
University of Leeds

SCHOOL OF COMPUTER STUDIES

RESEARCH REPORT SERIES

Report 92.32

Dynamic Load Balancing for PDE Solvers

on Adaptive Unstructured Meshes

by

Chris Walshaw & Martin Berzins

Division of Computer Science

December 1992



Abstract

Modern PDE solvers written for time-dependent problems increasingly em-

ploy adaptive unstructured meshes (see Flaherty et al. [4]) in order to both

increase e�ciency and control the numerical error. If a distributed memory

parallel computer is to be used, there arises the signi�cant problem of dividing

up the domain equally amongst the processors whilst minimising the inter-

subdomain dependencies. A number of graph based algorithms have recently

been proposed for steady state calculations, for example [6] & [11]. This paper

considers an extension to such methods which renders them more suitable for

time-dependent problems in which the mesh may be changed frequently.

1 Introduction

Modern PDE solvers for time-dependent applications are currently being written so

as to obtain accurate solutions to real-life problems with the solution process as

automatic as possible. The use of an unstructured mesh allows the code to cater for

completely general geometries and hence a wide range of problems in both two and

three space dimensions. In addition, such software employs adaptive methods in both

space and and time in order to attempt to control the numerical error.

This desire to control the spatial error means that the position and density of the

spatial mesh points may vary dramatically over the course of an integration. This

re�nement and coarsening is undertaken automatically, [1] & [12]. As an example,

taken from the Burger's equation example discussed in Section 5.4, �gure 4 (page 17)

shows the initial mesh, �gure 5 (page 18) an intermediate mesh and �gure 6 (same

page) the �nal one after 317 re�nement phases.

Parallel versions of such codes face the problem of distributing the mesh. For

optimal performance the load should be evenly balanced and the communication

cost reduced as much as possible by minimising inter-processor dependencies. It

is well known that this mapping problem is NP hard, [6], and so heuristics must be

employed to obtain a usable algorithm. In addition, for time-dependent problems, the

unstructured mesh may be modi�ed every few time-steps and so the load balancing

must have a low cost relative to that of the solution algorithm in between remeshing.

A number of good load-balancing algorithms (see for example [11] and [13]) are

based on partitioning a graph that corresponds to the communication requirements

of the unstructured mesh. Until now, such algorithms have not addressed the incre-

mental update partitioning problem posed when a mesh with an existing partition is

being re�ned and/or coarsened. The aim of this paper is to propose a new method

1



for this update problem which may be used in conjunction with existing graph based

partitioning techniques.

Of the existing partitioning techniques Recursive Spectral Bisection is generally

highly regarded, [11] & [13], and an improved version allowing for quadrisection and

even octasection has recently been devised, [6]. The spectral algorithm forms a natu-

ral starting point for the work presented here and is described in full in Section 2. The

limitations of the algorithm for time-dependent adaptive mesh codes are considered in

following Section. In Section 4 a pre-processing step for the algorithm is introduced

which addresses these limitations and appears to provide faster, more e�cient dy-

namic load-balancing. In Section 5 a comparison is made between the algorithms and

illustrated by some results from two PDE problems. Finally a few future directions

for research are o�ered.

Note that the adaptive code used to motivate the work here employs h-re�nement,

[1], which in the context of time-dependent problems means that both the number and

the distribution of the mesh points change as time progresses. Other adaptive mesh

codes may use r-re�nement in which a �xed number of mesh points move around the

solution domain. However, provided that the points do not overtake each other this

does not a�ect the connectivity of the communication graph and hence the optimal

partitioning of the mesh.

2 Recursive Spectral Bisection

The Recursive Spectral Bisection algorithm (henceforth RSB) is one of a family of

recursive bisection methods used for partitioning a graph. The common theme is the

idea that bisecting a domain is a much easier task than subdividing into p subdomains.

The bisection is obtained by a given strategy and then the same strategy is applied

to the subdomains recursively. In this manner a partition into p = 2

q

subdomains

can be obtained in q recursive steps. Two other examples are Recursive Coordinate

Bisection (RCB, see Section 5.2) and Recursive Graph Bisection (RGB). In his paper,

[11], Horst Simon describes all three algorithms and demonstrates the superiority of

RSB over the other two.

The algorithm is now described in more detail.

2.1 Recursive Spectral Bisection { Motivation

Although this paper is concerned with unstructured mesh problems, spectral bisec-

tion is one of a number of methods which actually partition a graph derived from the

2



mesh. The fundamental idea is to associate the nodes of an undirected graph with

variables in the solution vector. The dual communication graph is then de�ned by

connecting nodes together when the spatial discretisation gives rise to a dependency

between the corresponding variables. The connections are made by specifying (undi-

rected) edges between the nodes. Thus for cell-centred 2D �nite volume calculations,

for example, a node of the graph might be used to represent a triangle and then each

node will have three edges connecting it to the triangles it is adjacent to and may in

addition have edges to those triangles it shares a corner with.

Consider, then, an undirected graph G = G

n

(V;E), where V is the set of n nodes

or vertices, E the set of edges and G represents the connectivity of elements in the

discretisation of the domain. A partition P of the domain is given by separating V

into p mutually exclusive subsets.

Subsets of V can be de�ned by labelling each vertex. At each recursive stage a

subgraph is to be bisected and so a variable x

v

will be associated with each vertex

v�V and given the value +1 or �1 according to which subset it is in. Thus de�ne x

by

x

v

def

=

8

<

:

+1 if v� `left' partition

�1 if v� `right' partition

The communication cost or number of edges between these two subsets (a cost

that should be minimised) can now be de�ned with the quadratic form:

C(x)

def

=

X

(v;w)�E

(x

v

� x

w

)

2

where the sum is over vertices which are connected by an edge of the graph.

The minimisation of C is not an easy problem to solve in its current formulation.

Consider, however, the Laplacian of the graph L(G) = [l

ij

], for i; j = 1; : : : ; n, given

by

l

ij

def

=

8

>

>

>

<

>

>

>

:

�1 if (v

i

; v

j

)�E

+deg(v

i

) if i = j

0 otherwise

or alternatively L(G) = D�A, where D is the diagonal matrix of vertex degrees and

A is the adjacency matrix of the graph. It can now be seen that

C(x) =

X

(v;w)�E

(x

v

� x

w

)

2

� x

t

Lx

and so L(G) is the matrix associated with the quadratic form C(x). This equivalence

3



holds for any vector x (not just x

v

= +1 or �1).

Note that the Laplacian has some interesting properties which are detailed more

fully in [7]. It is easily veri�ed that zero is an eigenvalue, �

1

say, of L with associated

eigenvector e, where e

i

= 1 for i = 1; : : : ; n. Thus L(G) is positive semi-de�nite and

hence �

1

= 0 is the smallest eigenvalue. If G is connected then �

2

, the second smallest

eigenvalue, is strictly positive (again see [7]).

An important heuristic is now employed. If the x

v

are now allowed to be con-

tinuous rather than discrete variables then C is minimised by the eigenvector cor-

responding to the smallest eigenvalue of L. From above, the eigenvector x

1

= e

(i.e. x

v

= 1 for v = 1; : : : ; n) corresponding to �

1

= 0 certainly minimises C (be-

cause C = x

t

Lx = 0) but locates all the vertices in the same subset (and hence

trivially requires no communication). There is, however, the additional restriction of

load-balancing, i.e.

X

v�V

x

v

= 0:

This is equivalent to (x; e) = 0, where (:; :) refers to the inner product, and hence it

is necessary to �nd the smallest eigenvalue with eigenvector orthogonal to e. Since

L is symmetric its eigenvectors form an orthogonal set and hence C is non-trivially

minimised by the eigenpair (�

2

;x

2

) where �

2

is the smallest positive eigenvalue.

This vector, x

2

, now renders a weighting, x

v

, for each vertex of the graph v.

Because of the continuous approximation, in general the weightings will not be the

+1 or �1 initially required. However this heuristic is not restrictive. Eigenvectors

of the adjacency matrix have been previously studied for the information they give

on the graph and used for partitioning purposes, [10]. The special properties of x

2

have been investigated by Fiedler and his work, [3], gives theoretical justi�cation for

bisecting the graph based on its entries. Hence x

2

, often referred to as the Fiedler

vector, is used as a bisection �eld, with the vertices v of the graph sorted according

to the weighting given in x

v

and the graph bisected on this basis.

4



2.2 The Method of Spectral Bisection

The three steps of the algorithm are summarised in �gure 1 and described below.

repeat recursively {

create Laplacian (input graph, output Laplacian)

find 2nd eigenvector (input Laplacian, output Fiedler vector)

sort and bisect (input Fiedler vector, output partition)

}

Figure 1: The Recursive Spectral Bisection Algorithm

Working either from the dual communication graph or directly from the mesh

the Laplacian is created. The entries of this matrix L do not need to be stored at

all, only the row (or column) indices of o�-diagonal non-zeroes (all of value �1) are

required. These can be stored as a vector of packed sparse vectors together with an

indexing vector indicating the start of each new row (column). The diagonal entries

are then given by the number of entries in each row (column). The fact that L is

symmetric may also be used to further reduce the number of entries, but at the risk

of signi�cantly complicating the matrix-vector multiplication routine.

Following Simon, Pothen and Liou, [10] & [11], the Lanczos algorithm is used to

calculate the Fiedler vector. This is a well-known Krylov subspace iterative technique,

ideal for �nding extremal eigenvalues of symmetric matrices (see for example [5]).

Unfortunately the algorithm requires many steps to avoid misconvergence to non-

extremal eigenvalues but the cost of estimating the current smallest can be reduced by

bounding it inside an interval of decreasing size, [9]. The bulk of the work per iterative

step is one matrix-vector multiplication, together with some vector operations. It

can be implemented for the most part with the level 1 BLAS plus a tailor made

matrix�vector subroutine. Because of the load-balancing constraint, each Lanczos

vector is explicitly orthogonalised against e as described in Section 2.1.

Finally the Fiedler vector is sorted and the graph bisected. Note that it is not

necessary to employ a full sorting procedure, just a partitioning into two equal sized

subsets.

3 Applications to Time-Dependent Problems

Whilst the RSB algorithm usually gives good results for a static problem, there are

a number of areas in which improvements may be made for dynamic partitioning of

5



adaptive meshes. Most notably the full method is expensive as the cost of the Lanczos

method for a problem size n, falls somewhere between O(n) and O(n

2

) with a large

coe�cient. It is di�cult to be more precise as the number of iterations required for

convergence to x

2

increases with n. While this may not be a problem on a static

mesh where the cost can be hidden as a start-up overhead, it may be signi�cant when

a time-stepping code is remeshing frequently.

The method may also be sensitive to small perturbations in the mesh. For in-

stance Williams, [13] page 477, states that `a small change in mesh re�nement may

lead to a large change in the second eigenvector.' Combined with the fact that the

RSB algorithm has no mechanism for using existing information about the previous

partition, heavy node migration may result.

In the next Section a technique is presented that enables a graph-based algorithm

to use existing information about the partition of a previous mesh. Again it is de-

scribed with particular reference to the Recursive Spectral Bisection algorithm but

the concept could be applied to any graph based method.

4 A Dynamic Partitioning Approach

If a partitioned mesh is modi�ed by the addition of new elements or the removal of

existing ones an immediate load imbalance (and hence a new partitioning problem) is

created. Provided that the new mesh is based on coarsening or re�ning of the existing

one, as in [1], it is possible to interpolate the existing partition onto the new mesh

and to use this partition as a starting point in a repartitioning algorithm.

4.1 The Concept

The repartitioning algorithm used here assumes that, unless the mesh has changed

dramatically, it is probable that the partitions will not need to be changed a great deal.

Ideally most mesh elements will remain in the same subdomain whilst the boundaries

are `juggled'. Of course it is not clear that such `juggling' will produce optimal

communication costs (see however Section 5), but certainly if mesh elements `close

to' the inter-processor boundaries (or bisection boundaries for a Recursive Bisection

algorithm) are the only ones involved then the issues discussed in Section 3 are all

addressed. The information from the previous partition is utilised and, as a result,

both the cost and the amount of node migration should certainly be reduced (the

factors being largely dependent on the granularity).

To e�ect this idea mesh elements which are far enough away from a inter-processor

6



(or bisection) boundary to be ignored for the processes of repartitioning are chosen

(by some heuristic { see Section 4.2). If the subdomains are compact enough this

should result in clusters of mesh elements separated by a strip of elements alongside

the boundaries. Moving to the dual graph these clusters are now treated as a single

vertex. The partitioning algorithm then proceeds as before on this reduced size graph

(a considerable cost saving) and for the redistribution it is expected that the clustered

nodes will remain in the same partition (a node migration saving). In this way the

adaptive techniques used to coarsen the mesh are mirrored to derive an adaptive

technique to decrease the size of graph used in partitioning.

4.2 Implementation for Recursive Spectral Bisection

4.2.1 Clustering and Iteration

A method of selecting those graph vertices which are `close to' the previous bisection

boundary and those that are `far enough away' from it must be found. At present

this part of the code has been implemented as follows. Firstly vertices with an edge

crossing the boundary are chosen. This de�nes the �rst level set of working vertices,

L

1

. Next all vertices sharing an edge with a vertex in L

1

are sought, giving a second

level set, L

2

. A third level set, L

3

, is de�ned by selecting vertices with edges into L

2

and so on. Assuming the graph is connected, this gives an iterative technique which

converges to (or more properly terminates with) the full graph. Note that at each

stage a level set L

q

is determined by the previous level set L

q�1

alone, eliminating

the need for full graph searches.

After each successive level set is chosen the clusters can be de�ned by connected

groups of vertices which do not lie in one of the existing level sets. To create the

reduced size graph, edges between cluster vertices are collapsed until each cluster

is represented by a single vertex. Edges from cluster vertices into the last level set

remain. This working graph is the one which is input into the Spectral Bisection

algorithm.

Note that in determining the Laplacian of the working graph the number of ver-

tices in each cluster has no e�ect. However each vertex cluster is likely to have more

edges than an ordinary graph vertex and hence the corresponding rows and columns

of the Laplacian will be less sparse. In addition it is possible for an ordinary graph

vertex to have more than one edge in common with a vertex cluster. These multiple

edges can be represented in the Laplacian by rede�ning l

i;j

= �jfe�E : e = (v

i

; v

j

)gj.

Note that it is still possible to store the Laplacian by storing only row and/or column

7



indices (see Section 2.2).

4.2.2 Bisection

Because of clustering some of the entries in the resultant Fiedler vector represent more

than one vertex. Thus in order to �nd the median of the vector an entry associated

with a cluster is counted with a multiplicity of the number of vertices in that cluster.

In itself this is easy to implement but a problem arises if a cluster lies across the

median point. Of course it is not possible to bisect a cluster and so in this case

the bisection has failed. Early experience suggests that this does not happen too

often, but when it does it is either because the reduced graph is not `wide enough' or

because the mesh has changed signi�cantly from the previous partition. Thus either

the working graph is expanded by one more level set or possibly the full graph is

reinstated and spectral bisection applied again.

4.2.3 Recursion

The recursive part of the method proceeds much as before. The only slight problem

occurs in data migration. This is most easily demonstrated with an example. Sup-

pose, then, there is an existing partition of 4 subdomains labelled `00', `01', `10' and

`11' and the initial bisection is executed based on the �rst digit. Thus two clusters

are formed, one containing elements lying in either `00' or `01' and away from the

previous bisection boundary, the other similarly of elements in `10' and `11'. The

Fiedler vector is found and the domain re-bisected.

At this stage the data lying in the `wrong' partition moved and it is here that

care must be taken. For example, it may be found that some elements in both `00'

and `01' have to migrate to other side of the bisection. Clearly the easiest method

is for `00' elements to be mapped to `10' and `01' elements to `11'. However this

does not guarantee that the new `10' and `11' subdomains are connected. This can

cause problems in de�ning the clusters at the next recursive level and code should

be included to ensure either that migrating elements go to the right place, or that

disconnected groups of vertices are not used to form a cluster. This is most easily

accomplished by always using data which has recently migrated in the working part

of the graph, although this is not the most e�cient method in terms of either work

or data migration.

8



4.3 The Dynamic Recursive Spectral Bisection Algorithm

The iterative pre-processing technique to be added to the Recursive Spectral Bisection

(or other) algorithm can now be presented in full and is summarised in �gure 2. The

spectral bisect subroutine is just the three operations inside the loop in �gure 1.

Henceforth this combined algorithm will be referred to as DRSB.

repeat recursively {

until (working graph large enough) {

expand working graph (by next level set)

cluster (remaining vertices)

}

while (working graph < full graph) {

spectral bisect (input working graph, output partition)

if (successful)

escape to next subdomain

else if (too many iterations)

working graph = full graph

else

expand working graph (by next level set)

cluster (remaining vertices)

}

}

Figure 2: The Dynamic RSB Algorithm

Initially enough level sets are taken to

(a) balance the domain (i.e. if one cluster contains more than half of the vertices

bisection is not possible);

(b) have a meaningful graph to use spectral bisection (i.e. just using one level set

does not give enough information).

The Spectral Bisection algorithm is now applied and the Fiedler vector calculated. If

the bisection fails because of a cluster close to the median of the vector the working

graph is expand by one more level set and spectral bisection re-applied. This may be

repeated until the level sets have recovered the full graph (when the bisection cannot

fail), but this will have increased the costs to well above that of using full spectral

bisection in the �rst place. As consistent failure suggests that the partition should be

in a di�erent place it is better terminate the iterations early. Fortunately this does

not appear to happen very often (see Section 5).

9



There are two important heuristics inherent in this piece of pseudo-code, namely

the number of level sets to make the initial working graph large enough and the

maximum number of iterations. Of course neither are crucial to the eventual success

of the algorithm but they both have important implications for the e�ciency of the

technique. Early results suggest that 3 level sets make a good working graph to start

from (although this may depend on the density of edges in the graph). Subsequently,

if the method fails after 2{3 iterations it may be better to then revert to the full graph.

For coarse grained problems (including the initial recursive levels) the potential saving

is considerably greater and a few more iterations may be worthwhile. Thus it is

desirable parameterise this number with the granularity.

5 Numerical Testing

The dynamic technique was initially tested on a number of di�erent meshes by using

RSB to get an initial partition and then DRSB to modify it. Although the load was

already balanced the interesting result was that DRSB would more often than not

provide a partition with slightly fewer inter-processor edges. Although initially this

seems surprising it perhaps re
ects the fact that both algorithms are using heuristics

to solve an NP hard problem.

In order to fully evaluate the performance of the new algorithm comparisons were

made between DRSB & RSB on adaptive mesh solutions of time-dependent PDEs.

The aim of the experiments was to assess the dynamic technique by measuring both

the possible cost savings and the quality of the resulting separator sets. In addi-

tion, results are given from partitions supplied by the RCB algorithm (see below,

Section 5.2), a naive but computationally inexpensive recursive bisection algorithm.

The test meshes were derived from the integration of two time-dependent PDEs

described below (Section 5.3 & 5.4). In both cases a PDE solver would generate an

unstructured mesh and proceed to integrate the solution with a variable step explicit

time marching algorithm. The integration would continue while the error estimate

in each triangle remained below a pre-determined tolerance. Once the tolerance

was exceeded adaptive code would automatically re�ne or coarsen the mesh in order

to yield an approximately uniform numerical error estimate across the domain. At

this stage load balancing becomes necessary; the existing partition was interpolated

onto the new mesh and then both DRSB (using the interpolated partition) and RSB

(ignoring it) were run to partition the domain.

10



5.1 Metrics

Three metrics were used to compare the algorithms:

M
ops

The bulk of the cost of the spectral algorithm lies in the Lanczos iterations to

�nd the Fiedler vector and the number of 
oating point operations in this part of the

code were totalled to give a measure of the savings a�orded by using the dynamic

technique. Of course the DRSB algorithm has a lot more administrative work to do

and a proper timing would have given a better assessment, however much of the level

set search code has not been implemented very e�ciently yet. Rough timings were

taken, however, and are presented below.

jG

a

j - Average Problem Size

Whilst the M
ops count gives a good indication of the cost of the algorithms,

the inclusion of number of Lanczos iterations do not allow it to be very illuminating

about the sizes of the sub-graphs, G

s

, used for partitioning. Accordingly the average

problem size for each mesh, jG

a

j, de�ned as the sum of sizes of all the bisection

problems divided by the number of bisection problems, is given. For RSB this �gure

is just a linear function of n. Thus if l is the number of recursive levels (so that

p = 2

l

) then the number of bisection problems is given by

P

l

j=1

2

l�1

= 2

l

� 1 and so

for RSB

jG

a

j =

n+ 2:n=2 + 4:n=4 + : : :

2

l

� 1

=

n:l

2

l

� 1

:

For DRSB however, each problem size is dependent on the granularity, the changes

in the mesh and the previous bisection boundary as well n and p. In addition if the

bisection fails because of the clustering both the number of problems will fail and, if

iterations repeatedly fail and the code resorts to the full graph, the problem size can

dramatically increase. It is interesting to note, however, that for both examples the

DRSB �gure is of the same order as jE

i

j. Of course, this relationship cannot hold as

p varies (since jG

a

j decreases and jE

i

j increases as p increases for �xed n) but as we

might expect jG

t

a

j is largely dependent on jE

t�1

i

j where t denotes the time-level.

jE

i

j { the inter-processor edges

If E

i

is de�ned to be the subset of edges which cross inter-processor boundaries

after repartitioning then another metric is simply the size of this set. This measure

was used because it gives an indication of the sizes of separator sets that might be

expected for linear algebra using domain decomposition or sub-structuring. Since this

is related to the parallel overhead for such techniques it is a meaningful �gure. It also

gives an indication of the volume of communication tra�c required for 
ushing the

halos of the subdomains around the memory.

11



5.2 Recursive Coordinate Bisection

To give a comparison with a cheap non graph-based technique some inter-processor

edge results for the RCB algorithm are also given. Described in [11], this method

sorts the mesh elements (in this case triangles) by either x or y coordinates and bi-

sects on this basis. In this implementation the sorting was executed alternately on

x coordinates at one recursive level and then on y coordinates at the next. It is a

simple, intuitive and above all cheap technique but one which provides somewhat

poor separator sets as a result of excluding any graphical information. This is par-

ticularly noticeable on very irregular meshes where the subdomains are likely to be

disconnected.

5.3 Euler Wedge Shock Problem

This problem is driven by the Euler equations in two space dimensions (see [12] for

a full description) which simulate air at Mach 2.5 as it hits a 10 degree wedge and

forms a shock front, [2]. In its original form this is a steady state problem. However

in the time-dependent form used here the shock starts o� along the wedge and rises to

its steady state position as time proceeds. The unstructured mesh becomes heavily

re�ned around the front as it forms but remains coarse away from the wedge and

shock.

The results are as follows where n = number of mesh elements. Since the meshes

were all fairly small in size the domain was only partitioned into 8 subdomains.

DRSB RSB RCB

n M
ops jG

a

j jE

i

j M
ops jG

a

j jE

i

j jE

i

j

860 0.5 75 71 5.1 368 75 98

833 0.5 71 70 5.0 357 70 97

813 0.9 92 72 4.8 348 74 100

799 0.5 71 67 4.5 342 75 99

768 0.5 73 65 4.5 329 74 93

725 0.5 69 66 4.1 310 71 91

899 1.4 133 91 5.4 385 79 99

908 0.9 90 87 5.5 389 84 98

878 0.8 90 80 5.3 376 79 98

7,483 6.5 764 669 44.2 3,204 681 873

Table 1: Wedge Shock Comparison Results

From the M
ops count, for these problems DRSB is just under seven times times

faster than RSB on average and up to ten times faster. The DRSB M
ops counts

12



which are below average arose from the �rst iteration failing and the code having to

expand the working graph. This is particularly noticeable for the 7th mesh (M
ops

count of 1.4) where the �rst iteration failed in two of the bisection problems, one of

these being at the second recursive level. In mitigation however, the 7th mesh had

changed fairly dramatically from the 6th (725! 899 triangles) with much re�nement

around the shock and de-re�nement away from it. At only one stage did the code

revert to the full sub-graph (for the 3rd mesh) and since this was at the third recursive

level it did not add greatly to the cost.

The number of inter-processor edges are similar for both RSB & DRSB although

the average marginally favours the dynamic technique. The RCB algorithm is ar-

guably competitive. However this may be a result of the relatively �ne granularity as

it fares much worse in the Burger's equation experiment (below).

Rough timings were taken for the codes running sequentially. The solution and

remeshing took about 1480 seconds, RSB took 36 seconds and DRSB 9 seconds (RCB

took 2 seconds). As the time-stepping is explicit there is no requirement to solve a

system of non-linear equations and so a sophisticated partitioning algorithm such as

RSB might be considered unnecessary in this case. However, if assuming about 90%

e�ciency then on 8 processors the integration code might take about 3.5 minutes and

the di�erence in costs between RSB and DRSB starts to look signi�cant. Paralleli-

sation of the partitioning code (potentially very e�cient for the Lanczos algorithm)

may redress this balance.

5.4 Burger's Equation Example

This is a well known non-linear convection dominated time-dependent PDE and is

described more fully in [1]. The solution consists of a pair of L-shaped waves which

gradually steepen as they move from bottom left to top right of a square domain and

with the rearmost wave eventually overtaking the front wave.

For this example the temporal and local spatial relative error tolerances were set

at 1.0�10

�3

& 1.0�10

�2

in the temporal L

1

and spatial L

1

norms respectively. This

resulted in a high accuracy solution and hence frequent remeshing of a moderately

large number of triangles. The solver commences its run with a uniformly coarse

mesh. As this mesh is unsuitable for the solution, large spatial errors occur and the

initial time-step fails. The mesh is then re�ned based on the error estimate to give

a new initial mesh (illustrated in �gure 4, page 17). This step{re�ne sequence is

iterated until the mesh re
ects the initial conditions of the solution and subsequently

the time-steps begin to succeed. Once the time integration proper commences the

13



meshes settle down to about 2000 triangles each, although with frequent remeshing as

the waves propagate. Figure 5 (page 18) shows a typical example, the 100th mesh with

1866 triangles. Finally as the second wave begins to overtake the �rst the re�nement

rapidly increases where they coalesce to reach a maximum of 5466 triangles in the

last mesh used, �gure 6 (page 18). In all 317 meshes were used with the sizes varying

from 244 to 5466 triangles (illustrated in �gure 3, page 17).

With such a large number of meshes and such a wide variety of sizes it was decided

to test the algorithms for di�erent sizes of p. The following table gives the total for

each run of 317 meshes, where the total number of mesh elements, n, is 802,503.

DRSB RSB RCB

p M
ops jG

a

j jE

i

j M
ops jG

a

j jE

i

j jE

i

j

2 115.3 50,884 6,303 3,763.8 802,503 6,229 16,132

4 278.0 46,405 17,853 6,560.3 534,893 18,034 40,022

8 431.1 41,134 35,801 8,532.8 343,791 37,479 74,006

16 755.6 36,432 65,609 10,002.8 213,853 67,310 119,400

Table 2: Burger's Equation Comparison Results

The results reiterate much of what was seen above. The M
ops count is even

more favourable to DRSB (one 1/13th of the work for p=16, to 1/32th for p=2) as

the granularity is coarser. The number of interprocessor edges is smaller for p > 2,

although only marginally when averaged over the 317 results.

Rough timings were also taken for this problem and are summarised in the table

below.

Time (seconds)

p DRSB RSB RCB

2 222.85 2,900.32 102.29

4 489.47 5,069.22 196.34

8 776.21 6,655.46 304.69

16 1,275.92 7,949.80 443.38

Table 3: Burger's Equation Timing Results

6 Conclusions and Future Directions

The method looks very promising but further testing on a wide range of time-

dependent PDEs is required. The DRSB algorithm provides e�ective load-balancing

14



but it is possible that the cost may still be too high relative to the solution cost. In

particular evaluation in conjunction with linear algebra which actually makes use of

the separator sets would appear to be desirable. It is conceivable that repartition-

ing is not necessary after a relatively small amount of adaptivity and some criteria

are needed for making this decision { which will also depend upon the cost of the

load-balancing algorithm, see references in [8].

The code also needs some tuning work { both algorithmic for robustness and also

implementation improvements for e�ciency. Once accomplished some proper timings

could be taken. The volume of node migration is another valuable metric to use

and some more coding is necessary to optimise this. The extension to 3 dimensional

meshes is straightforward but the issues involved for a parallel version need further

investigation.

A few further possibilities for the technique can be summarised as follows:-

� Other Applications. As the DRSB algorithm is graph based it is not restricted

to unstructured mesh problems and could be applied to, for example, matrix

partitioning amongst other things.

� Other Load Balancing Methods. The technique of clustering could be applied

to other algorithms to improve e�ciency. Simulated Annealing (see [13]) is an

obvious example.

� Accelerated Recursive Spectral Bisection. For non-adaptive meshes it would

be nice to have a fast e�ective partitioning technique. Possibly this could be

achieved by generating a coarse partition (using Recursive Coordinate Bisection

for example { see [11]) and then re�ning it with the DRSB algorithm.

1

The authors would like to acknowledge the �nancial support of Shell Research

Limited. Peter Jimack and David Hodgson are also thanked for their helpful discus-

sions and Justin Ware for providing the example meshes.

References

[1] M. Berzins, J. Lawson, and J. Ware. Spatial and Temporal Error Control in the

Adaptive Solution of Systems of Conversation Laws. To Appear In: Proc. of 7th

IMACS Conf. on Computer Methods for PDEs, Rutgers Univ., 1992.

[2] L. Demkowicz, J. T. Oden, W. Rachowicz, and O. Hardy. An h-p Taylor-Galerkin

�nite element method for compressible Euler equations. Comp. Meth. Appl.

Mech. Engrg., 88:363{396, 1991.

15



[3] M. Fiedler. A Property Of Eigenvectors of Nonnegative Symmetric Matrices and

its Applications to Graph Theory. Czech. Math. J., 25:619{633, 1975.

[4] J. E. Flaherty, P. J. Paslow, M. S. Shepherd, and J. D. Vasilakis. Adaptive

Methods for Partial Di�erential Equations. In Proc. of Workshop on Adap-

tive Computational Methods for Partial Di�erential Equations, Rensseleer Poly.

Inst., 1988, SIAM, Philadelphia, 1989.

[5] G. H. Golub and C. F. van Loan. Matrix Computations (2nd ed.). John Hopkins,

Baltimore, 1989.

[6] B. Hendrickson and R. Leland. An Improved Spectral Graph Partitioning Algo-

rithm for Mapping Parallel Computations. Tech. Rep. SAND 92-1460, Sandia

National Labs, Albuquerque, NM., 1992.

[7] B. Mohar. The Laplacian Spectrum of Graphs. Technical Report, Dept. of

Mathematics, Univ. of Ljubljana, 61111 Ljubljana, Yugoslavia, 1988.

[8] D. M. Nichol. Communication E�cient Global Load Balancing. In Proc. of Scal-

able High Performance Computing Conference, Williamsburg, Virginia, 1992,

IEEE, Washington, 1992.

[9] B. N. Parlett, H. Simon, and L. M. Stringer. On Estimating the Largest Eigen-

value With the Lanczos Algorithm. Math. Comp., 38:153{165, 1982.

[10] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning Sparse Matrices with

Eigenvectors of Graphs. SIAM J. Matrix Anal. Appl., 11:430{452, 1990.

[11] H. D. Simon. Partitioning of Unstructured Problems for Parallel Processing.

Computing Systems in Engineering, 2:135{148, 1991.

[12] J. Ware and M. Berzins. Finite Volume Techniques for Time-Dependent Fluid-

Flow Problems. To Appear In: Proc. of 7th IMACS Conf. on Computer Methods

for PDEs, Rutgers Univ., 1992.

[13] R. D. Williams. Performance of dynamic load balancing algorithms for un-

structed mesh calculations. Concurrency, 3:457{481, 1991.

16



0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300 350

n
o
.
 
o
f
 
t
r
i
a
n
g
l
e
s

mesh no.

Figure 3: The variation in mesh size from Burger's Equation simulation

Figure 4: The initial mesh from Burger's Equation simulation

17



Figure 5: The 100th mesh from Burger's Equation simulation

Figure 6: The �nal mesh from Burger's Equation simulation

18


