ T

i

x

i

+ c

i

2m

e

2m

x

i

= d

i

(S

i

)
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which is distributed by assigning the �rst m equations to processor i � 1 and the

remaining m to processor i. Again the unknowns x

i�1

and x

i

denote the boundary

variables and the boundary equation

a

i

x

i

2m

+ b

i

x

i

+ c

i

x

i+2

1

= d

i

(E

i

)

lies in between the subsystems (S

i

) and (S

i+2

).

Phases 1 & 3 proceed in exactly the same way as in section 3.1, the only di�erence

being that the calculation of w

i

, r

i

and s

i

necessitates each pair of processors to

use a TW factorisation with one communication exchange. Details of the matrix

transformations and �ll-in patterns of phase 1 are shown in �gure 3. This shows the

method implemented with two-way Gaussian elimination rather than decomposition

but the concept is identical. The �rst matrix shows the non-zeroes after the inward

sweep and just before the communication exchange and the second shows them after

the outward sweep. The inter-processor boundaries are marked with dotted lines.

Figure 3: Matrix transformations and �ll-ins in phase 1 of algorithm TWTW

4.1.1 Phase 2

The reduced system is solved for the boundary variables, again by applying a TW

decomposition to R. Since the order of the reduced system is q � 1 (= P=2 � 1),

the sweeps through the processor chain will employ half of the processors solely as

communication relays. For machines with �xed communication channels this may

be the only possible implementation, but, if direct communication with next nearest

neighbouring processors is possible, a further enhancement can be added. In this case,

12



if each boundary equation is stored on both sides of the inter-processor boundaries, the

network can be divided into two independent parts, the even numbered processors,

f2,4,. . . ,P�2g, and the odd numbered processors, f3,5,. . . ,P�1g, each with their own

copy of the reduced matrix. Utilising the next nearest neighbour connections, both

odd and even systems can then be solved simultaneously (with a TW decomposition)

for a cost of approximately q communications start-ups, a considerable saving. Note

that, as the outward sweeps �nish, the values of x

2

and x

P�2

must be transmitted to

processors 1 and P respectively to enable them to commence phase 3.

4.2 Stability of the algorithm

Suppose A is strictly diagonally dominant. Then, since the TW algorithm is known

to be stable, section 2.2, the only question is whether the reduced system inherits

diagonal dominance from the full system. For the classical partition method, it is

shown in [16] that this is indeed the case, regardless of the local reduction technique.

Therefore, since a system reduced by local TW factorisation on P processors is identi-

cal to the reduced system after local LU factorisation on P=2 processors, it is readily

seen that diagonal dominance is retained.

4.3 Odd Numbers of Processors

For P 6= 2Q (integer valued Q) it is, of course, not possible to pair up all proces-

sors for local TW factorisation. In this case one of the processors must employ LU

decomposition whilst the rest use the two-way algorithm. This results in a reduced

system of size (P � 1)=2. Implementation is not di�cult as the TW code can be

easily modi�ed to do LU decomposition.

4.4 Operation Count

The arithmetic costs of phases 1 & 3 are as follows:-

Calculation Count Notes

Phase1 [T

i

;W

i

] [3m]

w

i

5m� 1

[r

i

] [4m� 2] (1)

[s

i

] [m] (1)

Phase3 x

i

4m (2)

Notes:{
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(1) For processor i � 1 the costs of r

i

and s

i

are 4m � 2 and m respectively. For

processor i the costs are reversed.

(2) Again for processors 1 and P the cost of phase 3 is just 2m.

In addition in phase 1 there is the cost of one communication exchange of 1 + [2]

numbers (1 + [1] for the calculation of w

i

plus an extra [1] for one of the �ll-ins).

Thus the total cost of phases 1 and 3 is

f9m� 1 + [8m� 2]gt

a

+ 1s

c

+ f1 + [2]gt

c

: (10)

The calculation of the reduced matrix R and right hand side

~

d
again requires

4 + [6] arithmetic operations per processor plus the transmission of 1 + [2] numbers.

A total of

f4 + [6]gt

a

+ 1s

c

+ f1 + [2]gt

c

: (11)

For convenience in cost estimation for phase 2 assume that q is odd, so that the

reduced system order q�1 is even. Then from (5) and writing l = (q�1)=2 = (P�2)=4

the cost can be expressed as

f5l � 1 + [3l]gt

a

+ f2l � 1gs

c

+ f2l � 1 + [l]gt

c

: (12)

Finally at the end of phase 2, x

2

must be transmitted to processor 1 and x

P�2

to

processor P , a cost of

1s

c

+ 1t

c

: (13)

Thus, from sums (10)-(13), the complete cost, in terms of m and l, is

f9m+ 5l + 2 + [8m+ 3l + 4]gt

a

+ f2l + 2gs

c

+ f2l + 2 + [l+ 4]gt

c

: (14)

4.5 Summary

Henceforth, using familiar taxonomy, this algorithm shall be referred to as TWTW

{ Two-Way decomposition locally, Two-Way decomposition globally. The operation

counts can be summarised as P=2 + 1 communications with 17n=P + 2P arithmetic

operations for time-dependent matrices or 9n=P +5P=4 operations for constant ones.

For 3 and 4 processor implementations this reduces to approximately 14n=P and

7n=P respectively, a substantial saving on the LUTW algorithm.
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5 Results and Conclusions

Both algorithms have been implemented and timed extensively. Figure 4a (page 19)

shows the cost in seconds for the solution of a system of size n = 50; 000 on varying

numbers of processors. The timings presented here are for 4 to 32 processors in

increments of 4. As a comparison, the cost of solving the same system using LU

decomposition on a single processor is 1.886976 seconds which shows a maximum

speed-up of 14.52 for TWTW on 32 processors. Since the arithmetic costs for TWTW

(or any other partition method) are of the order 17n=P compared to 8n for LU , the

maximumpossible speed-up, neglecting any communication overhead, is about 8P=17

or 15.06 for 32 processors.

5.1 The Results

The following results can be subdivided into di�erent cases dependent on P the

number of processors. For 2 processors it is clear that the algorithm of choice is

simply the TW decomposition, section 2, with no boundary variables. Since this does

not fall into the category of an [L][G] (local-global) method no results are included

here. The 4 processor case does have boundary variables but is somewhat di�erent

to those with P > 4, section 4.5 and so these results are treated separately.

5.1.1 Hardware: The Meiko Computing Surface

The experiments were carried out on a Meiko Computing Surface consisting of 32

T800 transputers. This is a distributed memory MIMD machine with a con�gurable

network. The code was written in Meiko C with the message passing implemented

using CSTools, [7]. Each processor has an on-board memory of 4MB and this limited

the size of system that could be solved to approximately 23,500 equations per pro-

cessor (i.e. 750,000 variables for 32 processors). The sequential LU code has much

smaller memory requirements and runs with up to 62,000 equations. This latter mem-

ory limit made true speed-up �gures impossible for systems of a larger size and so

the results have been extrapolated to get approximate speed-up �gures.

5.1.2 4 Processors

The operation counts show, sections 3.3 & 4.5, that the 4 processor TWTW algorithm

has a lower arithmetic cost than LUTW (14n=P compared to 17n=P ) and this is

clearly borne out by the actual timings. Figure 4b (page 19) shows the time for one

solve for a number of di�erent sizes of system and it is clear that the n dependence
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is smaller for TWTW . Figures 5a & 5b show the percentage reduction in time for

TWTW over LUTW (i.e. 100 � (t

LUTW

� t

TWTW

)=t

LUTW

) and speed-up over the 1

processor LU algorithm respectively and for greater clarity these are drawn with n

on a log

10

scale.

5.1.3 More than 4 Processors

For P > 4 the arithmetic costs are approximately equivalent and it is the communica-

tion costs that are reduced by the TWTW algorithm. Figure 6a (page 19) shows the

percentage reduction in time for TWTW over LUTW for 32 processors and varying

sizes of system (again n is drawn on a log

10

scale). Of course as the size of system

increases, the arithmetical costs start to dominate and swamp any performance in-

crease gained by communication. As a result, in all the tests, the percentage reduction

in time appeared to reach an asymptotic limit of between 2-4% as the system size

approached the maximum of 23,500 unknowns per processor.

For smaller systems the gain in using TWTW over LUTW can be quite substan-

tial, but this must be moderated by the overall e�ciency of the method. Figure 6b

(page 19) show the corresponding speed-ups for the percentage di�erences shown in

�gure 6a. For example, if n = 10; 000 (log

10

n = 4) TWTW is 17.7% faster than

LUTW . However, for this system size TWTW is only 11.7 times faster than the

sequential LU algorithm.

5.2 Conclusions

The testing has revealed the TWTW algorithm to be generally more e�cient than

LUTW . This is particularly noticeable for 4 or fewer processors where the algorithm

is clearly seen to reduce the n dependence in the operation count. It is no more

di�cult to implement than LUTW and the two experimental versions tested here

used much of the same code. For large numbers of processors, the scalability issues

of the algorithm lie in the global solve of the reduced system and hence the two-way

partition method can be no worse than the original partition method.

Future work in this area might involve the construction of an analogous algorithm

for symmetric, positive-de�nite systems with a Cholesky type matrix decomposition.

In addition, further testing on di�erent machines is desirable and possibly the intro-

duction of a di�erent algorithm such as Cyclic Reduction for the global solve.
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Figure 4: Timings results for (a) n=50,000 & (b) P=4
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Figure 5: Results for 4 processors
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Figure 6: Results for 32 processors
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