
A Multilevel Approach to the Graph Colouring Problem

Chris Walshaw
Computing and Mathematical Sciences, University of Greenwich,

Park Row, Greenwich, London, SE10 9LS, UK.
Email: C.Walshaw@gre.ac.uk; URL: www.gre.ac.uk/

�
c.walshaw

Mathematics Research Report 01/IM/69

May 9, 2001

Abstract

We motivate, derive and implement a multilevel approach to the graph colouring problem. The result-
ing algorithm progressively coarsens the problem, initialises a colouring and then employs either Culber-
son’s iterated greedy algorithm or tabu search to refine the solution on each of the coarsened problems
in reverse order. Tests on a large suite of problem instances indicate that for low-density graphs (up to
around 30% edge density) the multilevel paradigm can either speed up (iterated greedy) or even improve
(tabu search) the asymptotic convergence. This augments existing evidence that, although the multilevel
framework cannot be considered as a panacea for combinatorial optimisation problems, it can provide a
useful addition to the combinatorial optimisation toolkit.

Keywords: Multilevel Refinement; Graph Colouring; Combinatorial Optimisation.

1 Introduction

The Graph Colouring Problem (GCP) can be simply stated as follows: given a graph
�������	��

, assign a
colour to each vertex in

�
such that no two adjacent vertices have the same colour and so that the number

of colours are minimised. If found, the minimum possible number of colours is known as the chromatic
number of the graph

�
and denoted � ���

 . The GCP is well studied and has many applications including

scheduling, timetabling and the solution of sparse linear systems, see e.g. [4, 9, 23, 24]. However it is
also known to be one of the most difficult combinatorial optimisation problems, e.g. [18]. Not only is the
problem of finding � ���

 NP-hard, [11], but Lund & Yannakakis have even shown that, for some ����� ,
approximate graph colouring within a factor of ��� is also NP-hard, [25].

In this paper we consider a multilevel approach to colouring and look at its potential to aid the search
for good colourings in reasonable time. The multilevel paradigm is a simple one, which at its most basic
involves recursive coarsening to create a hierarchy of approximations to the original problem. An initial
solution is found (sometimes for the original problem, sometimes at the coarsest level) and then iteratively
refined at each level. Projection operators can transfer the solution from one level to another.

As a general solution strategy the multilevel procedure has been around for many years and has been
applied to many problem areas (for example multigrid techniques can be viewed as a prime example of
the multilevel paradigm). Survey papers such as [33] attest to its efficacy. However, with the exception of
graph partitioning, multilevel techniques have not been widely applied to combinatorial problems.

1

An important prerequisite for the multilevel paradigm is a good local search strategy to carry out the re-
finement at each level. Unfortunately the GCP has not been generally viewed as a prime candidate for
local search heuristics. Nonetheless some success has been achieved in this area and, for example, Hertz
& de Werra, [15], and Glover et al., [13], have applied tabu search, Johnson et al. have looked at simulated
annealing, [17], and Culberson et al. have investigated the iterated greedy algorithm, [6, 7, 8]. In this paper
we look at two such approaches, tabu search and the iterated greedy algorithm and apply them in a mul-
tilevel framework. In each case we aim to improve either the asymptotic convergence of the algorithm, or
the runtime, or preferably both.

The rest of the paper is organised as follows. In Section 2 we discuss the multilevel paradigm, outline how
it has been applied to other combinatorial optimisation problems and look at the requirements for a generic
approach. Then in Section 3 we describe the implementation of a multilevel graph colouring scheme and
in � 3.2 outline the two local search algorithms with which it has been used. In Section 4 we look at the
results from extensive testing of the algorithms on a large test suite of problem instances and draw some
conclusions. Finally in Section 5 we present a summary of the work and list a number of possible methods
for enhancing the techniques developed here.

2 Multilevel Optimisation

Our interest in the multilevel paradigm arises from our work in the field of graph partitioning, e.g. [38],
and subsequently graph drawing, [36], and the travelling salesman problem, [35]. Typically a � -way graph
partitioning algorithm aims to divide a graph into � disjoint subdomains of equal size and minimise the
number of cut edges, an NP-hard problem. In recent years it has been recognised that an effective way of
both accelerating graph partitioning algorithms and, more importantly, giving them a ‘global’ perspective,
is to use multilevel techniques. The usual method is to match pairs of adjacent vertices to form clusters, use
the clusters to define a new graph and recursively iterate this procedure until the graph size falls below
some threshold. The coarsest graph is then partitioned (often with a crude algorithm) and the partition
is successively refined on all the graphs starting with the coarsest and ending with the original. This se-
quence of contraction followed by repeated refinement loops is known as multilevel partitioning and has
been successfully developed as a strategy for overcoming the localised nature of the Kernighan-Lin (KL),
[22], and other partition optimisation algorithms. The multilevel partitioning paradigm was first proposed
by Barnard & Simon, [1], as a method of speeding up spectral bisection and improved by Hendrickson & Le-
land, [14], who generalised it to encompass local refinement algorithms. Several enhancements for carrying
out the matching of vertices have been devised by Karypis & Kumar, [20]. The multilevel partitioning strat-
egy is widely used and forms the basis of several public domain partitioning packages including CHACO
[14], JOSTLE [38], and METIS [20].

More recently the multilevel paradigm has been applied with significant effect to the travelling salesman
problem, [35]. The resulting algorithm progressively coarsens the problem, initialises a tour and then em-
ploys the Chained Lin-Kernighan (CLK) algorithm to refine the solution on each of the coarsened problems
in reverse order. In experiments on a well established test suite of 79 problem instances multilevel configu-
rations were found that either improved the average tour quality by over 25% as compared to the standard
CLK algorithm using the same amount of execution time, or that achieved approximately the same tour
quality over 7 times more rapidly. Moreover the multilevel version seems to optimise far better the more
clustered instances with which the CLK algorithm has the most difficulties.

2.1 The generic multilevel paradigm

Two important questions about these approaches arise – why do multilevel approaches appear to work,
and, is there an abstraction of the paradigm that can be applied to other combinatorial problems?

Considered from the point of view of the multilevel procedure, a series of increasingly smaller & coarser

2

versions of the original problem are being constructed. It is hoped that each problem ��� retains the im-
portant features of its parent ������� but the (usually) randomised and irregular nature of the coarsening
precludes any rigorous analysis of this process.

On the other hand, viewing the multilevel process from the point of view of the optimisation problem and,
in particular, the objective function is considerably more enlightening. For a given problem instance the
solution space, � , is the set of all possible solutions for that instance. The objective function or cost function, "! �$#&% , assigns a cost to each solution in � � e.g. in the case of colouring

 '! �(#*) and expresses the
number of colours required for a given solution). Typically the aim of the problem is to find a state +�,-� at
a minimum (or maximum) of the objective function. Iterative refinement algorithms usually attempt to do
this by moving stepwise through the solution space (which is hence also known as a search space) but often
can become trapped in local minima of

.

Suppose then for the partitioning problem that two vertices . �	/ , � ���0� are matched and coalesced into a
single vertex

/21 , � � . When a partition refinement algorithm is subsequently used on
� � and whenever/ 1

is assigned to a subdomain, both . &
/

are also both being assigned to that subdomain. In this way the
partitioning of

� � is being restricted to consider only those configurations in the solution space in which .
&
/

lie in the same subdomain. Since many vertex pairs are generally coalesced from all parts of
� ����� to

form
� � this set of restrictions is in some way a sampling of the solution space and hence the surface of the

objective function.

This is an important point (see also [35]). Previously authors have made a case for multilevel partitioning on
the basis that the coarsening successively approximates the problem. In fact it is somewhat better than this;
the coarsening samples the solution space by placing restrictions on which states the refinement algorithm
can visit. Furthermore, this methodology is not confined to multilevel partitioning but can be applied to
other combinatorial optimisation problems.

We can then hypothesise that, if the coarsening manages to sample the solution space so as to gradually
smooth the objective function, the multilevel representation of the problem combined with an iterative
refinement algorithm should work well as an optimisation meta-heuristic. In other words, by coarsening
and smoothing the problem, the multilevel component allows the refinement algorithm to find regions of
the solution space where the objective function has a low average value (e.g. broad valleys). This does rely
on a certain amount of ‘continuity’ in the objective function but it is not unusual for these sort of problems
that changing one or two components of the solution tends not to change the cost very much.

Figure 1 shows an example of how this might work for a search space � and objective function
 �� �
 which

we aim to minimise. On the left hand side the objective function is gradually sampled and smoothed (the
sampled points are circled and all intermediate values removed to give the next coarsest representation).
The initial solution for the final coarsened space (shown as a black dot in the bottom right hand figure) is
then trivial (because there is only one possible state) although the resulting configuration is not an optimal
solution to the overall problem. However this state is used as an initial configuration for the next level up
and a steepest descent refinement policy finds the nearest local minimum (steepest descent refinement will
only move to a neighbouring configuration if the value of the objective function is lower there). Recursing
this process keeps the best found solution (indicated by the black dot) in the same region of the solution
space. Finally this gives a good initial configuration for the original problem and (in this case) the optimal
solution can be found. Note that it is possible to pick a different set of sampling points for this example for
which the steepest descent policy will fail to find the global minimum, but this only indicates, as might be
expected, that the multilevel procedure is somewhat sensitive to the coarsening strategy.

Of course, this motivational example might be considered trivial or unrealistic (in particular an objective
function cannot normally be pictured in 2D). However, consider other meta-heuristics such as repeated
random starts combined with steepest descent local search, or even simulated annealing, applied to this
same objective function; without lucky initial guesses either might require many iterations to solve this
simple problem.

It should be stressed that this hypothesis is nothing more than speculation and we cannot prove that this

3

f(X)

X
f(X)

X
f(X)

X
f(X)

X
f(X)

X
f(X)

X

f(X)

X

f(X)

X

f(X)

X

f(X)

X

f(X)

X

f(X)

X

Figure 1: The multilevel scheme in terms of a simple objective function

process underlies the multilevel paradigm. However experimental evidence, here and elsewhere (see e.g.
[37]), suggests that the multilevel approach does indeed enhance local search strategies and we suspect that
the sampling/smoothing of the objective function contributes to this.

To summarise the paradigm then, multilevel optimisation combines a coarsening strategy together with a
refinement algorithm (employed at each level in reverse order) to provide an optimisation meta-heuristic.
Figure 2 contains a schematic of this process in pseudo-code. Here ��� refers to the coarsened problem after3

coarsening steps, 45�768�9�;: is a solution of this problem and 4=<� 68�9�;: denotes the initial solution.

2.2 Algorithmic requirements

Assuming that the above analysis does contain some elements of truth, how can we implement a multilevel
strategy to test it on a given combinatorial optimisation problem?

First of all let us assume that we know of a refinement algorithm for the problem, which refines in the
sense it can reuse an existing solution and (attempt to) improve it. Typically the refinement algorithm will
be a local search strategy which can only explore small regions of the solution space neighbouring to the
current solution. However the paradigm does not preclude the use of more complex techniques and there
is no reason (other than execution time) why it should not be a more sophisticated scheme. Indeed, in the
case of graph partitioning, examples of multilevel implementations exist for simulated annealing, [34], tabu
search, [2, 34], and even genetic algorithms, [21].

The refinement algorithm must also be able to cope with any additional restrictions placed on it by using
a coarsened problem (e.g. in graph partitioning the coarser graphs are always weighted whether or not the
original is). If such a refinement algorithm does not exist (e.g. if the only known heuristics for the problem

4

multilevel refinement > input problem instance ?A@CB output solution DE@GFH?I@GJ0K
begin L

:= 1
while (coarsening)?IMON0PRQ coarsen >S?AMTKL

:=
LVU

1
endDEMWFH?IMXJ0Q initialise >S?IMSK
while

L2Y[ZL
:=
L�\

1D @M FH? M J0Q extend >SD MON0P FH? MON0P J , ? M KD M FH? M J�Q refine >TD @M FH? M J , ? M K
end

end

Figure 2: The multilevel optimisation algorithm

are based on construction rather than refinement) it is not clear that the multilevel paradigm can be applied.

To implement a multilevel algorithm, given a problem and a refinement strategy for it, we then require
three additional basic components: a coarsening algorithm, an initialisation algorithm and an extension al-
gorithm (which takes the solution on one problem and extends it to the parent problem). It is difficult to talk
in general terms about these requirements, but the existing examples from graph partitioning and the trav-
elling salesman problem (TSP) suggest that the extension algorithm can be a simple and obvious reversal
of the coarsening step which preserves the same cost. For example in partitioning a pair of parent vertices
are assigned to the same subdomain as their child. The initialisation is also generally a simple canonical
mapping (e.g. for � -way partitioning – assign � vertices to � subdomains; for the TSP – construct a tour
to visit 2 cities). By canonical we mean that a (non-unique) solution is ‘obvious’ and that the refinement
algorithm cannot possibly improve on the initial solution at the coarsest level (because there are no degrees
of freedom).

This just leaves the coarsening algorithm which is then perhaps the key component of a multilevel optimi-
sation implementation. For the existing examples two principles seem to hold:

] Any solution in any of the coarsened spaces should induce a legitimate solution on the original space.
Thus at any stage after initialisation the current solution could simply be extended through all the
problem levels to achieve a solution of the original problem. Furthermore both solutions (in the
coarse space and the original space) should have the same cost with respect to the objective func-
tion. This requirement ensures that the coarsening is truly sampling the solution space (rather than
approximating and/or distorting it).

] The number of levels need not be determined a priori but coarsening should cease when any further
coarsening would render the initialisation degenerate.

This still does not tell us how to coarsen a given problem. So far most solutions for the partitioning problem
have employed gradual and fairly uniform contraction of the graphs. Furthermore it has been shown (for
partitioning at least), that it is usually more profitable for the coarsening to respect the objective function
in some sense (see e.g. the heavy edge matching strategy in [20]). In this respect it seems likely that the
most difficult aspect of finding an effective multilevel algorithm for a given problem and given refinement
scheme is the (problem dependent) task of devising the coarsening strategy.

5

3 A Multilevel Algorithm for the Graph Colouring Problem

In this section we describe the derivation and implementation of a multilevel algorithm for the graph
colouring problem. Firstly we describe all the operations necessary for the multilevel scheme to operate
and then in � 3.2 outline the two local search heuristics that we have investigated in a multilevel framework.

3.1 Multilevel operations

We have implemented the coarsening and uncoarsening procedures in a similar manner to that used in
graph partitioning. Thus each coarse graph

� �_^9� is created from its parent graph
� � by matching pairs of

vertices and representing each matched pair
/ � &

/T`
of parent vertices in

� � with a child vertex in
� �_^9� .

Figure 3 shows an example of this with a graph of 7 vertices coarsened down to a (complete) graph of
3 vertices in 2 contraction steps. The dotted lines indicate the vertex matching used to create the child
graph at each stage. A colouring is initialised on the coarsest graph, Figure 3(c), a trivial operation since
this graph is complete (every vertex is adjacent to every other) and so each vertex is assigned a different
colour. During the optimisation, which successively refines the solution on each graph in reverse order,
coarsest to finest, a solution of the child graph

� �_^9� is extended to its parent
� � . In fact, for the example

in Figure 3, no optimisation would be possible since the original graph contains a 3-clique (e.g. 6 / � �	/baS�	/Tc :)
and so � �X�

5dfe (since every vertex in a clique must have a different colour).

1

3

4

5

2
6

7

(a)

4

6,7
1,2

3,5 (b)

4

1,2

3,5,6,7 (c)

Figure 3: An example of graph contraction by vertex matching

3.1.1 Vertex matching

The matching procedure is also based fairly closely on algorithms used in graph partitioning, e.g. [14, 38],
with one important difference. In partitioning it is normal to match neighbouring vertices on the basis that
if a child vertex gh, � �V^9� is assigned to a set then, when the partition is extended to

� � , the pair of vertices
that g represents are then assigned to the same set with the edge between them uncut by the partition.
Initially we tried the same procedure for a preliminary implementation of the colouring algorithm. In this
version, if a child vertex, g$, � �V^9� , is assigned a colour, i say, then the colouring on graph

� �_^9� can be
extended to

� � without any colouring conflicts by assigning the colours jSi and jSiEkml to its parents in
� � . In

this way if graph
� � has a colouring with n � colours then the colouring can be extended to

� < , the original
graph, to give a colouring for

� < with a maximum of j � n � colours although we would expect to reduce this
by optimisation at each level.

Early investigations with such a scheme proved unsuccessful and so we replaced it with a perhaps more
natural scheme of matching vertices that were not adjacent. This works on the basis that if a child vertexg is assigned a colour then the same colour can be assigned to its parents without colouring conflicts.
Furthermore we only allow vertices to be matched with neighbours of neighbours rather than any non-
adjacent vertex. Thus, in Figure 3(a),

/ � is allowed to match with
/ `

but not
/Top�q/baS�	/Tc

(because they are
adjacent) and not with

/SrS�q/Ts
(because they are not neighbours of neighbours).

6

To express this in set notation, denote the neighbourhood of a set t as u � t
 , the set of vertices adjacent to,
but not including, vertices in t , i.e. u � t
wv 6 / , �yx t ! there exists .z,{t &

� . �	/2
 , � : . Then a vertex
/

is allowed to match with any vertex in u � u � 6 / :
q
 , or u ` �W/I
 for short, the set of neighbours of neighbours of/
, rather than any vertex in

�hx u �W/I
 , the set of vertices not adjacent to
/

. In fact there is no mathematical
reason why a matching should be restricted in this way, however, as we shall see below (� 4.3), it is easier to
prioritise which vertex to match with if the candidate set is u ` �X/2
 rather than

�|x u �X/2
 .
The matching algorithm we use is essentially the same as for many of the graph partitioning implementa-
tions, e.g. [14, 20, 38]. We pick an ordering of the vertices and they are visited in turn using a linked list. If a
vertex

/
has unmatched candidate vertices (i.e. u ` �W/I
 is non-empty and contains vertices which are not yet

matched) then a candidate vertex . is selected and . &
/

are matched and removed from the list. If a vertex
has no unmatched candidates then it is matched with itself and removed from the list.

This leaves just two ‘parameters’ to the method: (a) how to choose the initial ordering of the vertices, and
(b) prioritising the candidate vertices in order to select one which will best aid the colouring algorithms.
We discuss these parameters further in � 4.3 below.

3.1.2 Graph contraction

The child graph is constructed by merging matched pairs of vertices and representing them with a single
child vertex. Edges which then become duplicated are also merged. Although our algorithms do not use
weighted graphs we do not preclude the possibility of using them later (see � 5.4) and it is easy to see how
a child graph should be weighted. Essentially weights represent the number of vertices and edges that
existed in the original graph. Thus with the matching shown in Figure 3(a) to give the graph in Figure 3(b),
then using }_~�} to denote the weight of a vertex or edge, vertex

/I1��� ` has weight } / � }Tk�} /T` } , etc. Similarly for
the edges, } �W/ 1��� ` �q/ 1o � c
 } v } �X/ � �	/ o
 }8k�} �W/ � �q/ c
 }8k�} �W/T`p�q/ o
 }�k�} �W/T`p�q/ c
 } , etc.

3.1.3 Termination

Figure 4: Graph primitives: a complete graph, a star, a chain and a ring

Assume for now that the graph is connected (i.e. by traversing edges we can reach any vertex from any
other vertex) and see below, � 3.1.6, for when this is not the case. The coarsening process can be terminated
when the initialisation is trivial. This certainly occurs when a child graph turns out to be a complete graph
(i.e. all vertices are adjacent to each other) and in this case matching is no longer possible anyway, as in
Figure 3(c). In fact it is not difficult to see that if the graph is connected but not complete then matching
and hence contraction is always possible and that, since contraction always reduces the size of the graph,
the process must always result in a complete graph (even if it only contains two vertices and one edge).
Indeed the process can be terminated even earlier if we can identify the graph easily and if we know a
trivial colouring algorithm for the graph. Figure 4 shows the four graph primitives we have encoded into
the termination algorithm, a complete graph, a star, a chain and a ring. Given � , the number of vertices,�

, the number of edges and � , the maximum degree of any vertex, these can be easily identified with � � l

7

operations. Thus if
�yv �` � � � x l
 the graph is complete, if

��v � x l & � v � x l the graph is a star, if� v j &
�yv � x l the graph is a chain and if � v j &

��v � the graph is a ring.

3.1.4 Initialisation

The initial colouring is trivial (and optimal for the coarsest graph at least) provided the graph corresponds
to one of the four primitives. A complete graph,

�
, can only be coloured by giving a different colour to

each vertex and so � �X�

v � , a star and a chain can be coloured with 2 colours, whilst a ring requires 2
colours if � is even and 3 if � is odd.

3.1.5 Extension

Having derived and possibly refined a n -colouring on a graph level
� � we must extend it to the parent

graph
� ����� . In fact, as indicated above, this is a trivial operation and, since each pair of parent vertices are

never adjacent, simply assigning the same colour to them as their child renders a legitimate n -colouring for� ����� .

3.1.6 Disconnected graphs

Although most refinement strategies can cope with disconnected graphs, they do need special handling for
the multilevel procedure. We do not include isolated vertices (i.e. with no neighbours and degree 0) in this
category as they are the special case of trivial components and can all be assigned the same colour (since
their colouring does not affect the rest of the graph). Here then, disconnected refers to graphs with two or
more non-trivial components each of which cannot be reached from another by traversing paths of edges.

If the original graph has 4 components, the coarsening will eventually result in 4 disjoint cliques and
no further matching will be possible (unless we allow matches between vertices in different components).
However it is not possible to determine how many cliques there are using an � � l
 operation and so the
identification of the graph primitives becomes a more costly procedure. Instead, therefore, we choose to
identify the components prior to the multilevel procedure (using a breadth first search) and then do the
colouring on a component by component basis. In fact this can also save time because, if more than one
component is detected, we sort the components by size and colour them largest first. Suppose then that
prior to the colouring of a component 4�� , the optimisation has found np� -colouring for each of the previous
components 45� , � v l � ~G~�~ ����x l and that nR� v����b� �����X�A�9np� . During the subsequent colouring of 4�� , if anb� -colouring is found with nb����n�� then the optimisation of 4�� can be terminated immediately (because,
even if the colouring of 4�� is suboptimal, the final colouring number of the graph cannot be less than n��).

3.1.7 Solution based coarsening

If a colouring of the graph already exists prior to optimisation it can be reused during the multilevel pro-
cedure. Thus, given a n -colouring of the original problem we can carry out solution based coarsening by
insisting that, at each level, every vertex

/
matches with a candidate vertex (i.e. in u ` �W/I
) of the same colour.

Colours are injected up the hierarchy in the same way as they are extended downwards; a child vertex in-
herits the mutual colouring of its parents. Clearly this does not increase the colours in the graph and when
no further coarsening is possible we end up with a graph of n or more vertices together with a n -colouring
for it. Thus, provided the refinement algorithms guarantee not to find a worse colouring than the initial
one (in fact even if they do find a worse colouring it can be replaced by the initial one) the process can
guarantee to find a n 1 -colouring with n 1 �fn , the initial value. Although we have not made any great use of
this technique here, we do discuss its use in two contexts below, � 4.4 & � 5.2.

8

3.2 Refinement

In this section we outline two alternative algorithms that we use for the refinement phase of the multilevel
procedure. They have been chosen primarily because the source code, written by Culberson, [5], is available
for them1 thus avoiding the need for a re-implementation and also giving a degree of objectivity to the
comparison of a multilevel version with the original version. However they are also of interest because
each offers a completely different approach to iterative colouring via local search.

3.2.1 The iterated greedy algorithm

The greedy algorithm (or sequential algorithm as it is sometimes known) was one of the earliest heuristics
for the graph colouring problem, e.g. [3, 27]. The idea is to visit the graph in a specified order and insert
each successive vertex into the minimum colour class that does not cause any conflicts with previously
coloured vertices. Here each colour class, 4 � , is an independent set of vertices (i.e. no two vertices in a set
are adjacent) assigned the same colour,

�
. Various suggestions have been proposed for the initial ordering

of the vertices (e.g. based on vertex degree [3, 27]). The greedy algorithm is a constructive approach (i.e. a
solution is constructed from scratch rather than refined).

Constructive algorithms are generally seen as a single-pass approach to finding a solution and are often
used as an initialisation procedure for iterative refinement methods. The iterated version of this algorithm,
however, relies on a clever observation, [6, 8], about the reordering of an existing greedy colouring. Given
any n -colouring of a graph, if the vertices are reordered so that vertices in each colour class are contiguous
then it is trivial to prove that using the greedy procedure on this new ordering will result in another colour-
ing with no more than n colours, [6]. In fact, if the previous colouring has been generated by the greedy
algorithm, then for a colour class, 4w� , every vertex in 4w� must be adjacent to a vertex in 4�� for l[� ��� � .
However the converse does not hold and every vertex in 4�� , for some l�� ��� � , need not be adjacent to a
vertex in 45� . Therefore, if the colour classes are reordered (whilst maintaining the property that the vertices
of each class are contiguous) so that the vertices in 4 � precede those in 4�� in the ordering, then it is possible
that some of the vertices in 4�� may be given a different colour and that the greedy algorithm may find a
colouring with fewer than n colours.

This neat argument forms the basis of Culberson’s iterated greedy algorithm, [6, 7, 8]. At each iteration a
reordering of the colour classes is chosen from a variety of possibilities (e.g. reversing the order, random
order, or sorted so that the classes are in order of decreasing total degree of each class). Furthermore in
Culberson’s implementation, the code will randomly pick one of these possibilities according to a weighting
supplied by the user. This gives the algorithm many different possibilities to jump out of local minima traps.
The implementation also allows the user to specify a search intensity, ¡ , in the form of the number of failed
iterations; i.e. if no improvement in the cost function is seen after ¡ iterations the algorithm terminates. In
this context the cost function is expressed not only in terms of the colouring number n , but also the colouring
sum, ¢5£8¤ �W/I
 , where ¤ �X/2
 is the colour assigned to vertex

/
. Thus improvements are sought in the value of

 ����¥� ¤
�v �¦n§k'¢ £8¨ª© ¤ �W/I

for a given colouring ¤ , where � is the number of vertices (used as a scaling factor). Clearly this does
not represent the true cost function that we seek to minimise (which is just

 ��X�¥� ¤
«v n , the number of
colours) and indeed there exist graphs for which the minimum colouring sum is arbitrarily smaller than
the colouring sum of any optimal colouring and graphs for which the chromatic number is arbitrarily
smaller than the colouring number for any minimum colouring sum, [6]. Nonetheless this measure does
reflect progress towards improved colourings for many graphs since it can indicate if colouring classes with
a high index are shrinking and hence if they are likely to disappear. It therefore appears to be better than
simply using

 ��X�¥� ¤
¬v n which gives no indication of whether the current colouring is in the region of a
better one.

1via http://www.cs.ualberta.ca/˜joe/Coloring/Colorsrc/index.html

9

3.2.2 Tabu search

Tabu search is a general technique, proposed by Glover, [12], for finding approximate solutions to combina-
torial optimisation problems. Given an existing solution, the search moves stepwise through the solution
space and at each iteration steps to the neighbouring solution with the lowest cost (even if that cost is higher
than the current one). However to prevent cyclic behaviour, i.e. stepping straight back to the solutions that
the algorithm has just left and hence becoming stuck in local minima, a ‘tabu’ list is maintained contain-
ing disallowed moves to states that the algorithm has recently visited. Generally moves only remain tabu
during a certain number of iterations and so the tabu list is normally implemented as a fixed length queue
where the oldest move is dropped every time a new move is added.

Hertz & de Werra proposed a tabu search algorithm for the graph colouring problem in [15]. Strictly speak-
ing this implementation does not move through the solution space but instead moves through a closely
related space to try and find a legitimate colouring. Thus given an existing n -colouring of the graph and
a target colour, np­ � n , the vertices of the graph are placed in np­ colour classes (with inevitable colouring
conflicts). This is a point of the search space and neighbours of this point can be generated by picking
any vertex in conflict and moving it to a different colour class. Hertz & de Werra’s algorithm works by
generating a neighbourhood of a chosen size at random (because for reasonably sized graphs, generating
every neighbour would be prohibitively expensive) and stepping to the neighbour with the minimum num-
ber of conflicts. If a state is found with no conflicts then a nª­ -colouring has been achieved and the search
terminates.

Culberson’s implementation of this algorithm (which is used for this paper) also adds a couple of additional
features (and as we shall see below one is very important). Firstly, once there are only 1 or 2 colouring
conflicts, the code switches to a brute force search to try and resolve them. This generally works well when
used in the context of a single-level tabu search, however, when used in extremis, and in particular on the
coarsest problems in the multilevel hierarchy, it can be very expensive. In such graphs there are sometimes
many completely connected vertices (i.e. adjacent to every other vertex) for which the brute force search
can never resolve conflicts. The problem is easily avoided, however, by filtering out all such vertices prior
to the use of tabu search and our implementation does this.

A more important feature occurs once a conflict free state has been found. During the tabu iterations, the
vertices in each colour class are stored as linked lists with no explicit mapping of vertices to colours. How-
ever, once a state has been found with no conflicts the vertices of each colour class are listed contiguously
(in an array) and then given an explicit colouring using the greedy algorithm. At this point the same feature
applies as in the iterated greedy procedure and the greedy algorithm acting on such a list may produce a
better colouring than the n ­ -colouring found by the tabu iterations.

Of course there is a strong possibility that no n ­ -colouring will be found and and so additional termination
criterion are needed. In Culberson’s implementation once again the search intensity, ¡ , can be specified
and the algorithm will terminate if no improvement is seen in the cost function (in this case the number of
edge conflicts, [8]) after ¡ iterations. If failure occurs then the code resets n ­ !Ov n ­ k�l and makes another
colouring attempt. This is repeated until a colouring is successfully found or it has made a user specified
number of attempts.

Perhaps the most difficult feature in using Hertz & de Werra’s tabu algorithm is selecting (automatically)
the target colouring number n ­ , even given an initial n < -colouring. Clearly, whatever n ­ is selected we can
limit ®°¯ , the number of attempts, to ®9¯ v n < x nT­ x l and look for a n -colouring for each nS­¬��n � n < . An
obvious brute force choice of nS­ therefore is some lower bound, np� , on the chromatic number of the graph,� ���

 . One such lower bound would be the size of the largest clique in the graph (since every vertex in
a clique must have a different colour) but, since finding the maximum clique of a graph is also an NP-
hard problem, [11], we must either put a considerable amount of effort into getting a good approximation
or put up with a quick but crude estimate. In the latter case the subsequent colouring process may be
exorbitantly expensive, especially for graphs with large chromatic number. For example, the best colouring
we are aware of for the C4000.5 graph from the test suite (� 4.2) has 280 colours, yet in tests a simple greedy
maximum clique algorithm only found cliques of size 14 or 15. This would mean that the search is likely to

10

fail over 250 times and probably (although we do not know � �X�

 for this graph) most of these searches will
be looking for a n -colouring with n � � ���

 , i.e. non-existent. Even making a more conservative estimate
based on n < can be expensive. For example setting n ­ v$� n � k±n <
H² j could still involve a large number of
doomed iterations, especially if n < is already close to � �X�

 .
As an alternative to this bottom up approach (i.e. start somewhere at or below � �X�

 and work upwards) we
have found that a top down approach works very well. Thus given a n < -colouring, we simply set nS­ v n < x l .
If a n ­ -colouring is found, we set n ­ !³v n ­ x l and repeat. The process is iterated until failure occurs.

It might seem that such a procedure could be as expensive as the bottom up process and, particularly ifn < is far from � �X�

 , many iterations might be required. However, experience suggests that if the existing
colouring is poor then the tabu search algorithm generally finds a better one very rapidly (because there
will only be a few conflicts). More importantly, the greedy algorithm used in Culberson’s implementation
to explicitly assign the colouring (see above) will then move the solution to a local minimum (local in the
context of the greedy algorithm) and may very well find a better colouring (sometimes substantially better
if the initial colouring is very poor). In this way the combination of tabu step plus greedy acts very much
like the chained local optimisation scheme of Martin & Otto, [26], where simulated annealing is used to take
‘big’ steps around the solution space and is followed a local search algorithm which moves the solution to
a nearby local minimum. A similar principle is applied by Moscato, [30], who suggests the use of genetic
algorithms in combination with local search techniques to give what he terms as a memetic algorithm.

4 Experimental Results

We have implemented the algorithms described above to give two multilevel optimisation schemes, a mul-
tilevel iterated greedy algorithm (MLIG), and multilevel tabu search (MLTS). In this section we shall com-
pare them with the original algorithms, iterated greedy (IG) and tabu search (TS). In each case our aim is
not necessarily to determine the best procedure; rather, we wish to investigate, given a local search strategy,
whether a multilevel version can either accelerate the convergence rate of the local search or even improve
the asymptotic convergence in solution quality.

The tests were carried out on a DEC Alpha machine with a 466 MHz CPU and 1 Gbyte of memory. The
code was written in C and compiled with the GNU C compiler (version 2.95.2) and optimisation gcc -O3.
Unfortunately machine benchmark examples of the form used for papers in [18] were no longer available
but an appropriate scaling for the runtimes in Tables 2 & 3 can be calculated by comparing the results in
Table 2 with those in [8].

4.1 Methodology

Typically local search algorithms contain a parameter which allows the user to specify how long the search
should continue before giving up. At its simplest this can be just a given time interval, but perhaps more
commonly it is the number of iterations of some outer loop of the algorithm, either in absolute terms or (as
above in � 3.2.1 & � 3.2.2) in terms of the number of failures to achieve a better solution. We refer to this as
the intensity of the refinement policy.

To assess a given algorithm, we measure the runtime and solution quality for a chosen group of problem
instances and for a variety of intensities. Since all of the algorithms tested here have a degree of randomisa-
tion we run each test with several random seed values. For problem instance ´ , at search intensity ¡ , with
random seed µ , this gives a pair, ¶¸·S� ¹b� º , the solution quality found (i.e. the colouring number) and »°·S� ¹b� º�: ,
the runtime. For each intensity value and problem instance we average the solution quality and runtime

11

results over the number of seed values, ®9º , to give

¶ ·S� ¹ v l
® º

¼S½¾
º7¿9� ¶
·S� ¹b� º

� »À·S� ¹ v l
® º

¼S½¾
º7¿9� »�·S� ¹Á� º8~

We then normalise these values with the best known solution quality for that problem instance and some
reference runtime to prevent instances with a large absolute solution quality or larger than average runtime
from dominating the results. Finally these normalised values are averaged over all problem instances to
give a single data point of averaged normalised solution quality, ¶�· , and runtime, »°· , for a given intensity¡ . By using several intensity values, ¡ , we can then plot ¶�· against »�· to give an indication of algorithmic
performance over those instances.

The normalisation of solution quality is calculated as
� ¶ ·T� ¹ x ¶¸�¹
H² ¶¸�¹ where ¶¸�¹ is the best known solution

for instance ´ . If the chromatic number of ´ is known then ¶ �¹ v � � ´
 ; if not then we use the best known
value found either by our testing or taken from the literature. Of course this is not ideal, and as Leighton
points out, [23], given two n -colourings for a graph

�
with n v jS� and n v jSj say, the conclusions that

would be drawn if � �X�

=v jS� might be very different if � �X�

=v�Â
. Nonetheless, the fact that the pseudo-

optimal solutions have been established over a wide range of tests and algorithms gives a good indication
of the current best possible heuristic solution, even if no heuristic can get close to the optimal solution.
Besides, the alternative of limiting the tests to those (small) problems with known chromatic number would
be far too restrictive.

The relative normalisation means that we can express the solution quality as a percentage excess over the
pseudo-optimal colouring number, i.e. l��S�¥Ã � ¶ ·S� ¹ x ¶¸�¹
	² ¶��¹SÄ . It can be argued that normalisation in this
manner tends to mean that problem instances with small ¶��¹ could dominate the results. For example if
¶ ·S� ¹8Å vhÆ and ¶��¹8Å v|Â then the normalised quality is 25% in excess whereas if ¶ ·S� ¹GÇ v l��Al and ¶��¹GÇ v l��p�
then the excess is only 1% even though in both cases the colouring is just 1 away from optimal. On the
other hand using absolute normalisation,

� ¶ ·S� ¹ x ¶¸�¹
 , rather than relative means that problem instances
with large ¶ �¹ may dominate. For example if ¶ ·S� ¹ Å v l8j Æ and ¶ �¹ Å v l8�S� whilst ¶ ·S� ¹ Ç vÈe � and ¶ �¹ Ç vÉÆ

,
then in both cases the normalised quality is 25 even though experience suggests that the colouring for ´ ` is
more likely to be the worse of the two. In fact we have tried absolute normalisation for the following results
but generally it does not change the qualitative behaviour and this is especially true in the results classified
by density.

The time normalisation is more simple and we just calculate » ·S� ¹ ² »ÀÊ��� ¹ where »ÀÊ��� ¹ is the average runtime for
a single pass of the greedy algorithm on an instance ´ (calculated by averaging 3 runs of the iterated greedy
algorithm with different test seeds each of which makes 1,000 calls to greedy).

To summarise then, for a set of problem instances � , we plot averaged normalised solution quality ¶ ·
against averaged normalised runtime » · for a variety of intensities, ¡ , and where:

¶
· v l
} ��}

¾
¹ ¨SË

� ¶ ·S� ¹ x ¶ �¹

¶ �¹

� »�· v l
} ��}

¾
¹ ¨SË

» ·S� ¹
» Ê��� ¹ ~

4.2 Test suite

Table 1 lists the entire test suite of 90 problem instances used for testing the algorithms. The suite consists
of the examples compiled for the 2nd DIMACS implementation challenge, [18], augmented by further ex-
amples added since then2. Although a subset of this test suite has been used for the DIMACS challenge,
we decided to use the full set of examples available because most of the DIMACS subset are of medium
density and, as we shall see later, the multilevel framework does not perform well on such instances.

For each instance we give its size in terms of } � } , the number of vertices, and } � } , the number of edges, as
well as the density, Ì , which is defined as Ì v j�} � } ² } � } � } � } x l
 (so that a complete graph with } � } � } � } x l
H² j

2available from http://mat.gsia.cmu.edu/COLOR/instances.html

12

edges has density 1 or 100% density). We also list the maximum and minimum degree of the vertices for
each graph. The column headed � � ´
 gives the chromatic number of the graph if known or, if not, an upper
bound provided by the best known colouring number found either in our experiments or taken from the
literature and in particular the papers [8, 13, 10, 19, 24, 29, 32].

The names of the graphs give an indication of their origin. For example C � . Ì and DSJC � . Ì are random
graphs of size � and approximate density Ì , R � . Ì and DSJR � . Ì are random geometric graphs with
similar specification, le � � are Leighton graphs with chromatic number � as described in [23], flat � � are
flat graphs as described by Culberson in [7], etc. The colouring suite also includes examples drawn from
real applications such as course scheduling and register allocation together with some other interesting
colouring problems. Further details on the origin of the graphs can be found in e.g. [24]3.

4.3 Parameter settings

An important part of the preliminary testing was to establish a good choice of parameters for the methods
under consideration. For iterated greedy and tabu search we used parameters suggested in the papers of
Culberson et al., [6, 8], and the manual, [5]. Thus for iterated greedy we used a ratio of 50:50:30 to weight the
random choice of algorithm for permuting the colour classes to largest first : reverse order : random order. We
weighted the random choice of which order to test for conflicts with existing colour classes (thus prioritising
the colouring choice if there are several classes with no conflicts) using the ratio 100:100:50 with respect to in
order : largest first : random order. We also used Kempe reductions every 30 iterations (see also [17]). For tabu
search, the size of the tabu list was set to 7 except for very small (coarse) graphs with } � }2�ÍjT� in which case
it was set to } � } ²be . We also set the code to generate a maximum of 600 neighbours in the search space, and
a minimum of 2 (see [8]). Finally, when the tabu search algorithm is used as a standalone (as opposed to
within the multilevel framework) an initial colouring is required. After some experimentation using either
a trivial colouring (every vertex initially assigned a different colour) or different greedy variants we found
that tabu search appeared to work best when initialised by a greedy colouring with the vertices ordered by
decreasing degree (i.e. largest first) and the colour classes examined in order. With these parameters fixed
this just leaves the search intensity and random seed value as input.

For the multilevel versions a couple more parameter choices must be made. First of all for an input search
intensity, ¡ , it is intuitively somewhat extravagant to search at the same intensity at every level, especially
given that the coarsest levels are very restricted versions of the original problem and that refinement pos-
sibilities are less likely. After some experimentation we chose to set ¡�� , the search intensity at level

3
, to¡�� v ¡ ²I� 3 k�l
 where the original problem is level � and so ¡ < v ¡ . This appears to work reasonably well

and gives very similar results to those obtained by simply setting ¡�� v ¡ , only somewhat more rapidly.
However, this parameter could well benefit from further investigation.

The other important parameters for the multilevel scheme relate to the matching (as mentioned in � 3.1.1).
Again after considerable experimentation we found that initially sorting the vertices by decreasing degree
(i.e. largest first) appeared to give the best results. However we also tried sorting by increasing degree, by
smallest difference from the mean degree and randomly, all of which gave broadly similar results.

The second choice to make for the matching algorithm is, given a vertex
/
, how to prioritise the candidate

vertices (i.e. unmatched vertices in u ` �W/I
) in order to select the ’best’ one to match with. For two non-
adjacent vertices . �	/ , let 45Îp� £ denote the set of common neighbours, i.e. 4wÎp� £ v u � .
RÏ u �W/I
 , and denote the
size of this set as } 4wÎp� £ } . We can then also define the set of distinct neighbours as ��ÎS� £ v u � .
	Ð u �W/I
Ñx 4�Îp� £ (i.e.
those neighbours of . which are not neighbours of

/
and vice-versa) and the size of this set is just } �[Îp� £ } v} u � .
 }Ák|} u �W/I
 } x j�} 45ÎS� £ } . The priority which then seemed to work best was, for a vertex

/
, to pick . which

maximised } 45Îp� £ } , the number of common neighbours. In the event that there were several such vertices,
the one which minimised } � ÎS� £I} was chosen and, in the event of a further tie-break, a random choice was
made. Again this method was selected after considerable experimentation using different initial orderings
of the vertices and/or using the priorities reversed (i.e. minimise } � Îp� £I} and then maximise } 4 Îp� £A}). These

3and from http://mat.gsia.cmu.edu/COLOR/instances.html

13

selection heuristics echo those used in the Recursive Largest First algorithm of Leighton, [23], which aims to
minimise the number of edges in the remaining induced uncoloured subgraph (equivalent to maximising} 4 Îp� £A}) and the algorithm of Johnson, [16], which aims to pick a vertex of minimal degree in the remaining
induced uncoloured subgraph (equivalent to minimising } � Îp� £I}). The difference is that in those algorithms
the chosen vertices are successively added to an independent set, whilst for matching we are effectively
creating many independent sets each of size two.

4.4 Greedy initialisation

One feature of the results only became apparent after closer inspection of individual examples. For cer-
tain graphs the greedy initialisation of the tabu search was able to find extremely good (and sometimes
optimal) colourings which the tabu search could not improve on. Usually the multilevel version was able
to find equally good colourings but in certain cases it was not. These failures, which to a certain extent
were dependent on the random seed and the intensity, occurred most notably on some of the medium and
high-density random graphs (in particular R1000.5, R125.1c, R250.1c, R1000.1c & DSJR500.5). Although
this is clearly a deficiency in the multilevel algorithm it also skews the results somewhat. In these tests we
are interested in comparing a local search algorithm, LS, with its multilevel counterpart, MLLS. Clearly if
the greedy initialisation, G, dominates both these results then we end up comparing the MLLS algorithm
against G, rather than G+LS, which demonstrates little about the effectiveness of the multilevel strategy.
One way around this would be to drop such examples from the test suite. However it is somewhat un-
scientific to remove instances which do not conform to the behaviour of interest and furthermore it is not
completely clear which to drop. Besides we are looking for a method which can deal with all examples
well. As a solution therefore we have introduced a single pass of the greedy algorithm, G, (using largest
first ordering) prior to the multilevel optimisation, MLLS. At the end of the test, the code then picks the
best solution of either G or MLLS. All the results include this simple addition which only adds a relatively
small time penalty, especially for high intensity tests, and henceforth when we refer to MLLS results we
shall take this to mean the best of G or MLLS.

Of course one possibility would be to use the greedy partition to create a solution based coarsening (see� 3.1.7) and then use multilevel optimisation on that hierarchy of graphs. However some preliminary in-
vestigations of this technique did not reveal particularly good results. In fact such an approach sometimes
seems to inhibit the highest quality colourings from being found by high intensity searches and we suspect
that this is because the greedy initialisation pulls the hierarchy of graphs too much towards a ‘basin of
attraction’ in the objective function.

4.5 Main results

After the preliminary investigation we conducted tests on all of the examples in the test suite with all 4
algorithms, TS, MLTS, IG & MLIG and at several intensities ¡ v jªÒ for Ó v � � ~�~G~ � l Æ (i.e. ranging between¡ v l and ¡ v 32,768). Typically for an intensity value, ¡ , a multilevel algorithm MLLS · will take very
approximately the same time to run as the single-level local search at double the intensity, LS

` · . This
is because, for the multilevel algorithm, the contraction plus optimisation on all of the coarsened graphs
takes roughly the same time as LS · , the optimisation on the final graph (see [35]) and so the total runtime is
approximately jT» � MLLS ·
 , where » � A
 is the runtime of algorithm A. Because here the intensity refers to
the number of failed iterations rather than an absolute number, there is no direct correspondence between
the running time of LS · and LS

` · . However this rule of thumb that » � MLLS ·
�Ô » � LS
` ·
 appears to work

reasonably well (at least for tabu search).

Figure 5 shows the convergence behaviour (using the methodology described in � 4.1) for the entire test
suite. The final points on the local search curves are at intensity ¡ v 32,768 for TS and ¡ v 16,384 for IG
since at these points the convergence appears to be tailing off. With the runtime factor of two in mind,
the final points on the multilevel curves were then set at ¡ v 16,384 for MLTS and ¡ v 8,192 for MLIG.

14

0

5

10

15

20

25

30

0 20000 40000 60000 80000 100000 120000 140000 160000av
er

ag
e

co

lo
ur

s
(%

 e
xc

es
s

ov
er

 b
es

t k
no

w
n

so
lu

tio
ns

)

average runtime (normalised by timings for greedy algorithm)

snapshot points

multilevel tabu search
tabu search

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000 30000av
er

ag
e

co

lo
ur

s
(%

 e
xc

es
s

ov
er

 b
es

t k
no

w
n

so
lu

tio
ns

)

average runtime (normalised by timings for greedy algorithm)

snapshot points

multilevel iterated greedy
iterated greedy

Figure 5: Results on the complete test suite

Clearly these plots summarise a vast amount of data (90 instances, 3 random seeds, 4 algorithms and an
average of 14 intensities for each algorithm) and so we present a snapshot of the data by picking one point
on each curve (marked with an arrow) and giving individual results in Tables 2 & 3 (MLIG/IG & MLTS/TS
respectively). Thus for each instance we show minimum & average colouring numbers and the average
runtime, averaged over 3 random seeds. The points we chose were at intensity ¡ v 1,024 for both IG and
MLIG (close to Culberson’s suggestion of 1,000, [8]) in Table 2 together with ¡ v 4,096 for TS and ¡ v 2,048
for MLTS (Table 3). Despite IG and MLIG having the same search intensity, these points are reasonably
close together in average runtime for each pair of algorithms (16,485 for TS & 19,135 for MLTS; 2,156 for IG
& 2,674 for MLIG) and thus make for a good comparison. They are also close to the turning point in the
gradient for each curve and so give a good indication of maximum return for minimum effort. In fact in
most cases the optimisation has already found the pseudo-optimal solution for the problem at this point.
However it is very difficult to draw any overall conclusion from this sort of results table.

Returning to Figure 5 then, unfortunately the convergence behaviour is somewhat inconclusive although
we can see that the tabu search (TS) variants appear to have better asymptotic convergence (to around 5.8-
6.2% in excess of the pseudo-optimal solutions) as compared with the iterated greedy (IG) variants which
only reach around 8.0-8.2%. However as we shall see below this is probably very dependent on the choice
of examples in the test suite. Note also that the scales on the + -axis for these two plots differ by a factor of
about 5 and so IG reaches apparent convergence much faster than TS.

Comparing the multilevel versions with the original algorithms, multilevel tabu search (MLTS) is marginally
better than TS, but hardly conclusively. For IG the comparison is not so clear and the multilevel version
(MLIG) does not appear to offer any particular advantage. Overall then MLTS appears to provide the best
results across the test suite but hardly conclusively.

4.5.1 Density based results

To explore the behaviour further it seems necessary to look at subsets of the test suite to see if more definitive
results can be established. Having examined the results in more detail we decided to base the subsets on the
density, Ì , of the problem instances. This has the advantage that it is easily calculated (so that, given a new
problem instance, an appropriate colouring algorithm can be chosen without recourse to some expensive
and possibly complex classification algorithm).

We split the test suite into 3 density classes: low (� Ä �fÌÕ� eSe �o Ä), medium (
eSe �o Ä � Ì��'ÖSÖ

`o Ä) and high
(ÖSÖ

`o � ÌÕ��l��p� Ä). Table 1 shows the densities; the largest class is low density (with 58 out of 90 instances),
followed by medium (23 instances) and then high (with only 9 instances).

It is not immediately clear in which class to place disconnected graphs (or even graphs with isolated ver-

15

0

5

10

15

20

25

30

0 20000 40000 60000 80000 100000 120000 140000av
er

ag
e

co

lo
ur

s
(%

 e
xc

es
s

ov
er

 b
es

t k
no

w
n

so
lu

tio
ns

)

average runtime (normalised by timings for greedy algorithm)

multilevel tabu search
tabu search

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000av
er

ag
e

co

lo
ur

s
(%

 e
xc

es
s

ov
er

 b
es

t k
no

w
n

so
lu

tio
ns

)

average runtime (normalised by timings for greedy algorithm)

multilevel iterated greedy
iterated greedy

Figure 6: Results on the low-density problem instances

0

5

10

15

20

25

30

0 50000 100000 150000 200000 250000av
er

ag
e

co

lo
ur

s
(%

 e
xc

es
s

ov
er

 b
es

t k
no

w
n

so
lu

tio
ns

)

average runtime (normalised by timings for greedy algorithm)

multilevel tabu search
tabu search

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000 30000 35000av
er

ag
e

co

lo
ur

s
(%

 e
xc

es
s

ov
er

 b
es

t k
no

w
n

so
lu

tio
ns

)

average runtime (normalised by timings for greedy algorithm)

multilevel iterated greedy
iterated greedy

Figure 7: Results on the medium-density problem instances

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000 30000 35000 40000av
er

ag
e

co

lo
ur

s
(%

 e
xc

es
s

ov
er

 b
es

t k
no

w
n

so
lu

tio
ns

)

average runtime (normalised by timings for greedy algorithm)

multilevel tabu search
tabu search

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000 30000av
er

ag
e

co

lo
ur

s
(%

 e
xc

es
s

ov
er

 b
es

t k
no

w
n

so
lu

tio
ns

)

average runtime (normalised by timings for greedy algorithm)

multilevel iterated greedy
iterated greedy

Figure 8: Results on the high-density problem instances

16

tices) particularly since the multilevel implementation treats each component separately (see � 3.1.6). For
example a graph with two components, each with � ² j vertices, but with one component of low density
and one of high, might be classified as medium density. As an even more extreme example, a graph
with two complete components each of 2 vertices connected by 1 edge would be classified as low den-
sity (Ì v j ² Ö v�epe �o Ä) even though each component has 100% density. Meanwhile a graph of any densityÌ can be turned into a graph with density Ì � � , for any �¸�y� , simply by adding sufficient isolated ver-
tices. In fact all the disconnected examples in the test suite (R125.1, homer, huck, miles250, school1 nsh,
school1) generally contain one large low-density component with a few small and sometimes high-density
components. However, because of the way that the multilevel implementation is sometimes able to ignore
the smaller components (see � 3.1.6), the smaller denser components in the suite were, without exception,
bypassed in the tests and so we include these instances in the low-density subset.

Figures 6-8 show the convergence behaviour on these subclasses and here the results start to become a
little more distinctive. They are still inconclusive on the medium-density test cases (Figure 7) although
interestingly here both TS and IG variants all seem to be reaching approximately the same asymptotic
convergence.

For the high-density examples in Figure 8 the results actually appear to reverse the findings for the whole
test suite (Figure 5). Here, for tabu search, the multilevel framework appears to actually hinder colouring
and MLTS has poorer convergence than TS. However the performance of both IG and MLIG surpasses
that of TS and although the curves overlay each other closely MLIG has very marginally better asymptotic
convergence.

It is only for the low-density test cases, Figure 6, that the multilevel versions really start to come into their
own. Thus for iterated greedy, although MLIG and IG appear to have approximately the same asymptotic
convergence, the multilevel version converges more rapidly. TS meanwhile provides better asymptotic
convergence and indeed MLTS is slightly although distinctly better still.

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9 10 11 12av
er

ag
e

co

lo
ur

s
(%

 e
xc

es
s

ov
er

 b
es

t k
no

w
n

so
lu

tio
ns

)

log of average runtime (normalised by timings for greedy algorithm)

multilevel tabu search
tabu search

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9 10 11av
er

ag
e

co

lo
ur

s
(%

 e
xc

es
s

ov
er

 b
es

t k
no

w
n

so
lu

tio
ns

)

log of average runtime (normalised by timings for greedy algorithm)

multilevel iterated greedy
iterated greedy

Figure 9: Results on the low-density problem instances using a logarithmic scale

Finally Figure 9 shows the same results as Figure 6 only with the normalised runtime plotted on a logarith-
mic scale. This gives a clearer picture of the convergence (although less demonstrative) and on the left we
see that the MLTS algorithm dominates TS throughout the run. On the right hand side the IG algorithm
is initially somewhat faster than MLIG at low search intensities. In fact, this initial runtime overhead is
common in multilevel implementations (see e.g. [37]), and MLIG soon shows better performance than IG.
Finally, as the convergence rate slows down the curves coincide.

17

0

5

10

15

20

25

30

0 10000 20000 30000 40000 50000 60000 70000 80000 90000av
er

ag
e

co

lo
ur

s
(%

 e
xc

es
s

ov
er

 b
es

t k
no

w
n

so
lu

tio
ns

)

average runtime (normalised by timings for greedy algorithm)

multilevel tabu search
tabu search

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000 30000av
er

ag
e

co

lo
ur

s
(%

 e
xc

es
s

ov
er

 b
es

t k
no

w
n

so
lu

tio
ns

)

average runtime (normalised by timings for greedy algorithm)

multilevel iterated greedy
iterated greedy

Figure 10: Results on the low-density random problem instances

0

5

10

15

20

25

30

0 10000 20000 30000 40000 50000 60000av
er

ag
e

co

lo
ur

s
(%

 e
xc

es
s

ov
er

 b
es

t k
no

w
n

so
lu

tio
ns

)

average runtime (normalised by timings for greedy algorithm)

multilevel tabu search
tabu search

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000 30000 35000 40000av
er

ag
e

co

lo
ur

s
(%

 e
xc

es
s

ov
er

 b
es

t k
no

w
n

so
lu

tio
ns

)

average runtime (normalised by timings for greedy algorithm)

multilevel iterated greedy
iterated greedy

Figure 11: Results on the medium-density random problem instances

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000 30000 35000 40000 45000av
er

ag
e

co

lo
ur

s
(%

 e
xc

es
s

ov
er

 b
es

t k
no

w
n

so
lu

tio
ns

)

average runtime (normalised by timings for greedy algorithm)

multilevel tabu search
tabu search

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000 30000av
er

ag
e

co

lo
ur

s
(%

 e
xc

es
s

ov
er

 b
es

t k
no

w
n

so
lu

tio
ns

)

average runtime (normalised by timings for greedy algorithm)

multilevel iterated greedy
iterated greedy

Figure 12: Results on the high-density random problem instances

18

4.5.2 Density based results on a reduced test set

It could be argued that the density based results actually arise because the subgroups contain different
families of problem instances. For example, all the Leighton graphs are of low density, whilst all the flat
graphs are in the medium-density class, and so the convergence behaviour might be solely attributable to
the fact that the multilevel procedure is better suited to Leighton graphs. To investigate this possible expla-
nation we restricted the subgroups to (randomly generated) graphs for which we could include the same
mix of instances in each subgroup. Thus each test set consisted of the R125. × , R250. × , R1000. × , DSJC125. × ,
DSJC250. × , DSJC500. × , DSCJ1000. × & DSJR500. × examples with × v l for the low-density reduced test set,× v�Æ for the medium and × v�Ø or × v l c for the high-density set.

The results for these restricted test sets are shown in Figures 10-12. Generally they confirm the results es-
tablished above with the one exception that, for the medium-density test cases, the algorithm of choice is
no longer inconclusive and TS is the clear winner. However, again for the low-density instances the mul-
tilevel framework generally enhances the convergence whilst for the high-density problems IG and MLIG
outperform the TS variant and have little to choose between them although MLIG again has marginally
better asymptotic convergence.

4.5.3 Conclusions

The broad conclusions that we draw from these results are that for medium-density problems the multilevel
framework does not appear to offer any improvement to the convergence of tabu search (TS) or the iterated
greedy (IG) algorithm. Indeed it may even hinder their convergence. Further, at least for the examples
considered here, TS and IG offer similar asymptotic convergence, with TS being slightly better whilst IG
is considerably faster. For the high-density problems IG and MLIG appear to offer the best asymptotic
convergence and although the multilevel framework appears to enhance this slightly the difference is very
marginal. However for the low-density problem instances, the multilevel versions do appear to either
speed up (MLIG) or improve (MLTS) the convergence and for such instances MLTS is the clear winner.

The reasons behind this sort of convergence behaviour are not immediately obvious but we can certainly
speculate. The fact that tabu search can concentrate on resolving colouring conflicts in specific parts of the
graph may account for both TS and MLTS performing well on low-density instances where the conflicts
may be confined to a small part of the graph. This may also account for the fact that tabu search does not
perform so well on high-density examples as it unable to take a global view of which conflicts it should
attempt to resolve. As a contrast, by permuting the colour classes repeatedly, the iterated greedy algorithm
attempts to resolve different conflicts at each step.

With regard to the multilevel paradigm, it is somewhat disappointing that its ability to enhance conclu-
sively the convergence behaviour of the local search algorithms is apparently restricted to low-density
examples. However this does seem to be in line with a general trend established in other problem areas.
For example, in the case of the travelling salesman problem, the multilevel approach appears to be better
at aiding examples where the points are gathered into several clusters so that the density is highly variable
across the problem instance with large sparse regions, rather then those instances for which the points are
uniformly distributed, [35].

Furthermore, with the colouring results derived above in mind, we revisited the graph partitioning problem
and tried the same sort of testing using multilevel and single-level versions of a Kernighan-Lin (KL) algo-
rithm to partition the colouring test suite listed in Table 1. Typically multilevel partitioning schemes have
been very successfully used for large sparse (very low-density) examples, usually computational meshes,
e.g. [14, 20, 38]. It was therefore somewhat of a surprise to see the same sort of density-dependent re-
sults repeated for multilevel partitioning. Thus for the low-density examples the multilevel KL algorithm
achieved better convergence than KL as expected but, in a reverse of multilevel partitioning performance
trends established to date, appeared to be outperformed by KL on the medium-density examples. Details
of these experiments can be found in [37].

19

Perhaps a more disturbing feature of the colouring results is the fact that multilevel refinement actually
appears to hinder the tabu search on medium and high-density examples. For a given intensity, the optimi-
sation on the final level of MLTS is exactly the same as the optimisation for TS albeit with a different initial
colouring. The worst behaviour we might expect then is a similar asymptotic convergence, but with MLTS
taking much longer (since it has the additional cost of graph contraction plus the cost of refinement on all
the coarsened levels). However, it is not even as good as that and we suspect that this may occur because
poor matching succeeds in pulling the solution into a basin of attraction in the search space (see also � 5.3).

5 Summary and Further Work

We have applied the multilevel framework to the graph colouring problem and in particular two refine-
ment strategies, tabu search and iterated greedy. Tests on a large suite of problem instances indicate that
for low-density test cases (up to around 30% edge density) the multilevel paradigm can either speed up
(iterated greedy) or even improve (tabu search) the asymptotic convergence although the results are some-
what disappointing for medium and high-density examples. This augments existing evidence (e.g. [37])
that, although the multilevel framework cannot be considered as a panacea for combinatorial optimisation
problems, it can provide a useful addition to the combinatorial optimisation toolkit. Furthermore Leighton
says, with reference to scheduling, that ‘for most large-scale practical applications, the edge density of the
graphs to be colored is generally small’, [23], and so multilevel colouring may be more applicable than the
general case would suggest.

An obvious subject for further work would be the use of different refinement strategies such as simulated
annealing or even genetic/evolutionary algorithms. Beyond this suggestions, some more specific topics for
the possible enhancement of the multilevel colouring algorithms are listed below.

5.1 Sparsification

Perhaps the most disappointing feature of the multilevel colouring algorithm, at least in the manifestation
described here, was the inability to aid the solution of medium-density, and to a certain extent, high-density
graphs. Clearly of great interest would be any technique for overcoming this difficultly and one way to
achieve this might be through sparsification. For example, we could certainly reduce the problem size by
picking one or more independent sets t�� from

�
and removing the vertices in t°� plus all edges incident

on vertices in t�� . Whether or not this would result in a sparsification of the problem would depend on the
relative number of vertices and edges removed but it seems quite promising as a technique. It also fits in
with the hybrid scheme successfully used by Hertz & DeWerra, [15], and by Fleurent & Ferland, [10], who
shrink the number of graph vertices by removing a number of maximal independent sets prior to using
tabu search-based colouring on the remainder of the graph.

Unfortunately, having removed the independent sets, their vertices are no longer available for the multi-
level and local search algorithms to work with. However it is not difficult to imagine an iterated procedure
which removes one or more independent sets, t � , uses multilevel techniques on the remainder of the graph,
replaces t � and then repeats with a different choice of t � at each iteration. Indeed after the first iteration the
procedure is easier since the colour classes that have been found already comprise independent sets and
there is no requirement to explicitly search for them.

5.2 Iterated multilevel

The above procedure is in fact a special case of what we refer to as an iterated multilevel algorithm. Recall
from the introduction that multigrid solution is one of the best known multilevel techniques and within this

20

field it is usual for algorithms to traverse both up and down the hierarchy of problems whilst refining the so-
lution. In an echo of this we can iterate the multilevel procedure by using repeated coarsening/refinement
loops. However we can enhance the procedure somewhat by using an existing colouring, found in a pre-
vious iteration, to create a solution based coarsening (see � 3.1.7) and construct a new hierarchy of graphs.
Indeed we are required to do so if we do not wish to throw away the existing colouring. Recall from � 3.1.7
that such a process guarantees not to find a worse colouring than the initial one. However, if the match-
ing is done randomly (within the restriction that matching must be between vertices of the same colour)
each iteration is very likely to give a different hierarchy of graphs to previous iterations and hence give the
possibility for the refinement algorithm to visit different solutions in the search space. Although we have
not yet made any serious tests of this procedure for colouring, a similar technique is frequently used in
graph partitioning for dynamic load-balancing, e.g. [31], and has also been used to find very high quality
partitions, [37].

5.3 Advanced matching

Another approach which might improve the results for medium/high-density problems would be the use
of better (although possibly more expensive) matching algorithms. It seems possible that medium-density
test cases are more challenging for the matching because of the large number of possible vertices to match
with and the difficulty of choosing between them. One way of addressing this might be with a dynamic list
which reorders the set of unmatched vertices after every match is made (as opposed to the static list which
is in use at present). This echoes the sort of techniques used often used in well known colouring schemes
such as RLF, [23].

A second possibility might be the sort of greedy matching scheme proposed by Monien et al. for graph
partitioning, [28]. In the current scheme (� 3.1.1) a vertex

/ < picks a preferred candidate
/ � and they are

matched. However,
/ � may have available matches which are much more advantageous than

/ < . Hence, in
the scheme of Monien et al., rather than a match being made at this point,

/ � then picks its preferred match
and the process is repeated until a pair of vertices is generated that mutually select each other as a match.
Tie-breaking of matches by random selection is forced to be commutative to prevent infinite loops.

5.4 Weighting

A final possibility for further investigation would be to use the weighting implicit in the coarsened levels
of the graph (see � 3.1.2). In fact for the graph partitioning problem it is essential to use at least the edge
weights as they represent the number of edges in the original problem and hence partitioning the coarsened
graphs without the weights does not correctly represent the problem. However in graph colouring no such
imperative exists and an unweighted coarsened graph does correctly represent the problem, albeit in a
restricted form. Nonetheless, both matching and refinement processes frequently have to make decisions
about prioritising vertices for certain operations and it may be that using weights can aid this choice. Thus
if we seek to maximise the size of a set (e.g. an independent set) it would be better to pick the heaviest
weighted vertex from a set of candidates with all other priorities equal. We have not tested this sort of
weighting but we believe it might have some effect, although probably not a major one, on the performance
of the multilevel algorithm.

Acknowledgements. The author wishes to gratefully acknowledge Joe Culberson for making available the
source code for his iterated greedy and tabu search algorithms. The author also wishes to thank Michael
Trick making most of the problem instances available and David Joslin & David Clements for supplying
the rest of them.

21

References

[1] S. T. Barnard and H. D. Simon. A Fast Multilevel Implementation of Recursive Spectral Bisection for
Partitioning Unstructured Problems. Concurrency: Practice & Experience, 6(2):101–117, 1994.

[2] R. Battiti, A. Bertossi, and A. Cappelletti. Multilevel Reactive Tabu Search for Graph Partitioning.
Preprint UTM 554, Dip. Mat., Univ. Trento, Italy, 1999.

[3] N. Christofides. Graph Theory, an Algorithmic Approach. Academic Press, London, 1975.

[4] T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices and graph coloring problems.
SIAM J. Numer. Anal., 20(1):187–209, 1983.

[5] J. Culberson. Graph Coloring Programs Manual.
http://www.cs.ualberta.ca/˜joe/Coloring/Colorsrc/manual.html.

[6] J. C. Culberson. Iterated Greedy Graph Coloring and the Difficulty Landscape. Tech. Rep. TR 92-07,
Dept. Comp. Sci., Univ. Alberta, Edmonton, Alberta T6G 2H1, Canada, 1992.

[7] J. C. Culberson, A. Beacham, and D. Papp. Hiding our colors. In CP’95 Workshop on Studying & Solving
Really Hard Problems, pages 31–42, Cassis, France, September 1995.

[8] J. C. Culberson and F. Luo. Exploring the n -colorable Landscape with Iterated Greedy. In D. S. Johnson
and M. A. Trick, editors, Cliques, Coloring, and Satisfiability, volume 26 of DIMACS, pages 245–284.
AMS, Providence RI, 1996.

[9] D. de Werra. An Introduction to Timetabling. Eur. J. Oper. Res., 19:151–162, 1985.

[10] C. Fleurent and J. A. Ferland. Object-Oriented Implementation of Heuristic Search Methods for Graph
Coloring, Maximum Clique and Satisfiability. In D. S. Johnson and M. A. Trick, editors, Cliques, Color-
ing, and Satisfiability, volume 26 of DIMACS, pages 619–652. AMS, Providence RI, 1996.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, San Francisco, 1979.

[12] F. Glover. Future Paths for Integer Programming and Links to Artificial Intelligence. Comput. Oper.
Res., 13:533–549, 1986.

[13] F. Glover, M. Parker, and Jennifer Ryan. Coloring by tabu branch and bound. In D. S. Johnson and
M. A. Trick, editors, Cliques, Coloring, and Satisfiability, volume 26 of DIMACS, pages 285–307. AMS,
Providence RI, 1996.

[14] B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs. In S. Karin, editor,
Proc. Supercomputing ’95, San Diego. ACM Press, New York, NY 10036, 1995.

[15] A. Hertz and D. de Werra. Using Tabu Search Techniques for Graph Coloring. Computing, 39:345–351,
1987.

[16] D. S. Johnson. Approximation Algorithms for Combinatorial Problems. J. Comput. Syst. Sci., 9:256–278,
1974.

[17] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by Simulated Annealing:
Part II, Graph Coloring and Number Partitioning. Oper. Res., 39(3):378–406, 1991.

[18] D. S. Johnson and M. A. Trick, editors. Cliques, Coloring, and Satisfiability, volume 26 of DIMACS. AMS,
Providence RI, 1996.

[19] D. E. Joslin and D. P. Clements. “Squeaky Wheel” Optimization. J. Artificial Intelligence Res., 10:353–373,
1999.

22

[20] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning Irregular
Graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

[21] A. Kaveh and H. A. Rahimi Bondarabady. A Hybrid Graph-Genetic Method for Domain Decomposi-
tion. In B. H. V. Topping, editor, Computational Engineering using Metaphors from Nature, pages 127–134.
Civil-Comp Press, Edinburgh, 2000. (Proc. Engrg. Comput. Technology, Leuven, Belgium, 2000).

[22] B. W. Kernighan and S. Lin. An Efficient Heuristic for Partitioning Graphs. Bell Syst. Tech. J., 49:291–308,
1970.

[23] F. T. Leighton. A Graph Colouring Algorithm for Large Scheduling Problems. J. Res. National Bureau
Standards, 84:489–503, 1979.

[24] G. Lewandowski and A. Condon. Experiments with Parallel Graph Coloring and Applications of
Graph Coloring. In D. S. Johnson and M. A. Trick, editors, Cliques, Coloring, and Satisfiability, volume 26
of DIMACS, pages 309–334. AMS, Providence RI, 1996.

[25] C. Lund and M. Yannakakis. On the Hardness of Approximating Minimization Problems. J. ACM,
41(5):960–981, 1994.

[26] O. C. Martin and S. W. Otto. Combining Simulated Annealing with Local Search Heuristics. Tech. Rep.
CSE-94-016, Oregon Grad. Inst. Sci. Tech., September 1993.

[27] D. W. Matula, G. Marble, and J. D. Isaacson. Graph Coloring Algorithms. In R. C. Read, editor, Graph
Theory and Computing, pages 109–122. Academic Press, New York, 1972.

[28] B. Monien, R. Preis, and R. Diekmann. Quality matching and local improvement for multilevel graph-
partitioning. Parallel Comput., 26(12):1605–1634, 2000.

[29] C. Morgenstern. Distributed Coloration Neighborhood Search. In D. S. Johnson and M. A. Trick,
editors, Cliques, Coloring, and Satisfiability, volume 26 of DIMACS, pages 335–357. AMS, Providence RI,
1996.

[30] P. Moscato. On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic
algorithms. Technical Report C3P 826, CalTech, Pasadena, CA, 1989.

[31] K. Schloegel, G. Karypis, and V. Kumar. Multilevel Diffusion Schemes for Repartitioning of Adaptive
Meshes. J. Parallel Distrib. Comput., 47(2):109–124, 1997.

[32] E. C. Sewell. An Improved Algorithm for Exact Graph Coloring. In D. S. Johnson and M. A. Trick,
editors, Cliques, Coloring, and Satisfiability, volume 26 of DIMACS, pages 359–373. AMS, Providence RI,
1996.

[33] S.-H. Teng. Coarsening, sampling, and smoothing: Elements of the multilevel method. In M. T. Heath
et al., editor, Algorithms for Parallel Processing, volume 105 of IMA Volumes in Mathematics and its Appli-
cations, pages 247–276. Springer-Verlag, New York, 1999.

[34] D. Vanderstraeten, C. Farhat, P. S. Chen, R. Keunings, and O. Zone. A Retrofit Based Methodology for
the Fast Generation and Optimization of Large-Scale Mesh Partitions: Beyond the Minimum Interface
Size Criterion. Comput. Methods Appl. Mech. Engrg., 133:25–45, 1996.

[35] C. Walshaw. A Multilevel Approach to the Travelling Salesman Problem. Accepted for Oper. Res.,
(originally published as Univ. Greenwich Tech. Rep. 00/IM/63), 2000.

[36] C. Walshaw. A Multilevel Algorithm for Force-Directed Graph Drawing. In J. Marks, editor, Graph
Drawing, 8th Intl. Symp. GD 2000, volume 1984 of LNCS, pages 171–182. Springer, Berlin, 2001.

[37] C. Walshaw. Multilevel Combinatorial Optimisation. To appear in Proc. Metaheuristics Intl. Conf.
(MIC 2001), Porto, Portugal, 2001.

[38] C. Walshaw and M. Cross. Mesh Partitioning: a Multilevel Balancing and Refinement Algo-
rithm. SIAM J. Sci. Comput., 22(1):63–80, 2000. (originally published as Univ. Greenwich Tech. Rep.
98/IM/35).

23

Table 1: The test suite of problem instances

problem size degree problem size degree
instance Ù Ú ÛÀÚ Ú ÜÝÚ Þ % max min ß�> ÙSK instance Ù Ú Û Ú Ú ÜÝÚ Þ % max min ß�> ÙSK
C2000.5 2000 999836 50.02 1074 919 à 153 le450 5a 450 5714 5.66 42 13 5
C4000.5 4000 4000268 50.02 2123 1895 à 280 le450 5b 450 5734 5.68 42 12 5
DSJC125.1 125 736 9.50 23 5 à 5 le450 5c 450 9803 9.70 66 27 5
DSJC250.1 250 3218 10.34 38 13 à 8 le450 5d 450 9757 9.66 68 29 5
DSJC500.1 500 12458 9.99 68 34 à 12 le450 15a 450 8168 8.09 99 2 15
DSJC1000.1 1000 49629 9.94 127 68 à 22 le450 15b 450 8169 8.09 94 1 15
DSJC125.5 125 3891 50.21 75 51 à 17 le450 15c 450 16680 16.51 139 18 15
DSJC250.5 250 15668 50.34 147 101 à 28 le450 15d 450 16750 16.58 138 18 15
DSJC500.5 500 62624 50.20 286 220 à 49 le450 25a 450 8260 8.18 128 2 25
DSJC1000.5 1000 249826 50.02 551 447 à 84 le450 25b 450 8263 8.18 111 2 25
DSJC125.9 125 6961 89.82 120 103 à 44 le450 25c 450 17343 17.17 179 7 25
DSJC250.9 250 27897 89.63 234 207 à 72 le450 25d 450 17425 17.25 157 11 25
DSJC500.9 500 112437 90.13 471 430 à 129 miles250 128 387 4.76 16 0 8
DSJC1000.9 1000 449449 89.98 924 870 à 234 miles500 128 1170 14.39 38 3 20
R125.1 125 209 2.70 8 0 5 miles750 128 2113 26.00 64 6 31
R250.1 250 867 2.79 13 1 8 miles1000 128 3216 39.57 86 13 42
R1000.1 1000 14378 2.88 49 10 20 miles1500 128 5198 63.95 106 28 73
R125.5 125 3838 49.52 99 23 36 mulsol.i.1 197 3925 20.33 121 0 49
R250.5 250 14849 47.71 191 53 65 mulsol.i.2 188 3885 22.10 156 0 31
R1000.5 1000 238267 47.70 781 193 à 238 mulsol.i.3 184 3916 23.26 157 0 31
R125.1c 125 7501 96.79 124 113 46 mulsol.i.4 185 3946 23.18 158 0 31
R250.1c 250 30227 97.11 249 234 64 mulsol.i.5 186 3973 23.09 159 0 31
R1000.1c 1000 485090 97.12 991 943 à 98 myciel3 11 20 36.36 5 3 4
DSJR500.1 500 3555 2.85 25 4 12 myciel4 23 71 28.06 11 4 5
DSJR500.5 500 58862 47.18 388 103 à 123 myciel5 47 236 21.83 23 5 6
DSJR500.1c 500 121275 97.21 497 473 à 85 myciel6 95 755 16.91 47 6 7
anna 138 493 5.22 71 1 11 myciel7 191 2360 13.01 95 7 8
david 87 406 10.85 82 1 11 queen5 5 25 160 53.33 16 12 5
homer 561 1628 1.04 99 0 13 queen6 6 36 290 46.03 19 15 7
huck 74 301 11.14 53 1 11 queen7 7 49 476 40.48 24 18 7
jean 80 254 8.04 36 0 10 queen8 8 64 728 36.11 27 21 9
flat300 20 0 300 21375 47.66 160 127 20 queen8 12 96 1368 30.00 32 25 12
flat300 26 0 300 21633 48.23 158 123 26 queen9 9 81 1056 32.59 32 24 10
flat300 28 0 300 21695 48.37 162 130 28 queen10 10 100 1470 29.70 35 27 à 11
flat1000 50 0 1000 245000 49.05 520 459 50 queen11 11 121 1980 27.27 40 30 11
flat1000 60 0 1000 245830 49.22 524 457 60 queen12 12 144 2596 25.21 43 33 à 13
flat1000 76 0 1000 246708 49.39 532 455 76 queen13 13 169 3328 23.44 48 36 13
fpsol2.i.1 496 11654 9.49 252 0 65 queen14 14 196 4186 21.90 51 39 à 15
fpsol2.i.2 451 8691 8.56 346 0 30 queen15 15 225 5180 20.56 56 42 à 17
fpsol2.i.3 425 8688 9.64 346 0 30 queen16 16 256 6320 19.36 59 45 à 18
games120 120 638 8.94 13 7 9 school1 385 19095 25.83 282 1 14
inithx.i.1 864 18707 5.02 502 0 54 school1 nsh 352 14612 23.65 232 1 14
inithx.i.2 645 13979 6.73 541 0 31 zeroin.i.1 211 4100 18.51 111 0 49
inithx.i.3 621 13969 7.26 542 0 31 zeroin.i.2 211 3541 15.98 140 0 30
latin square 10 900 307350 75.97 683 683 à 98 zeroin.i.3 206 3540 16.77 140 0 30

24

Table 2: Colouring solution quality (minimum, ¶ Ò , and average, ¶) and average runtime in seconds, » , for
single-level & multilevel iterated greedy (IG & MLIG) over 3 random seeds

problem MLIG (á¬Q�â�B Z�ã�ä K IG (áÀQ 1,024) problem MLIG (áÀQ 1,024) IG (áÀQ 1,024)
instance Ù å�æ å ç åCæ å ç instance Ù å�æ å ç åCæ å ç

C2000.5 193 194.7 197.87 193 194.3 139.41 le450 5a 5 5.0 3.10 5 5.0 4.64
C4000.5 354 354.3 1162.86 355 356.0 571.66 le450 5b 5 5.0 3.66 5 5.0 4.44
DSJC125.1 6 6.0 0.61 6 6.0 0.64 le450 5c 5 5.0 2.42 5 5.0 2.09
DSJC250.1 10 10.0 2.19 10 10.0 2.10 le450 5d 5 5.0 2.58 5 5.0 1.92
DSJC500.1 16 16.0 8.52 16 16.3 4.82 le450 15a 18 18.0 6.00 18 18.0 4.08
DSJC1000.1 27 27.7 18.56 27 27.0 23.90 le450 15b 18 18.0 4.56 18 18.0 4.01
DSJC125.5 19 19.0 1.63 19 19.3 0.78 le450 15c 25 25.3 8.75 25 25.3 5.34
DSJC250.5 33 33.7 3.08 33 33.7 1.88 le450 15d 25 25.3 7.12 25 25.7 6.22
DSJC500.5 58 59.0 13.21 59 59.0 10.02 le450 25a 25 25.0 5.97 25 25.0 3.61
DSJC1000.5 107 107.7 45.77 105 105.0 69.62 le450 25b 25 25.0 7.46 25 25.0 4.23
DSJC125.9 44 45.0 1.11 44 45.0 1.27 le450 25c 30 30.7 9.01 30 30.3 7.19
DSJC250.9 74 74.7 6.80 74 75.3 5.05 le450 25d 30 30.7 6.98 30 30.0 7.63
DSJC500.9 133 133.7 20.95 133 133.7 21.23 miles250 8 8.0 0.49 8 8.0 0.50
DSJC1000.9 241 244.3 111.33 242 244.3 115.44 miles500 20 20.0 1.07 20 20.0 0.85
R125.1 5 5.0 0.15 5 5.0 0.37 miles750 31 31.0 1.01 31 31.0 0.87
R250.1 8 8.0 2.40 8 8.0 1.35 miles1000 42 42.0 1.48 42 42.0 1.27
R1000.1 20 20.7 24.83 21 21.0 15.48 miles1500 73 73.0 1.48 73 73.0 1.22
R125.5 36 36.7 0.98 36 36.3 1.53 mulsol.i.1 49 49.0 1.77 49 49.0 1.69
R250.5 68 68.3 4.21 68 68.0 5.03 mulsol.i.2 31 31.0 1.07 31 31.0 0.77
R1000.5 253 253.3 89.09 252 253.0 96.26 mulsol.i.3 31 31.0 1.06 31 31.0 0.81
R125.1c 46 46.0 0.87 46 46.0 0.63 mulsol.i.4 31 31.0 1.08 31 31.0 0.81
R250.1c 64 64.0 3.01 64 64.0 2.75 mulsol.i.5 31 31.0 1.06 31 31.0 0.84
R1000.1c 98 98.3 29.04 98 99.0 18.86 myciel3 4 4.0 0.02 4 4.0 0.02
DSJR500.1 12 12.0 6.63 12 12.0 6.94 myciel4 5 5.0 0.06 5 5.0 0.04
DSJR500.5 129 129.3 16.60 128 129.0 16.90 myciel5 6 6.0 0.17 6 6.0 0.10
DSJR500.1c 85 85.0 7.65 85 85.0 7.44 myciel6 7 7.0 0.35 7 7.0 0.38
anna 11 11.0 0.74 11 11.0 0.65 myciel7 8 8.0 1.22 8 8.0 0.84
david 11 11.0 0.49 11 11.0 0.27 queen5 5 5 5.0 0.05 5 5.0 0.04
homer 13 13.0 6.22 13 13.0 9.20 queen6 6 7 7.7 0.11 7 7.7 0.09
huck 11 11.0 0.25 11 11.0 0.18 queen7 7 7 7.0 0.13 7 7.3 0.11
jean 10 10.0 0.36 10 10.0 0.27 queen8 8 10 10.0 0.24 10 10.0 0.21
flat300 20 0 20 20.0 2.42 20 20.0 1.61 queen8 12 13 13.0 0.44 13 13.0 0.35
flat300 26 0 37 37.7 5.37 37 37.7 3.30 queen9 9 11 11.0 0.44 11 11.0 0.23
flat300 28 0 36 37.0 5.77 37 37.3 3.97 queen10 10 12 12.7 0.66 12 12.3 0.53
flat1000 50 0 50 50.0 102.60 50 67.0 68.67 queen11 11 13 13.7 0.82 14 14.0 0.59
flat1000 60 0 104 104.7 60.41 103 104.7 51.41 queen12 12 15 15.0 1.54 15 15.0 0.69
flat1000 76 0 106 106.3 47.67 105 105.7 42.33 queen13 13 16 16.0 1.78 16 16.0 1.32
fpsol2.i.1 65 65.0 6.19 65 65.0 6.67 queen14 14 18 18.0 1.52 17 17.7 1.19
fpsol2.i.2 30 30.0 4.64 30 30.0 3.15 queen15 15 19 19.0 2.75 18 18.7 1.32
fpsol2.i.3 30 30.0 4.24 30 30.0 3.30 queen16 16 20 20.0 3.27 20 20.0 2.26
games120 9 9.0 0.61 9 9.0 0.53 school1 14 14.0 3.50 14 14.0 1.83
inithx.i.1 54 54.0 16.93 54 54.0 14.95 school1 nsh 14 14.0 4.15 14 14.0 2.18
inithx.i.2 31 31.0 10.10 31 31.0 8.58 zeroin.i.1 49 49.0 1.76 49 49.0 1.75
inithx.i.3 31 31.0 11.59 31 31.0 7.58 zeroin.i.2 30 30.0 1.83 30 30.0 1.23
latin square 10 106 106.7 32.33 105 106.0 31.41 zeroin.i.3 30 30.0 1.43 30 30.0 1.07

25

Table 3: Colouring solution quality (minimum, ¶ Ò , and average, ¶) and average runtime in seconds, » , for
single-level & multilevel tabu search (TS & MLTS) over 3 random seeds

problem MLTS (áÀQ 2,048) TS (á¬Q 4,096) problem MLTS (áÝQ 2,048) TS (á¬Q 4,096)
instance Ù åCæ å ç åCæ å ç instance Ù åCæ å ç å�æ å ç

C2000.5 179 179.3 50.93 178 178.0 32.07 le450 5a 5 5.3 12.82 6 6.3 17.51
C4000.5 331 334.0 169.31 332 334.0 72.42 le450 5b 5 5.7 11.20 6 6.7 27.70
DSJC125.1 5 5.3 8.09 5 5.0 13.46 le450 5c 5 5.0 13.75 5 5.3 14.93
DSJC250.1 9 9.0 11.05 9 9.0 8.96 le450 5d 5 5.0 15.18 5 6.0 14.28
DSJC500.1 13 13.7 18.25 13 13.7 20.29 le450 15a 16 16.0 14.96 16 16.0 14.74
DSJC1000.1 23 23.0 27.49 23 23.0 20.55 le450 15b 16 16.0 14.96 16 16.0 13.12
DSJC125.5 18 18.0 7.27 18 18.0 7.65 le450 15c 22 22.0 16.81 21 21.7 20.86
DSJC250.5 30 30.7 9.21 30 30.7 7.42 le450 15d 22 22.3 13.30 22 22.7 12.77
DSJC500.5 54 54.3 15.68 54 54.0 17.55 le450 25a 25 25.0 11.92 25 25.0 4.88
DSJC1000.5 97 97.7 26.02 97 97.7 21.16 le450 25b 25 25.0 8.50 25 25.0 5.37
DSJC125.9 44 44.7 5.84 44 44.3 5.60 le450 25c 28 28.0 17.08 27 27.0 17.72
DSJC250.9 75 75.7 5.90 74 74.3 9.29 le450 25d 28 28.3 13.01 27 27.7 14.38
DSJC500.9 136 137.0 12.39 133 134.3 18.13 miles250 8 8.0 5.59 8 8.0 5.41
DSJC1000.9 253 254.0 24.74 249 251.0 20.45 miles500 20 20.0 7.47 20 20.0 6.91
R125.1 5 5.0 5.89 5 5.0 6.00 miles750 31 31.0 13.73 31 31.0 11.37
R250.1 8 8.0 7.40 8 8.0 6.02 miles1000 42 42.3 13.25 42 42.0 13.93
R1000.1 20 20.0 12.18 22 22.0 20.24 miles1500 73 73.0 25.06 73 73.0 49.37
R125.5 38 38.0 7.10 37 37.0 4.18 mulsol.i.1 49 49.0 21.94 49 49.0 28.95
R250.5 70 71.0 17.63 68 68.7 19.13 mulsol.i.2 31 31.0 5.22 31 31.0 3.31
R1000.5 259 259.0 156.39 251 251.3 119.00 mulsol.i.3 31 31.0 5.05 31 31.0 3.30
R125.1c 47 47.7 5.58 46 46.0 8.72 mulsol.i.4 31 31.0 5.14 31 31.0 3.31
R250.1c 67 67.7 11.12 65 65.0 10.10 mulsol.i.5 31 31.0 14.09 31 31.0 18.25
R1000.1c 107 113.3 41.16 114 114.0 17.54 myciel3 4 4.0 3.06 4 4.0 5.70
DSJR500.1 12 12.0 9.37 12 12.0 7.19 myciel4 5 5.0 3.93 5 5.0 4.57
DSJR500.5 134 134.0 49.29 127 128.3 21.67 myciel5 6 6.0 4.33 6 6.0 4.77
DSJR500.1c 90 93.0 24.05 90 91.7 10.31 myciel6 7 7.0 4.96 7 7.0 4.48
anna 11 11.0 6.74 11 11.0 6.27 myciel7 8 8.0 5.98 8 8.0 5.19
david 11 11.0 5.10 11 11.0 4.80 queen5 5 5 5.0 3.42 5 5.0 3.81
homer 13 13.0 14.45 13 13.0 17.38 queen6 6 7 7.0 3.51 7 7.0 3.68
huck 11 11.0 5.33 11 11.0 5.81 queen7 7 7 7.0 4.12 7 7.0 4.09
jean 10 10.0 5.73 10 10.0 5.24 queen8 8 9 9.0 4.88 9 9.0 4.55
flat300 20 0 20 20.0 13.26 20 28.0 13.24 queen8 12 12 12.0 3.71 12 12.0 3.72
flat300 26 0 34 34.0 10.72 34 34.0 10.43 queen9 9 10 10.0 5.06 10 10.0 7.59
flat300 28 0 34 34.0 10.44 33 34.0 12.03 queen10 10 11 11.3 7.70 11 11.7 7.14
flat1000 50 0 95 96.0 22.31 94 95.0 26.72 queen11 11 12 12.7 5.58 12 12.7 8.51
flat1000 60 0 94 95.7 28.91 94 94.7 31.44 queen12 12 14 14.0 6.45 14 14.0 6.02
flat1000 76 0 95 96.7 25.87 96 96.3 19.41 queen13 13 15 15.0 6.79 15 15.0 6.53
fpsol2.i.1 65 65.0 27.16 65 65.0 44.90 queen14 14 16 16.0 6.91 16 16.0 7.18
fpsol2.i.2 30 30.0 18.33 30 30.0 20.49 queen15 15 17 17.0 9.10 17 17.0 10.08
fpsol2.i.3 30 30.0 21.90 30 30.0 19.94 queen16 16 18 18.0 9.42 18 18.0 10.72
games120 9 9.0 4.93 9 9.0 4.18 school1 14 14.0 11.93 14 14.0 9.20
inithx.i.1 54 54.0 29.81 54 54.0 45.49 school1 nsh 14 14.3 12.35 14 14.0 6.95
inithx.i.2 31 31.0 7.10 31 31.0 33.66 zeroin.i.1 49 49.0 14.18 49 49.0 28.62
inithx.i.3 31 31.0 6.23 31 31.0 32.62 zeroin.i.2 30 30.0 19.04 30 30.0 14.31
latin square 10 113 114.0 20.92 112 113.7 13.84 zeroin.i.3 30 30.0 18.80 30 30.0 15.03

26

