A Multilevel Approach to the Travelling Salesman Problem

Chris Walshaw*

Computing and Mathematical Sciences, University of Greenwich,
Park Row, Greenwich, London, SE10 9LS, UK.

Mathematics Research Report 00/IM /63
August 21, 2000

Abstract

We motivate, derive and implement a multilevel approach to the travelling salesman problem. The
resulting algorithm progressively coarsens the problem, initialises a tour and then employs either the Lin-
Kernighan (LK) or the Chained Lin-Kernighan (CLK) algorithm to refine the solution on each of the coars-
ened problems in reverse order. In experiments on a well established test suite of 79 problem instances
we found multilevel configurations that either improved the tour quality by over 25% as compared to the
standard CLK algorithm using the same amount of execution time, or that achieved approximately the
same tour quality over 7 times more rapidly. Moreover the multilevel variants seem to optimise far better
the more clustered instances with which the LK & CLK algorithms have the most difficulties.

Keywords: Multilevel Refinement; Travelling Salesman; Combinatorial Optimisation.

1 Introduction

In this paper we address the Travelling Salesman Problem (TSP) which can be simply stated as follows:
given a collection of ‘cities’, find the shortest tour which visits all of them and returns to the starting point.
Typically the cities are given coordinates in the 2D plane and then the tour length is measured by the sum
of Euclidean distances between each pair on the tour. However, in the more general form, the problem
description simply requires a metric which specifies the distance between every pair of cities.

In particular here we consider the problem of finding low cost tours in reasonable time rather than
solving the problem to optimality. We also focus on the Euclidean version of distance and, by default
therefore, the symmetric TSP. In other words, if d(c1, ¢c2) is the Euclidean distance between cities ¢1 & ¢
then d(c1, c2) = d(ca, ¢1) and the tour can be executed in either direction for the same cost. However in §4.1
we discuss how our approach might easily be extended to a more general distance metric.

The TSP, a combinatorial optimisation problem, has been shown to be NP-hard, [12], but has a number
of features which make it stand out amongst such problems. Firstly, and perhaps because of the fact that the
problem is so intuitive and easy to state, it has almost certainly been more widely studied than any other
NP-hard combinatorial optimisation problem. For example Johnson & McGeoch, [20], survey a wide range
of approaches which run the gamut from local search, through simulated annealing, tabu search & genetic
algorithms to neural nets. Remarkably, and despite all this interest, the local search algorithm proposed by
Lin & Kernighan in 1973, [25], still remains at the heart of the most successful approaches. In fact Johnson
& McGeoch describe the Lin-Kernighan (LK) algorithm as the world champion heuristic for the TSP from
1973 to 1989. Further, this was only conclusively superseded by chained or iterated versions of LK (see §2.3
for clarification) originally proposed by Martin, Otto & Felten, [26, 27], in 1991.

Even today, in spite of all the work on exotic and complex combinatorial optimisation techniques, John-
son & McGeoch, [20], conclude that an iterated Lin-Kernighan (ILK) scheme provides the highest quality

*Email: C.Walshaw@gre.ac.uk; URL: www.gre.ac.uk/ c.walshaw

tours for a reasonable cost. This conclusion has been backed up very recently by Applegate, Cook & Rohe,
[2], who also illustrate the scalability of the algorithm by applying it to random examples containing up to
25,000,000 cities. In fact it is usually possible to improve on the quality of (suboptimal) chained /iterated LK
tours, for example by sophisticated tour merging techniques similar to genetic algorithm crossovers (see
e.g. [1]), but Johnson & McGeoch suggest that ‘the ILK variant .. ., is the most cost effective way to improve
on Lin-Kernighan, at least until one reaches stratospheric running times’.

Another unusual feature of the TSP is that, for problems which have not yet been solved to optimality
(typically with 10,000 or more cities), an extremely good lower bound can be found for the optimal tour
length. This bound, known as the Held-Karp Lower Bound (HKLB), was developed in 1970 by Held &
Karp, [16, 17], and usually comes extremely close to known optimal tour lengths (often within 1% — see the
results in §3.1). Thus to measure the quality of an algorithm for a given set of problem instances (especially
if some or all of them do not have known optimal tours), we can simply calculate the average percentage
excess of tours produced by the algorithm over the HKLB for each instance.

To illustrate this for the instances of the TSP tested in this paper, LK produces tours about 3.86% in
excess of the HKLB on average, whilst the chained LK algorithm brings this down to about a 1.50% excess
although on average requires nearly 40 times as long to achieve this. Again, this would appear to be another
unusual feature of the TSP, that what are basically local search algorithms can get so close to optimality (and
recall that the HKLB is a lower bound so the results will be even closer to optimality than this). For example,
no such heuristic (and no such lower bound) is known to exist for the graph partitioning problem.

1.1 Overview & notation

In this paper we describe the motivation, implementation and testing of a multilevel approach to find-
ing high quality TSP tours. In the rest of this section we discuss the merits & features of the multilevel
paradigm, based on previous multilevel algorithms for the graph partitioning and graph drawing prob-
lems, which led us to investigate a similar approach to the TSP. In Section 2 we then give the details of the
resulting procedure that we devised and outline the chained LK algorithm which is used as a basic building
block of the scheme. In Section 3 we test the algorithm on a large suite of problems and attempt to analyse
its behaviour. Finally in Section 4 we summarise the paper and present some suggestions for further work.

Although we do not require a great deal of notation for this paper it is worth remarking that we some-
times use graph based terminology and refer to cities as vertices and inter-city distances as edge lengths.
We sometimes refer to tours as cycles and we shall also use the terms objective function & cost function to
denote the tour length, the quantity we are trying to minimise.

1.2 Motivation

Before describing the strategy we shall first attempt to motivate it. We shall do so by describing the process
of ideas which led us to conclude that a multilevel strategy might be beneficial for the TSP. Although such
process driven research does not often form a part of the literature, we feel that in this case it is instructive.
A more in depth survey of the multilevel paradigm and the problems to which it has been applied can be
found in [34].

1.2.1 Background

Our interest in the TSP, and in fact behind our approach to the problem, arises from our work in the field
of graph partitioning, [32], and subsequently graph drawing, [31]. Typically a P-way graph partitioning
algorithm aims to divide a graph into P disjoint subdomains of equal size and minimise the number of cut
edges, another NP-hard combinatorial optimisation problem, [13]. In recent years it has been recognised
that an effective way of both accelerating graph partitioning algorithms and more importantly, giving them
a ‘global’ perspective, is to use multilevel techniques. The idea is to match pairs of vertices to form clusters,
use the clusters to define a new graph and recursively iterate this procedure until the graph size falls below
some threshold. The coarsest graph is then partitioned (often with a crude algorithm) and the partition is
successively refined on all the graphs starting with the coarsest and ending with the original. This sequence
of contraction followed by repeated refinement loops is known as multilevel partitioning and has been
successfully developed as a strategy for overcoming the localised nature of the Kernighan-Lin (KL), [23],

and other partition optimisation algorithms. The multilevel partitioning paradigm was first proposed by
Barnard & Simon, [3], as a method of speeding up spectral bisection and improved by both Hendrickson
& Leland, [18], and Bui & Jones, [7], who generalised it to encompass local refinement algorithms. Several
enhancements for carrying out the matching of vertices have been devised by Karypis & Kumar, [21].The
multilevel partitioning strategy is widely used and forms the basis of at least 4 public domain partitioning
packages, CHACO [18], JOSTLE [32], METIS [22], and SCOTCH [28].

In another recent development, multilevel strategies have also been applied to the graph drawing prob-
lem (and in particular force directed placement). Given a graph with no coordinate information, the aim
of a graph drawing algorithm is to infer a ‘nice’ layout of the vertices based on the adjacency structure.
Typically in this context, a nice layout means one in which there are relatively few edge crossing (especially
for planar graphs) and edges all have approximately the same length. Force directed placement (FDP)
algorithms achieve this by regarding the graph as an n-body problem which responds to physical forces.
Thus there are repulsive forces between every pair of vertices and the edges are modelled as springs which
attempt to maintain their natural length (i.e. neither stretched nor compressed). Strictly speaking this is not
a combinatorial optimisation problem but it does share many of the features.

Up until recently most FDP algorithms were at least O(N?) in complexity and were unable to deal with
large graphs. For example in 1998, in a comprehensive study of the whole field of graph drawing by Di
Battista et al., [9], one FDP algorithm was singled out as exceptional in that it could handle graphs with over
1,000 vertices. However Hadany & Harel, [14], and in particular Harel & Koren, [15], have used multilevel
ideas (or as they refer to them, multiscale) in combination with an FDP algorithm and are able to easily
handle graphs of 3,000 vertices (although their algorithm still contains an O(N?) component). Meanwhile,
Walshaw has independently applied multilevel techniques to the same problem (although using a different
FDP algorithm) and presents examples with up to 100,000 vertices, [31].

1.2.2 The generic multilevel paradigm

The important questions about these approaches are — why do multilevel approaches appear to work, and,
is there an abstraction of the paradigm that can be applied to other combinatorial optimisation problems
(such as the TSP)?

Considered from the point of view of the multilevel procedure, a series of increasingly smaller & coarser
versions of the original problem are being constructed. It is hoped that each problem P, retains the impor-
tant features of its parent P,_; but the randomised and irregular nature of the coarsening precludes any
rigorous analysis of this process.

On the other hand, viewing the multilevel process from the point of view of the optimisation problem
and, in particular, the objective function is considerably more enlightening. Suppose for the partitioning
problem that two vertices vy,v2 € G;_; are matched and coalesced into a single vertex v € G;. When a
partition refinement algorithm is subsequently used on G; and v is (re)assigned to a subdomain, both v; &
v are also both being assigned to that subdomain. In this way the partitioning of G, is being restricted to
consider only those configurations in the solution space in which v; & v, lie in the same subdomain. Since
many vertex pairs are generally coalesced from all parts of G;_; to form Gj this set of restrictions is in some
way equivalent to sampling the solution space and hence the surface of the objective function.

We then can hypothesise that, if the coarsening manages to sample the solution space so as to gradually
smooth the objective function, the multilevel representation of the problem combined with a local search
algorithm should work well as an optimisation meta-heuristic. In other words, by coarsening and smooth-
ing the problem, the multilevel component allows the local search algorithm to find regions of the solution
where the objective function has a low average value (e.g. broad valleys). This does rely on a certain amount
of ‘continuity’ in the objective function but it is not unusual for these sort of problems that changing one or
two components of the solution tends not to change the cost very much.

Figure 1 shows an example of how this might work. On the left hand side the objective function is
gradually sampled and smoothed (the sampled points are circled and all intermediate values removed to
give the next coarsest representation) until the final version is realised. The initial solution of this coarsened
problem (shown as a black dot in the bottom right hand figure) is then trivial (because there is only one pos-
sible state) although the resulting configuration is not an optimal solution to the overall problem. However
this state is used as an initial configuration for the next level up and a steepest descent refinement policy
finds the nearest local minimum (N.B. a steepest descent refinement policy is one which will only move to

£(X) £(X),
N
X X
£(X) £(X),
|
X X
£(X) £(X)
|
X X
£(X) £(X)
\S\/ . .
A A - . A -
£(X) £(X),
" o - -—--—--—-=-—=—=
X X
£(X) £(X)
|
o)
X ' X

Figure 1: The multilevel scheme in terms of a simple objective function

a neighbouring configuration if the value of the objective function is lower there). Recursing this process
keeps the best found solution (indicated by the black dot) in the same region of the solution space. Finally
this gives a good initial configuration for the original problem and (in this case) the optimal solution can
be found. Note that it is possible to pick a different set of sampling points for this example for which the
steepest descent policy will fail to find the global minimum, but this only indicates, as might be expected,
that the multilevel procedure is somewhat sensitive to the coarsening strategy.

Of course, this motivational example might be considered trivial or unrealistic (in particular an objective
function cannot normally be pictured in 2D). However, consider other meta-heuristics such as repeated
random starts combined with steepest descent local search, or even simulated annealing, applied to this
same objective function; without lucky initial guesses either might require many iterations to solve this
simple problem.

It should be stressed that this hypothesis is nothing more than speculation and we cannot prove that
this process underlies the multilevel paradigm. However experimental evidence, here and elsewhere, sug-
gests that the multilevel approach does indeed enhance local search strategies and we suspect that the
sampling/smoothing of the objective function contributes to this.

To summarise the paradigm then, multilevel optimisation combines a coarsening strategy together with
a refinement algorithm (employed at each level in reverse order) to provide an optimisation meta-heuristic.
Figure 2 contains a schematic of this process in pseudo-code.

1.2.3 Algorithmic requirements

Assuming that the above analysis does contain some elements of truth, how can we implement a multilevel
strategy to test it on a given combinatorial optimisation problem?

First of all let us assume that we know of a refinement algorithm for the problem, which refines in
the sense it can reuse an existing solution and (attempt to) improve it. Typically the refinement algorithm

multilevel refinement(input problem instance Py , output solution Co{Po})
begin

forl=1,...,L
P, = coarsen(P;_1)
end

Cr{PL} = initialise(Py,)

forl=L-1,...,0
CP{P} = extend(Ci11{Pi+1}, P)
Ci{P,} = refine(C){P.}, P,)

end

end

Figure 2: The multilevel optimisation algorithm

will be a local search strategy which can only explore small regions of the solution space neighbouring to
the current solution, however there is no reason (other than execution time) why it should not be a more
sophisticated scheme such as simulated annealing. The refinement algorithm must also be able to cope
with any additional restrictions placed on it by using a coarsened problem (e.g. in graph partitioning the
coarser graphs are always weighted whether or not the original is). If such a refinement algorithm does not
exist (e.g. if the only known heuristics for the problem are based on construction rather than refinement) it
is not clear that the multilevel paradigm can be applied.

To implement a multilevel algorithm, given a problem and a refinement strategy for it, we then require
three additional basic components: a coarsening algorithm, an initialisation algorithm and an extension
algorithm (which takes the solution on one problem and extends it to the parent problem). It is very difficult
to talk in general terms about these requirements, but the existing examples from graph partitioning and
graph drawing suggest that the extension is a simple and obvious reversal of the coarsening step which
preserves the same cost. For example in graph partitioning a pair of parent vertices are assigned to the
same subdomain as their child whilst in graph drawing the parent vertices are given the same location as
their child. The initialisation is also generally a simple canonical mapping (e.g. for the graph partitioning
problem — assign P vertices to P subdomains; for the graph drawing problem — compute a layout for 2
vertices connected by 1 edge). By canonical we mean that a (non-unique) solution is ‘obvious” and that the
refinement algorithm cannot possibly improve on the initial solution at the coarsest level (because there are
no degrees of freedom).

This just leaves the coarsening algorithm which is then perhaps the key component of a multilevel
optimisation implementation. For the partitioning and drawing examples two principles seem to hold:

(C1) Any solution in any of the coarsened spaces should induce a legitimate solution on the original space.
Thus at any stage after initialisation the current solution could simply be extended through all the
problem levels to achieve a solution of the original problem. Furthermore both solutions (in the
coarse space and the original space) should have the same cost with respect to the objective function.
This requirement ensures that the coarsening is sampling the solution space (rather than distorting
it).

(C2) The number of levels (L in Figure 2) need not be determined a priori but coarsening should cease when
any further coarsening would render the initialisation degenerate. For example, in P-way partitioning
there is no point coarsening to get a graph with less than P vertices whilst for graph drawing there
is no point coarsening to get a graph with less than 2 vertices and 1 edge (assuming the original is
connected).

This still does not tell us how to coarsen a given problem. So far most solutions for the partitioning
problem have employed a gradual and fairly uniform reduction. Furthermore it has been shown (for par-
titioning at least), that it is usually more profitable for the coarsening to respect the objective function in
some sense (see e.g. the heavy edge matching strategy in [21] and the template cost matching in [33]). In

this respect it seems likely that the most difficult aspect of finding an effective multilevel algorithm for a
given problem and given refinement scheme is the (problem dependent) task of devising the coarsening
strategy.

2 A Multilevel Algorithm for the Travelling Salesman Problem

Having motivated the approach the next question is: how can the multilevel paradigm be applied to the
TSP? Clearly the LK or CLK/ILK algorithms will make a good refinement method although in principle
any iterative refinement procedure including the well known 2-opt, [8], and 3-opt, [24], algorithms could
be used. However, with no graph as such, how can the problem be coarsened?

In fact it seems that the crucial point in devising a coarsening algorithm is the above requirement (C1)
— that the solution to each coarsened problem must contain a solution of the original problem (even if it
is a poor solution). One way of achieving this is for the coarsening to successively fix edges into the tour.
For example, given a TSP instance P of size N, if we fix an edge between cities ¢, and ¢; then we create
a smaller problem P’ of size N — 1 (because there are N — 1 edges to be found) where we insist that the
final tour of P’ must somewhere contain the fixed edge (c,, ¢s). Having found a tour T" for P’ we can then
return to P and look for better tours using 7" as the initial tour. This process is once again equivalent to
restricting the solution space (to all tours which contain the edge (¢,, ¢3)) and in fact by fixing many distinct
edges in one coarsening step we are again sampling the solution space.

coarsen

initialise

refine wnd refine wnd refine wnd refine extend
_—

Figure 3: An example of a multilevel TSP algorithm at work

Figure 3 shows an example of this. The top row demonstrates the coarsening process where dotted lines
represent matchings of vertices (and hence new fixed edges) which are being made in the current coarsening
step whilst solid lines represent fixed edges that have been created in previous coarsening steps. Notice in
particular that from the third step onwards chains of fixed edges are reduced down to a single edge with
a vertex at either end and any vertices internal to such a chain are removed. The coarsening terminates
when the problem is reduced to one fixed edge & two vertices and at this point the tour is initialised. The
initialisation is trivial and merely consists of completing the cycle by adding an edge between the two
remaining vertices. At this point we could just expand all the fixed edges and get a legitimate tour (and
in this sense the coarsening takes the place of an initial tour construction algorithm). However now the
procedure commences the extend/refine loop (as shown in the second & third rows of Figure 3). Again

solid lines represent fixed edges whilst dotted lines represent free edges which may be changed by the
refinement. The extension itself is trivial; we simply expand all fixed edges created in the corresponding
coarsening step and add the free edges to give an initial tour for the refinement process. The refinement
algorithm then attempts to improve on the tour (without changing any of the fixed edges) although notice
that for the first two refinement steps in the Figure no improvement is possible. The final tour is shown at
the bottom left of the Figure; note in particular that fixing any edge during coarsening does not force it to
be in the final tour since for the final refinement step all edges are free to be changed. However, fixing an
edge early on in the coarsening does give it less possibilities for being flipped.

2.1 Matching and coarsening

We now describe the implementation of the above process.

2.1.1 Data structures

Although we are matching vertices and then fixing edges between matched pairs, it is more convenient
within the code to regard this as the matching of fixed edges. For example, having matched vertex v;
with vertex vy in Figure 4(a) we do not want vertices wy & w» (the vertices already fixed to v; & v2) to
match with any other vertices. Although there is no intrinsic reason why they should not, we feel that this
might coarsen the problem too rapidly (by building long multi-edge fragments in a single step) and thus
miss out on the benefits of the multilevel strategy. This policy also avoids the need to check that a given
matching will not create a subcycle (a tour through a subset of the vertices) by matching a series of fixed
edges together in a loop.

l l = h—=
T e
/sz : : o : * :h
@ I P NP AL 1

o o ° vy e o

., S S U
e L

| | | |

(a) ()

Figure 4: Matching examples

Our data structure for handling the coarsening thus consists of edge objects. Initially each edge is of
zero length and has the same vertex at either end however after the first coarsening most edges will have
different vertices at either end. Once a given vertex v; at one end of edge (v1,w1) is matched with another
vertex vy from edge (v2,w2) then all involved vertices v1,v2, w1, ws (although some of these may be the
same) are prevented from matching again during the same coarsening step.

2.1.2 Matching

The aim during the matching process should be to fix those edges that are most likely to appear in a high
quality tour thus allowing the refinement to concentrate on the others. For example, consider Figure 4(b);
it is difficult to imagine an optimal tour which does not include the edge (u,v) and so ideally the matching
should fix it early on in the process. Indeed, if by some good fortune, the matching only selected optimal
edges then the optimal tour would be found by the end of the matching process and the refinement would
have no possible improvements. However, in the absence of any other information about the optimal tour,
we have chosen to match vertices with their nearest neighbours.

We have implemented this strategy with a simple data structure similar to that used previously by
Bonomi & Lutton, [6], for excluding long distance edges from random perturbations in a simulated anneal-
ing TSP implementation and by Fruchterman & Reingold, [11], for graph drawing. Specifically for each

coarsening level we choose a maximum matching distance h and only allow vertices to be matched with
neighbours closer than this. To accomplish this we find the smallest rectangle containing all the vertices
and overlay it with a square grid of spacing h, e.g. Figure 4(b). For each grid cell we place all vertices lying
within that cell into a linked list in random order. While there are unmatched vertices we then randomly
pick a cell containing unmatched vertices and find the first unmatched vertex, v, in the linked list for that
cell. Next we locate the two closest neighbouring vertices, wi & w, within distance h of v by visiting all ver-
tices in the cell containing v together with all the vertices in the 8 adjacent cells. We then match v with the
closest unmatched vertex from w; & ws (provided of course that v is not already fixed to the chosen vertex).
If there is no vertex within distance h of v, or if both wy & w2 are already matched, then v is matched with
itself and prevented from matching with any other vertex in that coarsening step.

It might appear that such a process (which only allows a vertex to match with its two nearest neighbours)
would be destined to terminate prematurely since the two nearest neighbours of any given vertex, v, might
already be contained within the interior of a tour-fragment of fixed edges. However, recall from above
that any such vertices not at either end of a tour fragment are removed from the problem representation
thus giving v a chance to match with vertices which are not its nearest neighbours in the original problem
representation.

2.1.3 The choice of h

Virtually the only variable parameter within this matching process is h, the grid spacing. In fact it is easier
to work with the average number of vertices per grid cell, n, and to calculate h on this basis. If A is the area
of the smallest rectangle containing all the vertices then, in order for the average number of vertices in each
cell to be n, the area of each grid cell should be An/N giving h = \/An/N.

Notice that NV here refers to the number of vertices in the current coarsening step. Since this value
decreases at every step the grid spacing gets larger and larger until eventually, when N < n, the entire
problem is contained in one cell. This prevents the coarsening from coming to a premature end as would
happen if h were fixed and there were vertices further apart than h. It also allows matchings to take place
at increasingly longer range as the coarsening proceeds.

We have experimented (using the test suite described in §3.1) with n set to 5, 10, 15 & 20. In fact there
was very little difference between any of them although as n increases the matching becomes slower (as the
code must check for the closest vertices in 9 cells). On the other hand, as n decreases the coarsening rate
becomes slower (because matching takes place later on in the sparser areas of the problem) and so the code
must refine more levels. In the end we chose to use n = 10 and this is the value which applies in all the
experiments in Section 3.

2.2 Initialisation

As suggested in §1.2.3, principle (C2), the coarsening ceases when further coarsening would cause a degen-
erate problem, in this case when there remain only two vertices with a fixed edge between them. This is
guaranteed to occur because each coarsening level will match at least one pair of vertices and so the prob-
lem size will shrink. Initialisation is then trivial and consists of adding an edge between the two vertices to
complete the tour (the other edge of the tour being the fixed one).

2.3 Refinement: the (chained) Lin-Kernighan algorithm

We use the chained Lin-Kernighan algorithm for the refinement step of our multilevel procedure. As stated
in the introduction, the chained or iterated Lin-Kernighan algorithm is the most successful local search
technique for iteratively optimising a TSP tour. It is usually combined with a tour construction heuristic
which builds an legitimate initial tour. One such construction technique is Bentley’s greedy algorithm,
[4, 5], which proceeds by sorting all the inter-city distances by length and repeatedly adding in the shortest
edge which is not already in the tour and which will not create a subcycle (a tour with fewer than N edges).
In this way it progressively builds a series of tour fragments and in many ways resembles the matching
& coarsening process described above (although the coarsening tends, at least initially, to create fragments
with a uniform number of edges whereas the greedy algorithm has no such restriction).

Once a tour is constructed, optimisation can take place by ‘flipping’ edges. For example, if the tour con-
tains the edges (v1,w1) & (w2, v2) in that order, then these two edges can always be flipped to create (v1,w2)
& (w1, v2). This sort of step forms the basis of the 2-opt algorithm due to Croes, [8], which is a steepest de-
scent approach, repeatedly flipping pairs of edges if they improve the tour quality until it reaches a local
minimum of the objective function and no more such flips exist. In a similar vein, the 3-opt algorithm of Lin,
[24], exchanges 3 edges at a time. The Lin-Kernighan (LK) algorithm, [25], also referred to as variable-opt,
however incorporates a limited amount of hill-climbing by searching for a sequence of exchanges, some of
which may individually increase the tour length, but which combine to form a shorter tour. A vast amount
has been written about the LK algorithm, including much on its efficient implementation together with
some additional ideas to improve its quality, and we shall not repeat it here. For an excellent overview of
techniques see the survey of Johnson & McGeoch, [20], and for more details of the implementation used
here see Applegate, Bixby, Chvatal & Cook, [1], and Applegate, Cook & Rohe, [2].

The basic LK algorithm employs a good deal of randomisation and for many years the accepted method
of finding the shortest tours was simply to run it repeatedly with different random seed values and pick the
best (a technique which also had the advantage that it could be run in parallel on more than one machine
at once). Martin, Otto & Felten’s important contribution to the field, [26, 27], came with the observation
that, instead of restarting the procedure from scratch every time, it was more efficient to perturb the final
tour of one LK search and use this as the starting point for the next. In their original approach, Martin et
al. referred to their algorithm as chained local optimisation and used it as a form of accelerated simulated
annealing. Thus they would perturb or ‘kick” a tour and use LK to find a nearby local minimum. If the new
tour was not as good as the champion tour at that point, the algorithm would decide whether or not to keep
it as a starting point for the next perturbation by using a simulated annealing cooling schedule. Subsequent
implementations however generally discard any new tour which does not improve on the current champion
and always perturb the champion, [1, 2, 19, 20].

The method for perturbing the tour varies from implementation to implementation but generally in-
volves a so-called ‘double-bridge” move which exchanges four edges. This has the advantages of being
simple, compact and the move cannot be undone by standard implementations of the LK algorithm. In
[2], Applegate, Cook & Rohe test some different perturbation strategies and conclude that generally those
which do not alter the cost too greatly are to be preferred over completely random kicks.

In this paper we used the chained Lin-Kernighan (CLK) implementation of Applegate, Bixby, Chvatal
& Cook, [1], because a public domain version was easily accessible. However, as stated previously the
multilevel procedure can, in principle, be used with any iterative refinement scheme and had a version of
Johnson & McGeoch’s ‘production mode iterated LK’ algorithm, [20], been available we would have tried
that too.

2.3.1 Fixed edges

The only change we needed to make to the implementation of the CLK algorithm was to ensure that none
of the fixed edges were exchanged. We enforced this by altering the subroutine which calculated edge
lengths between a given pair of cities to return a large negative value whenever it was asked to evaluate
the length of a fixed edge. The reasoning behind this was that such a value would make any fixed edge so
unattractive for being exchanged that the code would never flip it. It should also mean that such edges are
kept well away from searches looking for candidate long edges to replace. In practice we found that in all
our experiments no such edges were ever flipped, however it is possible that, with a good knowledge of
the LK code, a more efficient implementation might be found by simply blocking (at a high level) any fixed
edges from ever being considered.

3 Experimental Results

We have tested the multilevel strategy with a summary and almost certainly inefficient implementation of
the matching and coarsening techniques built around a well engineered, highly optimised and very efficient
public domain implementation of the chained Lin-Kernighan algorithm (which also handles input of the
TSP instance and output of the final tour). The LK software is contained in an optimisation package written
by Applegate, Bixby, Chvatal & Cook, [1], and known as concorde. The version that we have been using is

c0991215.tar.gz! and we very gratefully acknowledge its authors for making this code available, hence
saving many months of work in the preparation of this paper.

The multilevel code wrapper that we have written around concorde is called sierra, both to reflect
the nature of the multilevel paradigm which ascends and descends through a mountain like structure of
problems, and also because it was the name of a car reputedly popular amongst sales representatives in
the 1990’s. To give an idea of the ease of implementation, sierra is written in C and contains less than
1,000 lines of code. Whilst we acknowledge that it is somewhat inefficient (although see §4.2 for possible
improvements), since the vast majority of the execution time is generally spent in the execution of the CLK
algorithm (and this is an inherent feature of this algorithm rather than a fault of concorde), we do not
believe that a more efficient version would significantly improve the results.

The tests were carried out on a DEC Alpha machine with a 466 MHz CPU and 1 Gbyte of memory. For
each instance and each code configuration we ran 3 tests with different random seed values.

3.1 Test suite

This paper has been written in part for the 8th DIMACS implementation challenge? which is aimed at
characterising approaches to the TSP. As such we have used the test suite of TSP problem instances supplied
there. These are in four groups:

(I) All 34 symmetric instances of 1,000 or more vertices from TSPLIB? a collection of sample TSP in-
stances compiled by Reinelt, [29, 30].

(IT) 26 randomly generated instances with uniformly distributed vertices. These range in size from 1,000
to 10,000,000 vertices, going up in size gradations of /10 and were constructed by Johnson, Bentley
& McGeoch specifically to study asymptotic behaviour in tour finding heuristics.

(III) 22 randomly generated instances with randomly clustered vertices. These range in size from 1,000 to
100,000 and have the same origin and purpose as (II) although clustered examples such as these are
generally considered to be more difficult to solve.

(IV) 7 randomly generated instances with the distances specified by a matrix. These range in size from
1,000 to 10,000 and again have the same origin as (II).

Of these examples we have omitted the 8 instances, 1 from TSPLIB plus all 7 from category IV, which
specify the problem as the upper triangular part of an N x N matrix of inter-city distances (rather than
Euclidean distance). This is because our grid based matching algorithm is unable to handle instances which
do not have an associated coordinate system. However, this is not an intrinsic problem of the multilevel
paradigm and in §4.1 we suggest a possible alternative.

We have also omitted the two largest instances (with 3,162,278 and 10,000,000 vertices) from the uni-
formly distributed random category (II) as they were too large to run on our test platform.

In order for the reader to make their own analysis of the test data, in Table 3 we give the Held-Karp
lower bound for each instance, the optimal tour length (if known) and the execution time, Tk, for the
Lin-Kernighan algorithm averaged over three runs. For each instance the name indicates the problem size,
e.g. £11577 has 1,577 cities, C10k has 10 thousand cities and E1M has 1 million cities. The HKLB figures
were downloaded from the DIMACS implementation challenge webpage and originally calculated using
concorde, [1]. Optimal tour lengths were also downloaded from the same webpage and were either
originally calculated using concorde (categories II & III) or, for the TSPLIB instances (category I), were
obtained from TSPLIB, [29, 30].

3.2 A worked example

Before describing the large scale tests and analysing the general trends of the results we first demonstrate
the nature of the multilevel CLK algorithm (MLCLK) by looking in detail at one particular example, the

lavailable from http://www.keck.caam.rice.edu/concorde/download.html
2seehttp://www.research.att.com/ dsj/chtsp/
3available from http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIBI5/

10

fixed free tour cumulative

level vertices edges edges length time
13509 13509 1.07

1 13509 5494 8015 1.51
2 9005 4063 4942 1.75
3 5801 2740 3061 1.88
4 3659 1769 1890 1.95
5 2247 1100 1147 1.99
14 26 13 13 2.04
15 16 8 8 2.04
16 10 5 5 2.04
17 6 3 3 2.04
18 4 2 2 2.04
19 2 1 1 25498974 2.04
18 4 2 2 25498974 2.04
17 6 3 3 25303476 2.04
16 10 5 5 25303476 2.04
15 16 8 8 24912931 2.05
14 26 13 13 24829781 2.06
5 2247 1100 1147 22659916 10.41
4 3659 1769 1890 22147276 18.17
3 5801 2740 3061 21551965 33.58
2 9005 4063 4942 20866993 65.23
1 13509 5494 8015 20283439 133.19
13509 13509 20025663 273.34

Tour Length: 20025663
Total Running Time: 273.39

Figure 5: An example of the sierra output

instance usal3509 from TSPLIB. The example is illustrative but we have not examined the complete set
of tests in enough detail to know whether it is truly representative. Figure 5 shows the output from sierra
(with some intermediate lines removed) as the problem is coarsened from 13,509 vertices down to 2 and
then back out to 13,509. As can be seen there are 20 levels (numbered from 0 to 19) and the coarsening
rate is around 1.6, i.e. the problem size, which we define to be the number of free edges (which in turn is
the number of vertices minus the number of fixed edges), shrinks by a factor of approximately 1.6 at every
level.

The tour is initialised on the coarsest level and the optimisation commences on the next level down. The
tour length figures shown are those at the end of a given level; the tour length at the beginning of the next
level is the same as this figure. At each level the CLK algorithm is allowed N kicks or restarts where N is
the problem size (the number of free edges) at that level. For example on level three the CLK algorithm is
allowed 3061 kicks. In the following sections below we refer to this configuration as MLCV LK.

In terms of runtime, notice that the problem input combined with the coarsening and initialisation only
take a total of 2.04 seconds out of 273.39. In fact for this configuration over half the time is spent in the
13,509 CLK iterations on the final level.

With regards to the tour quality, it is very interesting to compare these results with the standard CLK
algorithm run on the same instance and allowed 2N kicks (i.e. 27018). This configuration, C2NLK, has
almost the same runtime (in fact 276.77 seconds) and nearly the same final tour length (although in this
respect we shall see below that it is performing better than average). Most interestingly the MLCNLK
configuration has only achieved a tour length of 20,283,439 after 133.19 seconds when it starts on the final
CNLK refinement step. The C2VLK configuration on the other hand surpasses this value after just 179
kicks and 4.07 seconds (reaching a tour of length 20,253,398). However, C*V1K then spends a further 271
seconds to reach its final tour quality of 20,026,251 whilst MLCY LK marginally surpasses this figure in
just 140 seconds. We take this as evidence that backs up our speculation about the smoothing of the cost

11

function so that the final refinement step of MLCVLK is searching a more profitable region of the solution
space. Thus, even though the tour quality is not exceptional at the start of the final CLK refinement, the
final set of fixed edges which are released for optimisation are generally the shortest and typically the CLK
algorithm finds these the easiest to optimise.

3.3 Parameter settings

As described in Section 2 the multilevel CLK algorithm has very few modifiable parameters. One is the
average number of vertices, n, in each coarsening grid cell which in turn determines the grid spacing. After
some initial testing, as mentioned in §2.1.3, we used n = 10 for all of the tests.

A second, more important parameter which perhaps deserves more thorough testing is the relative
number of kicks or restarts that the CLK algorithm is allowed at each level (relative as compared to the
number of kicks on other levels). In the experiments described below we set it to a user specified fraction
of the problem size N (the number of free edges) at that level. Thus if the user picks N/10 then at each
level it is allowed 1/10th of the problem size for that level. However it could be argued that the algorithm
should be allowed a greater proportion of kicks on the upper levels (especially since the problem sizes are
so small and hence optimisation so fast) in order to better explore the solution space. On the other hand it
could equally be argued that the lower levels should be favoured even more than they already are because
they represent the original problem more closely. We have not properly investigated this issue save for
some incomplete testing using the same strategy as above but redefining the problem size (and hence the
number of kicks) as the number of vertices (which is typically around double the number of free edges).
Experiments with this configuration provided marginally better results than those for MLCV LK but, since
both the penultimate and final refinement steps include all the vertices, took much longer to run and we
concluded that it was not a worthwhile investment of time.

3.4 (Chained) Lin-Kernighan benchmarks

In Table 4 we present the benchmark results from the concorde implementation of the LK and CLK al-
gorithms. For the chained variant it is important to realise that, in common with many optimisation al-
gorithms, the more time that it is allowed, the better the solution it may be able to find (although with a
rapid tail off as the algorithm starts to approach its quality limit). An important parameter, therefore, is
the amount of optimisation allowed which can be specified as a time limit in seconds or, as we have used
here, the number of kicks or restarts that the algorithm is given. We have expressed this as a factor of NV,
the problem size, and so for example we use CV/*°LK to denote the configuration which allows N/10 kicks
(and we can also then refer to LK as C°LK).

The results in Table 4 (and Tables 5 & 6) are laid out as follows. For the TSPLIB instances (category I)
we report the results for each example averaged over 3 runs with different seed values. However for the
randomly generated instances we average the results for each class so that asymptotic analysis is easier. For
example the row labelled ‘E31k (2)’ contains average values over the 3 runs for the 2 instances with 31
thousand vertices, E31k.0 & E31k.1 (i.e. this row is averaged over a total of 6 runs). For each different
algorithmic configuration and each instance we then present the percentage excess over the HKLB and, in
the next column, the percentage excess over the optimum tour length (if known). We also give the ratio of
average runtime for the instance and configuration over the average runtime for the LK algorithm for the
same instance (the T, g figures in Table 3).

Finally, for each configuration, at the bottom of the Table we average all of the results; the HKLB and
runtime results are averaged all 3 runs and all 79 instances whilst the optimal excess figures are averaged
over those 58 instances for which an optimal tour is known.

3.5 A comparison of CLK and MLCLK

Denoting the multilevel versions of the LK & CLK code as MLLK & MLCLK, Table 5 contains a detailed
listing of the results from the MLLK, MLC¥ /10K and MLCMLK configurations. Recall from §3.2 that for
each MLC™LK variant, the number of kicks or restarts, m, refers to the problem size (the number of free
edges) for the particular level and not the original problem size.

12

In order to compare the overall results for the different variants, Table 1 contains a summary of Ta-
bles 4 & 5 by just presenting the overall averages sorted in order of tour quality. Firstly then, we can
immediately see from the Table that each MLC™LK result is better than the corresponding C™LK. This
might not be too surprising since each multilevel variant takes longer than the C™LK counterpart and in-
cludes a complete C™LK run (albeit with different starting conditions). However notice that although the
quality measures are sorted in order, the timings are not and impressively MLC/!°LK actually achieves
higher quality results than CVLK and is nearly 4 times faster.

Table 1: A summary of C"LK and MLC™LK results

Average % excess
configuration | HKLB | opt T/TLi
MLCVLK 1.028 0.252 73.318
MLCN/10LK 1.389 0.625 9.947
CNLK 1.497 0.763 38.585
CN/WOLK | 2.085 1.382 5.175
MLLK 2.536 1.751 2.542

LK 3.865 3.122 1.000

Looking at the figures in more detail there is actually a remarkable consistency. For each value of m
(= 0,N/10,N), the MLC™LK configuration cuts the percentage excess over the HKLB by about a third
as compared to C™LK. Furthermore, for those instances where an optimal tour is known, MLCVLK cuts
the percentage excess over the optimal tour length by two thirds as compared with CVLK (in other words
CNLK is 3 times further from the optimum).

In order to achieve these improvements MLCVLK and MLCY/*°LK only require roughly twice the run-
time of CVLK and CM/0LK respectively. Of course any additional runtime is regrettable but this twofold
increase compares very favourably with the near 40-fold average increase required (for these instances) to
go from LK to CVNLK.

The additional time overhead for MLLK as compared to LK is also of a similar order, about 2.54. How-
ever MLLK has greater relative overheads than say MLCVLK where most of the execution time is spent in
CLK iterations. We therefore feel that this 2.54 figure is more susceptible to the improvements suggested in
§4.2 and might well be considerably reduced by a more efficient implementation.

In fact it is not too difficult to give an approximate justification why the multilevel strategy should add
this factor of two. Suppose first of all that the CLK algorithm were of O(XV) in execution time. In fact we
know that it is greater than this but Johnson & McGeoch conclude that for instances of up to 1 million cities
it is subquadratic, [20]. Now suppose that the multilevel coarsening manages to halve the problem size at
every step. Again we know that this is an upper bound and in practice it is actually somewhat less than
this (e.g. 1/1.6 in the worked example, §3.2) but experience indicates that typically this is not too far off.
Let To be the time for CLK to run on a given instance of size N and T}, the time to coarsen and contract
it. The assumption on the coarsening rate gives us a series of problems of size N, N/2, ..., N/N whilst the
assumption on CLK having linear runtime gives the total runtime for MLCLK as Ty +To/N +...+Tp/2+
To. Again experience (and §3.2) indicate that Ty < Tp and so we can neglect it giving a total runtime of
To/N+.. +To/2+To = 2Tp, i.e. MLCLK takes twice as long as CLK to run. Of course the fact that the CLK
algorithm is actually superlinear and that the coarsening rate is less than 2 serve to neutralise each other in
some way. Also the final CLK run of the MLCLK algorithm is likely to already have a very good starting
tour which means that it should run even faster than when used as a standalone. Nonetheless this factor
of two is a good ‘rule of thumb’. Finally note that if the multilevel procedure were to be combined with an
O(N?) or even O(N?) algorithm then this analysis comes out even better for the multilevel overhead as the
final refinement step would require an even larger proportion of the total.

With this factor of two in mind we then decided to compare CVLK with MLCV/2LK and C2VLK with
MLCYLK, reasoning that for each pair their runtimes should be approximately equivalent. The detailed
figures for the new configurations (C2VLK & MLC/2LK) are shown in Table 6 but we summarise the
comparison in Table 2. As can be seen the runtime assumptions were very good and for both pairs, CNLK
& MLCN/2LK and C?NLK & MLCYLK, the average runtime figures are extremely close. Meanwhile the
quality improvement imparted by the multilevel process is again fairly consistent with both multilevel

13

variants cutting the percentage excess over the HKLB by over a quarter (actually 26-27%).

Table 2: A further summary of results comparing the quality achieved for similar runtimes

Average % excess
configuration | HKLB | opt T/TrLk

MLCNLK | 1.028 0.252 73.318
MLCY/2LK | 1.099 0326 38.407
C2NLK 1.422 0.678 73.973

CNLK 1.497 0.763 38.585

These tests also illustrate something further. It could be argued that the multilevel scheme MLC™LK
works better than C™LK because for a given problem instance it is allowed more kicks in total (even though
at the coarser levels the kicks are applied to a problem with large numbers of fixed edges). However
assuming the coarsening rate of 2 again then MLC™LK is allowed approximately 2m kicks. Hence the fact
that MLC™LK produces results 25% better than C*™LK (at least for m = N/2, N) demonstrates that the
multilevel procedure is adding some extra quality.

Finally, by good fortune the average quality of MLC/1°LK, an excess of 1.389 over the HKLB, is al-
most the same as (in fact marginally better than) that of C2VLK, an excess of 1.422, allowing us to make
a comparison based on how much time each variant requires to achieve the same quality. In fact for this
set of benchmark instances MLCM/!0LK is a factor of 7.4 faster than C2VLK on average, an impressive
improvement.

3.5.1 Individual results

Figure 6: An optimal tour of the £11577 instance

The above analysis is based on averaged results over all 79 test instances and has thrown up some
interesting consistencies. However, looking in more detail at the individual instances the results are a little
less clear. Firstly comparing CVLK and MLCVLK for the uniformly distributed random instances Enk for
n =1,3,10, 31, 100, 316, & E1V, it is clear that the multilevel process only contributes a little to the
quality. On the other hand, for the clustered random examples, Cnk forn =1, 3,10, 31, 100, those which
the CLK algorithm finds more difficult to optimise, the multilevel strategy significantly enhances the tour
quality. This is even more striking for the real life instances £11400, £11577 & £13795 from TSPLIB.
Figure 6 illustrates an optimal tour for the £11577 instance which shows some of the dense clustering (this
optimal tour was found by an MLCVLK variant in around 16 seconds). The three CLK variants all have

14

great difficulty with these examples (this is also remarked on in [1, 20]) and yet the multilevel variants find
very good solutions (especially if one considers the percentage excess over the optimal solution which in
these cases are further away from the HKLB than average).

It seems likely (even if our speculation about the smoothing of the objective function is flawed) that this
is because the multilevel algorithm is good at regarding these natural clusters as a single entity, a mega-
city as it were. In a high quality tour a cluster is typically only going to have one inbound edge and one
outbound. The algorithm can thus concentrate on getting these longer edges correct when it has a much
simpler coarse representation of the problem and then sort out the tour details within the cluster later on.

4 Summary and Future Research

We have described and tested a multilevel approach to the Travelling Salesman Problem. The approach has
been derived from first principles; by examing existing examples of the multilevel paradigm in action and
extracting ‘generic’ techniques we have been able to apply it to a completely different problem. The result-
ing multilevel algorithm is shown to considerably enhance the quality of tours for both the Lin-Kernighan
and Chained Lin-Kernighan algorithms, in combination the TSP champion heuristics for nearly 30 years.
We speculate that this is because the multilevel process samples the solution space and smooths the objec-
tive function and is thus able to get closer to the global minimum. In this sense we regard the multilevel
paradigm as a type of optimisation accelerator which here we have used in combination with the (C)LK
algorithm rather than as a specific enhancement to (C)LK alone.
For the instances and code configurations tested here, the highlights of the results are:

e For 3 different C"LK configurations (for m = 0, N/10, N) the multilevel procedure cuts the percentage
excess over the HKLB by around a third in return for a modest twofold increase in runtime.

e For those instances where an optimal tour is known, MLCV LK cuts the percentage excess over the
optimal tour length by two thirds as compared with CVLK (in other words CVLK is 3 times further
from the optimum).

e In two cases (m = N/2,N), given approximately the same amount of execution time, a multilevel
configuration MLC™LK cut the percentage excess over the HKLB by over a quarter as compared with
a single level configuration C2™LK.

e Alternatively, in order to achieve the same quality of tour, the C2VLK configuration took over 7 times
as long as MLCM/10LK.

e The multilevel versions tend to do significantly better on the harder, clustered problems which the LK
& CLK algorithms have the most difficultly with.

We conclude that the multilevel strategy can be a powerful tool in the solution of the TSP and that the
multilevel paradigm can be successfully applied to yet another combinatorial optimisation problem. One
major piece of work for further research therefore is to apply the multilevel paradigm to further combina-
torial optimisation problems and examine the results (see also [34] for further thoughts on this project).

4.1 Variants and extensions

In terms of the multilevel CLK scheme, apart from optimisation of parameter settings (see §3.3), we suspect
that the algorithm might benefit from further research into matching strategies. For example, one could
build a Delaunay triangulation of the vertices (such as in [10]) or some other form of neighbour graph and
only allow matching along its edges. Alternatively one could use any tour construction heuristic initially
(such as the greedy algorithm) and force the coarsening to match only those pairs of vertices which are
adjacent in this tour.

This tour construction suggestion might also be a good way to address instances where the inter-city
distances are specified by a matrix rather than by Euclidean distance (e.g. see §3.1). It would certainly be
more efficient than a naive but straightforward matching procedure such as picking vertices at random,
searching all N — 1 edge lengths to find the closest pair of neighbours and matching with one of them.

15

4.2 Efficiency

As mentioned in Section 3, the sierra implementation of the multilevel techniques is not as efficient
as it could be and it is certainly possible that further work could give improvements in execution time.
In particular, during the coarsening, inter-city distances are calculated ‘on the fly’ as required and it is
likely that the use of caching techniques such as those used by concorde, [1], would improve efficiency.
Perhaps a more important enhancement though would be closer integration of sierra and concorde.
In particular concorde is called as a self-contained subroutine which creates and then deletes all of its
internal data structures every call. A better strategy would be for sierra to maintain them itself and to
allow concorde to reuse them. Finally, as mentioned in §2.3.1, a more efficient method for the blocking of
fixed edges might prove beneficial.

It should be stressed here that these improvement suggestions all fall on the sierra implementation
rather than on the concorde package which could not anticipate them. As to how much difference they
might make it it impossible to say. However, as mentioned above, since the vast majority of the code
execution time is spend in CLK iterations, it is doubtful that, apart from the MLLK configuration, such
efficiency enhancements would significantly improve runtimes further.

References

[1] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Finding Tours in the TSP. Tech. Rep. TR99-05, Dept.
Comput. Appl. Math., Rice Univ., 1999.

[2] D. Applegate, W. Cook, and A. Rohe. Chained Lin-Kernighan for large traveling salesman problems.
Tech. Rep., Dept. Comput. Appl. Math., Rice Univ., July 2000.

[3] S. T. Barnard and H. D. Simon. A Fast Multilevel Implementation of Recursive Spectral Bisection for
Partitioning Unstructured Problems. Concurrency: Practice & Experience, 6(2):101-117,1994.

[4] J. L. Bentley. Experiments on Traveling Salesman Heuristics. In D. S. Johnson, editor, Proc. 1st Annual
ACM-SIAM Symp. Discrete Alg. (SODA "90), pages 91-99, San Francisco, 1990. SIAM.

[5] J. L. Bentley. Fast Algorithms for Geometric Traveling Salesman Problems. ORSA |. Comput., 4(4):387—
411, 1992.

[6] E. Bonomi and J.-L. Lutton. The N-City Travelling Salesman Problem: Statistical Mechanics and the
Metropolis Algorithm. SIAM Rev., 26(4):551-568, 1984.

[7] T.N. Buiand C. Jones. A Heuristic for Reducing Fill-In in Sparse Matrix Factorization. In R. F. Sincovec
et al., editor, Parallel Processing for Scientific Computing, pages 445-452. SIAM, 1993.

[8] G. A. Croes. A method for solving traveling salesman problems. Oper. Res., 6:791-812, 1958.

[9] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the Visualization of
Graphs. Prentice-Hall, New Jersey, U.S.A., 1998.

[10] S.]. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153-174,1987.

[11] T. M. J. Fruchterman and E. M. Reingold. Graph Drawing by Force-Directed Placement. Software —
Practice & Experience, 21(11):1129-1164, 1991.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, San Francisco, 1979.

[13] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems. Theoret.
Comput. Sci., 1:237-267,1976.

[14] R. Hadany and D. Harel. A Multi-Scale Algorithm for Drawing Graphs Nicely. Tech. Rep. C599-01,
Weizmann Inst. Sci., Faculty Maths. Comp. Sci., Jan, 1999.

16

[15] D. Harel and Y. Koren. A Fast Multi-Scale Algorithm for Drawing Large Graphs. Tech. Rep. C599-21,
Weizmann Inst. Sci., Faculty Maths. Comp. Sci., Nov, 1999.

[16] M. Held and R. M. Karp. The Traveling Salesman Problem and Minimum Spanning Trees. Oper. Res.,
18:1138-1162, 1970.

[17] M. Held and R. M. Karp. The Travelling Salesman Problem and Minimum Spanning Trees: Part II.
Math. Programming, 1(1):6-25,1971.

[18] B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs. In S. Karin, editor,
Proc. Supercomputing '95, San Diego, 1995. ACM Press, New York.

[19] D. S. Johnson. Local Optimization and the Traveling Salesman Problem. In Proc. 17th Collog. on Au-
tomata, Languages and Programming, volume 443 of LNCS, pages 446—461. Springer, 1990.

[20] D.S.Johnson and L. A. McGeoch. The travelling salesman problem: a case study. In E. Aarts and J. K.
Lenstra, editors, Local Search in Combinatorial Optimization, pages 215-310. Wiley, Chichester, 1997.

[21] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning Irregular
Graphs. SIAM J. Sci. Comput., 20(1):359-392, 1998.

[22] G. Karypis and V. Kumar. Multilevel k-way Partitioning Scheme for Irregular Graphs. J. Par. Dist.
Comput., 48(1):96-129,1998.

[23] B. W.Kernighan and S. Lin. An Efficient Heuristic for Partitioning Graphs. Bell Syst. Tech. ., 49:291-308,
1970.

[24] S. Lin. Computer solutions of the traveling salesman problem. Bell Syst. Tech. |., 44:2245-2269, 1965.

[25] S. Lin and B. W. Kernighan. An effective heuristic for the traveling salesman problem. Oper. Res.,
21(2):498-516,1973.

[26] O.Martin, S. W. Otto, and E. W. Felten. Large-Step Markov Chains for the Traveling Salesman Problem.
Complex Syst., 5(3):299-326,1991.

[27] O. Martin, S. W. Otto, and E. W. Felten. Large-step Markov chains for the TSP incorporating local
search heuristics. Oper. Res. Lett., 11(4):219-224,1992.

[28] F. Pellegrini and J. Roman. SCOTCH : A Software Package for Static Mapping by Dual Recursive Bipar-
titioning of Process and Architecture Graphs. In H. Liddell et al., editor, High-Performance Computing &
Networking, Proc. HPCN’96, Brussels, volume 1067 of LNCS, pages 493-498. Springer, 1996.

[29] G. Reinelt. TSPLIB— A Traveling Salesman Problem Library. ORSA J. Comput., 3(4):376-384, 1991.
[30] G. Reinelt. TSPLIB95. Tech. Rep., Inst. Angewandte Math., Univ. Heidelberg, 1995.

[31] C. Walshaw. A Multilevel Algorithm for Force-Directed Graph Drawing. Tech. Rep. 00/IM/60, Univ.
Greenwich, London SE10 9LS, UK, April 2000.

[32] C. Walshaw and M. Cross. Mesh Partitioning: a Multilevel Balancing and Refinement Algo-
rithm. SIAM]. Sci. Comput., 22(1):63-80, 2000. (originally published as Univ. Greenwich Tech. Rep.
98/IM/35).

[33] C. Walshaw, M. Cross, R. Diekmann, and E Schlimbach. Multilevel Mesh Partitioning for Optimising
Domain Shape. Int. |. High Performance Comput. Appl., 13(4):334-353, 1999. (originally published as
Univ. Greenwich Tech. Rep. 98/IM/38).

[34] C. Walshaw, M. G. Everett, and M. Cross. The Multilevel Paradigm: a Generic Meta-Heuristic for
Combinatorial Optimisation Problems? Tech. Rep. (in preparation), Univ. Greenwich, London SE10
9LS, UK, 2000.

17

Table 3: Baseline results: HKLB, optimal tour lengths and 77,k

TSPLIB Random instances

Held-Karp optimal Held-Karp optimal
instance lower bound tour length Trk | instance lower bound tour length Tk
dsj1000 18546976.916667 18659688 0.240 E1k.0 23183212.500000 23360648 0.170
pr1002 256765.916667 259045 0.160 Elk.1 22839567.526190 22985695 0.170
ul060 222650.875000 224094 0.180 E1k.2 22858725.666667 23023351 0.170
vm1084 236162.416667 239297 0.150 E1k.3 23002034.500000 23143748 0.180
pcb1173 56351.000000 56892 0.170 Elk.4 22542848.833333 22698717 0.150
d1291 50208.578571 50801 0.170 E1k.5 23057465.166667 23192391 0.180
r11304 249093.833333 252948 0.190 Elk.6 23166620.333333 23349803 0.170
rl1323 265814.500000 270199 0.170 E1k.7 22666814.125000 22879091 0.170
nrwl379 56396.208333 56638 0.210 E1k.8 22795477.333333 23025754 0.160
11400 19783.000000 20127 0.440 E1k.9 23215285.062500 23356256 0.150
ul432 152535.000000 152970 0.200 E3k.0 40348236.083333 40634081 0.630
11577 21886.000000 22249 0.260 E3k.1 40046054.229167 40315287 0.580
d1655 61549.250000 62128 0.220 E3k.2 40006528.375000 40303394 0.610
vm1748 332060.722222 336556 0.270 E3k.3 40318840.516667 40589659 0.600
ul8l7 56688.250000 57201 0.210 E3k.4 40462881.041667 40757209 0.610
r11889 311704.500000 316536 0.280 E10k.0 71362276.444048 2.320
d2103 79307.000000 80450 0.230 E10k.1 71565485.443519 2.360
u2152 63858.062500 64253 0.250 E10k.2 71351794.654167 2.310
u2319 234215.000000 234256 0.550 E31k.0 | 126474847.479514 9.210
pr2392 373489.666667 378032 0.330 E31k.1 | 126647285.326389 9.130
pcb3038 136587.500000 137694 0.440 | E100k.0 | 224330692.072818 40.780
13795 28477.250000 28772 0.690 | E100k.1 | 224241788.835713 39.950
fnl4461 181568.833333 182566 0.710 | E316k.0 | 398582616.458995 159.610
r15915 556848.833333 565530 0.850 E1IM.0 | 708703512.913668 617.500
15934 548470.550000 556045 0.830 C1k.0 11325839.750000 11387430 0.280
pla7397 23126463.916667 23260728 1.310 Cilk.1 11330835.500000 11376735 0.280
111849 913980.291667 923288 2.230 Clk.2 10809149.125000 10855033 0.280
usal3509 19851463.750000 19982859 3.330 Ci1k.3 11823905.791667 11886457 0.330
brd14051 467127.622222 2.690 Clk.4 11433764.375000 11499958 0.320
di15112 1564880.029167 3.750 Clk.5 11328719.175000 11394911 0.300
d18512 642116.826389 3.780 Clk.6 10092637.145833 10166701 0.280
pla33810 65705438.125000 6.450 Cilk.7 10602996.291667 10664660 0.320
pla85900 | 141806385.000000 20.040 C1k.8 11566101.750000 11605723 0.390
C1k.9 10835951.222222 10906997 0.370
C3k.0 19080350.708333 19198258 1.090
C3k.1 18901572.291667 19017805 1.050
C3k.2 19410947.104167 19547551 1.090
C3k.3 19001115.625000 19108508 1.080
C3k.4 18757584.625000 18864046 1.050
C10k.0 32782155.221284 4.010
C10k.1 32958945.515201 3.920
C10k.2 32926889.150397 4.000
C31k.0 59169192.695278 15.900
C31k.1 58840096.446393 16.530
C100k.0 | 103916253.916802 67.350
C100k.1 | 104663040.340307 69.780

18

Table 4: Benchmark LK, C¥/10LK & CNLK results

LK CN/I0LK CNLK

Average % excess Average % excess Average % excess
instance | HKLB | opt T/Trx | HKLB [opt T/Tpx | HKLB [opt T/TLk
dsj1000 2.597 1.978 1.000 1.289 0.678 4.292 0.965 0.355 33.000
pr1002 | 3.832 2918 1.000 | 2.288 1.389 3.438 1.310 0.418 20.062
ul060 | 2.939 2.276 1.000 1.481 0.828 3444 | 0.866 0.217 23.000
vm1084 3.213 1.861 1.000 2.070 0.733 3.933 1.665 0.333 28.333
pcb1173 3.397 2.413 1.000 1.752 0.784 2.941 1.379 0.415 17.000
d1291 5.275 4.047 1.000 3.359 2.154 3.118 2.552 1.356 20.588
rl1304 5.193 3.590 1.000 2.703 1.138 3.421 2.361 0.802 23.263
rl1323 5.307 3.598 1.000 3.021 1.350 3.706 2.353 0.692 22.824
nrwl379 | 2.000 1.564 1.000 | 0.989 0.558 3.000 | 0.643 0.214 18.476
f11400 | 10.014 8.133 1.000 | 2.836 1.078 6.159 2411 0.661 51.659
ul432 2.706 2.414 1.000 1.522 1.234 3.600 0.747 0.460 23.400
11577 | 11.560 9.740 1.000 | 9.344 7.560 5.385 | 6.835 5.092 47.385
d1655 4.994 4.016 1.000 2.435 1.481 3.318 1.658 0.711 19.591
vm1748 3.153 1.775 1.000 1.786 0.427 4.074 1.521 0.165 28.370
ul817 4.330 3.395 1.000 2.762 1.841 2.857 1.901 0.988 17.857
rl1889 5.101 3.497 1.000 2.876 1.306 4214 2.252 0.691 31.071
d2103 3.697 2224 1.000 3.145 1.679 4.217 2.474 1.018 32.174
u2152 3.954 3.315 1.000 2.224 1.595 3.000 1.367 0.744 17.880
u2319 | 0.631 0.614 1.000 | 0.305 0.287 5.691 0.176 0.159 46.182
pr2392 3.699 2.453 1.000 2.405 1.175 3.333 1.860 0.636 21.697
pcb3038 | 3.520 2.688 1.000 1.634 0.817 3.318 1.153 0.341 22.023
f13795 9.343 8.223 1.000 6.411 5321 6.174 2.938 1.884 50.174
fnl4461 2.060 1.503 1.000 1.038 0.486 3.887 | 0.762 0.212 25.563
15915 4.995 3.383 1.000 2.999 1.418 4.682 2.344 0.773 34.929
rl5934 | 4.313 2.892 1.000 | 2.389 0.995 4.614 | 2.060 0.670 34.554
pla7397 | 3.058 2.463 1.000 1.280 0.695 5.405 | 0.881 0.299 38.603
111849 3.601 2.556 1.000 1.789 0.763 5.664 1.373 0.351 41.108
usal3509 | 3.129 2.451 1.000 1.315 0.648 6.066 0.911 0.247 43.333
brd14051 2.301 1.000 1.237 5.126 0.755 37.978
d15112 2.265 1.000 1.049 5.587 0.717 40.507
d18512 2.220 1.000 1.024 4.934 0.683 34.767
pla33810 | 2.686 1.000 | 1.327 6.056 | 1.015 48.039
pla85900 1.718 1.000 | 0.879 6.249 | 0.664 49.419
Elk (10) 2.434 1.685 1.000 1.382 0.641 3.473 0.980 0.242 21.527
E3k (5) 2.632 1.914 1.000 1.386 0.677 4.099 0.988 0.281 27.946
E10k (3) | 2.588 1.000 | 1.255 5.627 | 0.896 42.009
E31k (2) 2.573 1.000 1.233 5.741 0.881 43.528
E100k (2) | 2.587 1.000 | 1.278 5.673 | 0.908 38.965
E316k (1) 2.646 1.000 1.311 5.611 0.951 42.385
EIM (1) 2.612 1.000 1.263 6.253 0.903 52.237
Cl1k (10) 4.157 3.601 1.000 2.125 1.579 5.759 1.452 0.910 44.254
C3k (5) 5.980 5.334 1.000 3.465 2.834 6.742 2.713 2.087 54.254
C10k (3) 5.788 1.000 2.644 9.572 1.947 79.618
C31k (2) 5.954 1.000 2.717 9.418 2.044 82.367
C100k (2) 5.457 1.000 2.827 9.132 1.931 72.669
Average | 3.865 3.122 1.000 | 2.085 1.382 5.175 1.497 0.763 38.585

19

Table 5: MLLK, MLCY/10L K & MLCV LK results

MLLK MLCN/10LK MLCVLK
Average % excess Average % excess Average % excess

instance | HKLB | opt T/Trx | HKLB [opt T/Tpx | HKLB [opt T/TLk
dsj1000 2.035 1.419 2.417 1.245 0.634 9.500 0.888 0.279 67.625
pr1002 2.999 2.093 2.438 1.772 0.877 6.375 1.376 0.484 38.938
ul060 | 2.362 1.703 2556 | 1.305 0.652 7.000 | 0.859 0.209 43.222
vm1084 2.803 1.456 2.667 1.659 0.327 7.800 1.434 0.105 51.000
pcb1173 3.466 2.482 2.647 2.043 1.072 6.765 1.420 0.455 36.118
d1291 5.482 4.252 2.647 2.628 1.431 6.294 1.513 0.329 34.529
rl1304 2.849 1.282 2.368 2.198 0.641 5.895 1.643 0.094 33.842
rl1323 3.216 1.541 2.706 2.253 0.594 6.941 1.876 0.223 42.765
nrw1379 1.925 1.490 2.810 0.952 0.521 7.286 0.610 0.180 40.190
f11400 2.927 1.168 2227 2452 0.701 10.318 1.865 0.124 83.091
ul432 2.399 2.108 2.700 1.151 0.863 7.250 0.709 0.422 43.950
11577 4414 2.710 2.385 2.728 1.052 8.423 1.768 0.108 60.538
d1655 3.340 2.377 2.727 1.901 0.951 6.273 1.460 0.515 37.182
vm1748 | 3.339 1.958 2.593 1.868 0.507 8.074 | 1.619 0.262 54.296
ul817 4.436 3.500 2.714 2.305 1.388 6.048 1.543 0.633 32.286
rl1889 | 3.812 2.227 2.500 1.949 0.393 7.393 1.958 0.402 50.036
d2103 5.460 3.961 3.174 2.657 1.198 8.130 2.300 0.846 52.783
u2152 3.788 3.150 2.640 2.105 1.477 6.040 1.265 0.643 33.920
u2319 | 0.617 0.599 2236 | 0313 0.296 9.055 0.211 0.194 68.273
pr2392 3.736 2.489 2.636 2.231 1.003 7.182 1.744 0.521 45.303
pcb3038 2.770 1.944 2.727 1.478 0.662 7477 1.109 0.296 47.227
f13795 2.721 1.668 2.464 1.344 0.306 8.971 1.576 0.535 67.870
fnl4461 2.018 1.460 2.859 1.065 0.513 8.775 0.752 0.202 57.141
15915 3.744 2.152 2.529 2.308 0.738 8.141 1.789 0.227 51.471
rl5934 3.344 1.936 2.663 2.117 0.726 9.145 1.746 0.360 67.313
pla7397 2.315 1.724 2.756 1.115 0.532 10.794 0.919 0.337 77.420
111849 2.762 1.726 2.426 1.545 0.521 9.798 1.243 0.223 71.422
usal3509 | 2.258 1.586 2.769 1.155 0.490 12.012 | 0.850 0.187 86.535
brd14051 1.985 2.926 0.944 11.487 0.670 81.030
d15112 1.975 2.573 0.972 11.149 0.721 80.160
d18512 2.096 2.717 0.960 11.048 0.667 77.008
pla33810 | 2.691 2.823 1.466 12.305 | 1.082 88.819
pla85900 1.895 2.929 1.026 12.358 | 0.746 91.151
Elk (10) 2.173 1.426 2.558 1.303 0.562 7.121 0.957 0.219 46.652
E3k (5) 2231 1.516 2.437 1.211 0.503 8.171 0.905 0.199 57.218
E10k (3) 2.339 2.352 1.179 10.602 0.897 79.273
E31k (2) 2.330 2.323 1.163 11.189 0.851 83.810
E100k (2) | 2.345 2.323 1.194 11.032 | 0.878 80.353
E316k (1) 2.386 2.411 1.220 12.014 0.930 83.708
EIM (1) 2.321 2.516 1.180 11.924 0.879 95.617
C1k (10) 1.740 1.195 2579 | 0.903 0.363 11.370 | 0.645 0.107 88.941
C3k (5) 2.543 1.917 2.490 1.306 0.687 12.861 0.804 0.189 104.770
C10k (3) 2435 2.464 1.227 16.698 0.919 145.012
C31k (2) 2.737 2.303 1.371 16.051 1.028 138.254
C100k (2) 2.745 2.300 1.422 15.922 0.989 137.376
Average 2.536 1.751 2.542 1.389 0.625 9.947 1.028 0.252 73.318

20

Table 6: C2NLK & MLCHY/21K results

C*NLK MLCN/2LK
Average % excess Average % excess

instance | HKLB [opt T/Trx | HKLB | opt T/TrLr
dsj1000 | 0.960 0.350 65.292 | 0.954 0.344 36.958
pr1002 1.295 0.404 37.812 1.343 0.451 20.250
ul060 | 0.866 0.217 44.667 | 0.969 0.319 23.333
vm1084 | 1.598 0.267 55.333 1.451 0.122 28.267
pcb1173 1.303 0.339 32.765 1.469 0.504 20.000
di1291 2.548 1.352 38.765 1.867 0.679 19.941
rl1304 | 2361 0.802 45.737 | 1.755 0.205 19.105
rl1323 | 2282 0.623 44.176 | 2.053 0.397 24.118
nrwl379 | 0.595 0.166 35.286 | 0.618 0.189 21.952
f11400 2411 0.661 102.727 | 1.865 0.124 42.273
uld32 | 0.661 0.375 44150 | 0.840 0.553 23.700
11577 | 6.141 4.409 90.577 | 2.636 0.962 34.615
d1655 1.359 0.415 35.864 | 1.405 0.460 20.318
vm1748 | 1.484 0.128 55.741 1.609 0.252 29.296
ul8l7 | 1792 0.879 33.952 1.626 0.715 18.810
rl1889 | 2179 0.620 58.643 1.931 0.375 25.964
d2103 | 2429 0.973 63.870 | 2.262 0.809 28.826
u2152 1.278 0.655 33.960 1.394 0.770 18.600
u2319 | 0.165 0.147 90.909 0.211 0.194 38.327
pr2392 1.739 0.516 41.121 1.821 0.598 23.212
pcb3038 1.123 0.311 41.818 1.169 0.356 25.250
f13795 | 2928 1.873 100.304 | 1.165 0.129 34.899
fnl4461 0.731 0.181 49.620 | 0.768 0.218 29.887
115915 | 2197 0.629 67.353 2.111 0.544 29.341
rl5934 | 2.004 0.615 67.205 1.747 0.361 33.518
pla7397 | 0.842 0.260 74.809 0.911 0.328 40.534
rl11849 1.356 0.334 79.816 1.303 0.281 37.215
usal3509 | 0.878 0.215 83.724 | 0.882 0.218 43.201
brd14051 0.716 73.524 | 0.702 42.472
d15112 | 0.685 76.771 0.737 46.395
d18512 | 0.646 70.013 | 0.735 43.066
pla33810 | 0.971 92.936 1.062 47.837
pla85900 | 0.634 97.923 | 0.837 48.116
Elk (10) | 0.935 0.197 40.579 1.042 0.304 23.742
E3k (5) | 0.948 0.242 52230 | 0.982 0.276 28.868
E10k (3) | 0.859 75292 | 0.930 40.233
E31k (2) 0.841 78.074 | 0.917 42.585
E100k (2) 0.868 73.495 | 0.938 44.571
E316k (1) 0.905 75.740 | 0.980 44.514
EIM (1) | 0.862 92599 | 0.935 47.325
Cik (10) 1.407 0.865 86.376 | 0.684 0.145 46.032
C3k(5) | 2385 1761 106.280 | 0.930 0.314 53.587
C10k (3) 1.924 154.550 | 0.976 76.913
C31k (2) 1.897 154.926 1.133 71.917
C100k (2) 1.875 141.854 1.092 71.573
Average | 1422 0.678 73.973 1.099 0.326 38.407

21

