
A Multilevel Lin-Kernighan-Helsgaun Algorithm for the
Travelling Salesman Problem

Chris Walshaw
Computing and Mathematical Sciences, University of Greenwich,

Old Royal Naval College, Greenwich, London, SE10 9LS, UK.
Email: C.Walshaw@gre.ac.uk; URL: www.gre.ac.uk/ � c.walshaw

Mathematics Research Report : 01/IM/80

September 27, 2001

Abstract

The multilevel paradigm has recently been applied to the travelling salesman problem with consid-
erable success. The resulting algorithm progressively coarsens the problem, initialises a tour and then
employs a local search algorithm to refine the solution on each of the coarsened problems in reverse or-
der. In the original version the chained Lin-Kernighan (CLK) scheme was used for the refinement. How-
ever, a new and highly effective Lin-Kernighan variant (LKH) has recently been developed by Helsgaun.
Here then we report on the modifications required to develop a multilevel LKH algorithm and the results
achieved. Although the LKH algorithm, with its extremely high quality results, is more difficult to im-
prove on than the CLK, nonetheless the multilevel framework was able to enhance the LKH performance.
For example, in experiments on a well established test suite, the multilevel LKH scheme found 39 out of
59 optimal solutions as compared to the 33 found by LKH in a similar time period.

Keywords: Multilevel Refinement; Travelling Salesman; Combinatorial Optimisation.

1 Introduction

In this paper we address the Travelling Salesman Problem (TSP) which can be simply stated as follows:
given a collection of ‘cities’, find the shortest tour which visits all of them and returns to the starting point.
Typically the cities are given coordinates in the 2D plane and then the tour length is measured by the sum
of Euclidean distances between each pair on the tour. However, in the more general form, the problem
description simply requires a metric which specifies the distance between every pair of cities.

The TSP has been shown to be NP-hard, [2], but has a number of features which make it stand out amongst
combinatorial optimisation problems. Firstly, for problems which have not yet been solved to optimal-
ity (typically with 10,000 or more cities), an extremely good lower bound can be found for the optimal
tour length. This bound, known as the Held-Karp Lower Bound (HKLB), was developed in 1970 by Held &
Karp, [3], and usually comes extremely close to known optimal tour lengths (often within 1%). Thus to mea-
sure the quality of an algorithm for a given set of problem instances (some or all of which have unknown
solutions), we can simply calculate the average percentage excess of tours produced by the algorithm over
the HKLB for each instance.

1

Another unusual feature of the TSP, perhaps due to the fact that the problem is so intuitive and easy to state,
is that it has almost certainly been more widely studied than any other combinatorial optimisation problem.
For example Johnson & McGeoch, [6], survey a wide range of approaches which run the gamut from local
search, through simulated annealing, tabu search & genetic algorithms to neural nets. Remarkably, and
despite all this interest, the local search algorithm proposed by Lin & Kernighan in 1973, [9], still remains
at the heart of the most successful approaches. In fact Johnson & McGeoch describe the Lin-Kernighan
(LK) algorithm as the world champion heuristic for the TSP from 1973 to 1989. Further, this was only
conclusively superseded by chained or iterated versions of LK originally proposed by Martin, Otto & Felten,
[10], in 1991.

Even as recently as 1997, and despite all the work on exotic and complex optimisation techniques, Johnson
& McGeoch, [6], concluded that an iterated or chained Lin-Kernighan (ILK/CLK) scheme provides the
highest quality tours for reasonable costs and that CLK/ILK variants are ‘the most cost effective way to
improve on Lin-Kernighan, at least until one reaches stratospheric running times’. However in 2000 an
interesting and highly effective LK variant was introduced by Helsgaun, [4]. This Lin-Kernighan-Helsgaun
(LKH) algorithm, at least in its multi-trial version, can significantly improve on CLK/ILK results although
it suffers from runtimes which are quadratic, in fact

�������	� ��

, for problems of size

�
.

In a further recent development, a general solution strategy known as multilevel refinement has been ap-
plied with considerable success to the TSP and in particular the CLK algorithm, [7, 13]. The multilevel
approach involves recursive coarsening to create a hierarchy of approximations to the original problem; an
initial solution is found for the coarsest problem and then iteratively refined at each level, coarsest to finest,
[14]. When applied to the TSP it was able to significantly enhance the performance of the CLK algorithm
and in particular seemed to work much better for the more clustered problem instances with which TSP
algorithms traditionally have great difficulties.

In this paper we aim to bridge the gap between these two developments and report on a multilevel TSP
implementation which uses the LKH algorithm for the refinement stage at each level. The paper is organ-
ised as follows. In Section 2 we describe the general multilevel framework for the TSP and outline the LKH
algorithm. In Section 3 we test the algorithm on a large suite of problem instances and discuss its behaviour
and finally in Section 4 we summarise the paper.

It is sometimes convenient to use graph notation for the TSP in which case we refer to the cities as vertices
and the problem can be specified as a complete graph with weighted edges, i.e. there is an edge between
every pair of cities and the weight of the edge specifies the distance between them.

2 A multilevel LKH algorithm for the travelling salesman problem

The strength of the multilevel approach rests in the construction of a family of increasingly coarse approxi-
mations to the original problem. Each child problem should be smaller and easier to solve than its parent,
but not so different that a solution for the child is no help in solving the parent problem. Moreover, if the
coarsening is constructed so as to sample the solution space, the resulting family of problems are simply
restrictions of the original space rather than near approximations to it and this very much facilitates the
solution process, [14].

In [13] a sampling-based coarsening strategy for the TSP is derived which works by successively fixing
edges into the tour. For example, given a TSP instance � of size

�
, if we fix an edge between cities
�� and

	� then we create a smaller problem ��� of size
�����

(because there are
�����

edges to be found) where
we insist that the final tour of ��� must somewhere contain the fixed edge

�
�����
	�
 . Having found a tour ���
for � � we can then return to � and look for better tours using � � as the initial tour. In fact we can fix many
distinct edges in one coarsening step and hence reduce the size of the problem considerably at every level.

Figure 1 shows an example of this. The top row demonstrates the coarsening process where dotted lines
represent matchings of vertices (and hence new fixed edges) whilst solid lines represent fixed edges that

2

refine extend refine extend refine extend

match coarsen match coarsen match coarsen

Figure 1: An example of a multilevel TSP algorithm at work

have been created in previous coarsening steps. Notice in particular that after the second coarsening step
chains of fixed edges are reduced down to a single edge with a vertex at either end and any vertices internal
to such a chain are removed. The coarsening terminates when the problem is reduced to one fixed edge &
two vertices and at this point the tour is initialised. The initialisation is trivial and merely consists of com-
pleting the cycle by adding an edge between the two remaining vertices. The procedure then commences
the extend/refine loop (bottom row, right to left). Again solid lines represent fixed edges whilst dotted lines
represent free edges which may be changed by the refinement. The extension itself is trivial; we simply ex-
pand all fixed edges created in the corresponding coarsening step and add the free edges to give an initial
tour for the refinement process. The refinement algorithm then attempts to improve on the tour (without
changing any of the fixed edges) although notice that for the first refinement step no improvement is pos-
sible. The final tour is shown at the bottom left of the Figure; note in particular that fixing any edge during
coarsening does not force it to be in the final tour since, for the final refinement step, all edges are free to be
changed. However, fixing an edge early on in the coarsening does give it less possibilities for being flipped.

To describe the implementation of such an algorithm, first we discuss all the elements required for the
multilevel framework (detailed more fully in [13]) and then in � 2.2 outline the modifications required to
use the LKH algorithm for the refinement.

2.1 The multilevel framework

Matching and coarsening. The coarsening process works by matching pairs of vertices and then fixing
edges between them. In fact however, it is more convenient for the data structure in the code to use edge
objects and so in practice a matching of edges is created at each level. Initially each edge is of zero length
and has the same vertex at either end; however after the first coarsening most edges will have different
vertices at either end. The matching algorithm creates a randomly ordered list of edges and visits them
one by one, matching each edge with its most appropriate neighbouring edge until every edge is either
matched or has no unmatched neighbours. The definition of neighbouring in this context is given below.
Figure 2(a) shows an example of this process where the edges

���! �#" 	
 &
��� � ��" �
 are matched together.

The aim during the matching process should be to fix those edges that are most likely to appear in a high
quality tour thus allowing the refinement to concentrate on the others. For example, consider Figure 2(b);
it is difficult to imagine an optimal tour which does not include the edge

��$ � �%
 and so ideally the matching
should fix it early on in the process. Indeed, if by some good fortune, the matching only selected optimal
edges then the optimal tour would have been found by the end of the coarsening and the refinement would
have no possible improvements. However, in the absence of any other information about the optimal tour,
vertices are matched with their nearest unmatched neighbours. The implementation of this process uses a
superimposed grid of spacing & , e.g. Figure 2(b), to avoid

���'�(

searches for finding neighbours, [14].

3

u

v

v1

w1

v2
w2

(a) (b)

h

h

Figure 2: TSP matching examples

An important implementation detail is that at each level vertices are only allowed to match with other
vertices within a distance & (thus giving a definition to the concept of neighbouring edges above) However,
at each level & is increased (by keeping the average number of vertices per grid cell constant) to prevent
the coarsening from terminating prematurely. This process not only aids fast searches for nearby vertices
but also prevents long-range matching on the lower levels of the coarsening (which appears to have an
important effect on the results).

Initialisation. The coarsening ceases when there remain only two vertices with a fixed edge between them.
This is guaranteed to occur because each coarsening level will match at least one pair of vertices and so
the problem size will shrink. Initialisation is then trivial and consists of adding an edge between the two
vertices to complete the tour (the other edge of the tour being the fixed one).

2.2 Refinement: the Lin-Kernighan-Helsgaun algorithm

Typically TSP tour refinement takes place by ‘flipping’ edges. For example, if the tour contains the edges���) �#" 	
 &
� " � � � �
 in that order, then these two edges can always be flipped to create

���! �#" �
 &
� " � � �
 .

This sort of step forms the basis of the 2-opt algorithm due to Croes, [1], which is a steepest descent ap-
proach, repeatedly flipping pairs of edges if they improve the tour quality until it reaches a local minimum
of the objective function and no more such flips exist. In a similar vein, the 3-opt algorithm of Lin, [8], ex-
changes 3 edges at a time. The Lin-Kernighan (LK) algorithm, [9], also referred to as variable-opt, however
incorporates a limited amount of hill-climbing by searching for a sequence of exchanges, some of which
may individually increase the tour length, but which combine to form a shorter tour. A vast amount has
been written about the LK algorithm, including much on its efficient implementation, and for an excellent
overview of techniques see the surveys of Johnson & McGeoch, [6, 7].

Recently a new and highly effective variant of the LK algorithm has been developed by Helsgaun, [4].
This scheme employs a number of important innovations including sequential 5-opt moves and the use
of sensitivity analysis to direct the search. It has been shown to compute solutions extremely close to the
optimal (where known) but suffers from the drawback of runtimes which are quadratic in

�
, the problem

size, and so may not be suitable for large problem instances (e.g. if
�+*

10,000 the runtime for
�

trials runs
to days whilst for

�+*
30,000 it can be measured in weeks). The algorithm is most effective in its multi-trial

version where the optimisation is run multiple times, each with a different initial tour, the construction of
which is biased by the edges in the existing champion tour. This is slightly different from the kicks used
in the CLK algorithm where each initial tour is constructed by perturbing the existing champion tour and
appears to be a very effective modification.

Three variants of the multilevel LKH algorithm were produced:

, The first version treated the LKH software entirely as a black box. Initial (incomplete) testing proved
unpromising and closer inspection of the user manual, [5], revealed that if the code is given an initial

4

tour, � , it is assumed to be of high quality and the code is discouraged from flipping the edges of � (a
software feature rather than an algorithmic bug). However in the multilevel version, not only is the
code always given an initial tour, � , but in fact a large proportion of the edges of � will have been
fixed in the level above and so the code should be positively encouraged to try flipping them.

, The second version fixed this problem by treating all edges in the initial tour the same way as any
other edge. Testing of the multilevel code with the single-trial version of LKH then gave good results
but at great expense. This appeared to arise from the preprocessing (referred to as the ascent) where
a vector of penalty values (- -values), one for each vertex, is calculated. This preprocessing is a costly
part of the scheme (although it only requires to be carried out once for a multi-trial version) and in
particular appears to be crippling to the multilevel version if carried out at each level of the problem.

, The third and current version used for the results below makes the assumption that the same - -values
can be used at each problem level (by simply selecting the values corresponding to the vertices of the
original problem which do appear). The - -values are thus computed once only prior to the multilevel
coarsening.

3 Experimental results

We have evaluated the multilevel LKH algorithm using a test suite of TSP problems drawn from the 90
instances compiled for the 8th DIMACS implementation challenge1 (aimed at characterising approaches to
the TSP). However, because of the quadratic behaviour of the LKH algorithm, all problem instances with
more than 20,000 vertices were omitted from the suite. Additionally, the 8 instances which are specified
solely by an distance matrix were also omitted because the matching scheme requires coordinate infor-
mation (although this is not an inherent attribute of the multilevel algorithm and it should be possible to
develop suitable matching algorithms). The 67 instances used are then in three groups:

(I) 31 symmetric and geometric instances of 1,000 or more vertices from TSPLIB2, a collection of sample
TSP instances, including some from real-life applications, compiled by Reinelt, [11, 12].

(II) 18 randomly generated instances with uniformly distributed vertices. These range in size from 1,000
to 10,000 vertices, going up in size gradations of . �0/ and were constructed by Johnson, Bentley &
McGeoch specifically to study asymptotic behaviour in tour finding heuristics.

(III) 18 randomly generated instances with randomly clustered vertices. These range in size from 1,000 to
10,000 and have the same origin and purpose as (II) although clustered examples such as these are
generally considered to be more difficult to solve.

The version of the LKH software used is contained in the file LKH-1.2.tgz and we very gratefully ac-
knowledge its author for making this code available3. Only minor modifications were required to the LKH
code and in particular, since it allows fixed edges, the previous work-around used to prevent them from
being flipped, [13, � 3.3.1] was not required. The multilevel code wrapper which implements the matching
and coarsening is called sierra and is described more fully in [13]; parameter settings established in that
paper are also used here. The tests were carried out on a DEC Alpha machine with a 466 MHz CPU and 1
Gbyte of memory.

We have tested the multilevel LKH algorithm using the same methodology as in [13]. Thus to assess the
convergence behaviour we vary a single parameter, the optimisation intensity, 1 , and measure average so-
lution quality (expressed as percentage excess over the HK lower bound – see Section 1) against average
runtime (normalised by runtimes for the LK algorithm which may be found in [13]). The intensity param-
eter, 1 , in this case is simply the number of trials expressed as a fraction of

�
the problem size, i.e. 1 *�23�

1see http://www.research.att.com/ 4 dsj/chtsp/
2available from http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/
3from http://www.dat.ruc.dk/ 4 keld/research/LKH

5

for some factor
2

. For the multilevel versions, the intensity parameter at each level, 165 , was then set to
175 *823� 5 where

� 5 is the problem size (the number of free edges) at level 9 . We then refer to the single-level
and multilevel schemes at intensity 1 as LKH : and MLLKH : respectively.

To give a snapshot of the results we present detailed figures for the MLLKH ; and LKH ; configurations in
Table 3. For the TSPLIB instances (category I) we report the results for each example, but for the randomly
generated instances we average the results for each class so that asymptotic analysis is easier. For example
the row labelled ‘C3k (5)’ contains average values over the 5 instances with three thousand vertices, C3k.0,
. . . , C3k.4. For each algorithm and each instance we then present the percentage excess over the HKLB
and, in the next column, the percentage excess over the optimum tour length (if known). We also give
the ratio of average runtime for the instance over the average runtime for the LK algorithm for the same
instance. Finally, at the bottom of the Table we average all of the results; the HKLB and runtime results are
averaged over all 67 instances whilst the optimal excess figures are averaged over those 59 instances for
which an optimal tour is known.

Table 1: A summary of results comparing the quality achieved for similar runtimes

Average % excess Average % excess
configuration HKLB opt <>=�<!?A@ configuration HKLB opt <B=�<!?A@
LKH C 1.483 0.627 322.856 MLLKH C 1.182 0.356 406.970
LKH DFE C�G 0.875 0.066 752.981 MLLKH DFE�H G 0.879 0.078 676.996
LKH DFE�I 0.863 0.059 1112.439 MLLKH DFE C�G 0.856 0.057 903.223
LKH D 0.820 0.016 4108.781 MLLKH DFE�H 0.821 0.017 2619.229

MLLKH D 0.811 0.010 4842.779

Table 3 shows individual results at one particular intensity, but as we are interested in the convergence
behaviour over a range of intensities Table 1 shows averaged figures (including the final line of Table 3) at
intensities 1 *J� � �LK!�0/ � �LKNM � � for LKH : and 1 *J� � �LKNOA/ � �PK%�0/ � �LKNO � � for MLLKH : . These values were
chosen because, as argued in [13], a single-level local search scheme (LS :) at intensity 1 takes approximately
the same runtime as a multilevel version (MLLS :�Q �) at intensity 1 KAO provided the runtime of the local search
is approximately linear in

�
. However, it is also predicted in [13] that if the local search is quadratic or even

cubic then the relative multilevel overhead is much smaller and this is borne out in Table 1. For example,
MLLKH ;RQ � is considerably faster than LKH ; and in turn MLLKH ; is only slightly slower than that (by
about 20%).

Table 2: A summary of results on subsets of the test suite

TSPLIB random uniform instances random clustered instances
Average % excess Average % excess Average % excess

configuration HKLB opt <B=�<!?A@ HKLB opt <B=�<!?A@ HKLB opt <>=�<!?A@
LKH C 1.646 0.706 439.300 0.885 0.168 286.326 1.802 0.930 158.843
LKH D6E C�G 1.078 0.113 1133.279 0.729 0.011 508.199 0.671 0.031 342.806
LKH D6E#I 1.068 0.103 1686.300 0.726 0.008 725.495 0.645 0.024 511.066
LKH D 0.998 0.029 6328.409 0.723 0.005 2399.259 0.610 0.002 1995.609
MLLKH C 1.443 0.491 565.317 0.938 0.221 344.774 0.977 0.229 196.458
MLLKH DFE�H G 1.067 0.101 1006.603 0.739 0.022 486.267 0.694 0.088 300.068
MLLKH DFE C�G 1.027 0.060 1393.060 0.735 0.017 610.608 0.681 0.090 352.229
MLLKH DFE�H 0.996 0.027 4168.757 0.724 0.007 1574.117 0.617 0.007 995.710
MLLKH D 0.983 0.014 7694.107 0.723 0.004 2983.738 0.604 0.010 1791.200

As in [13] it is again of interest to examine the convergence behaviour on the three different subclasses of
problem instance and Table 2 therefore splits the results in Table 1 into their 3 subclasses. Figure 3 then
illustrates the results in Tables 1 & 2 graphically by plotting the HKLB excess against runtime. As can
be seen, with the exception of the random uniform instances, Figure 3(c), if only a single trial is used,
the multilevel variant, MLLKH

appears to offer considerably better performance than LKH

. However

6

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

av
er

ag
e

to
ur

 le
ng

th
 (%

 e
xc

es
s

ov
er

 H
K

 lo
w

er
 b

ou
nd

)

average runtime (normalised by timings for LK algorithm)

Lin-Kernighan-Helsgaun
multilevel Lin-Kernighan-Helsgaun

(a) complete test suite

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 500 1000 1500 2000 2500 3000

av
er

ag
e

to
ur

 le
ng

th
 (%

 e
xc

es
s

ov
er

 H
K

 lo
w

er
 b

ou
nd

)

average runtime (normalised by timings for LK algorithm)

Lin-Kernighan-Helsgaun
multilevel Lin-Kernighan-Helsgaun

(c) random uniform instances

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1000 2000 3000 4000 5000 6000 7000 8000

av
er

ag
e

to
ur

 le
ng

th
 (%

 e
xc

es
s

ov
er

 H
K

 lo
w

er
 b

ou
nd

)

average runtime (normalised by timings for LK algorithm)

Lin-Kernighan-Helsgaun
multilevel Lin-Kernighan-Helsgaun

(b) TSPLIB instances

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
av

er
ag

e
to

ur
 le

ng
th

 (%
 e

xc
es

s
ov

er
 H

K
 lo

w
er

 b
ou

nd
)

average runtime (normalised by timings for LK algorithm)

Lin-Kernighan-Helsgaun
multilevel Lin-Kernighan-Helsgaun

(d) random clustered instances

Figure 3: Plots of convergence behaviour for single-level and multilevel versions of LKH

comparisons with the MLCLK and CLK results in [13] suggest that neither LKH

nor MLLKH

offers a cost
effective solution strategy considering the amount of computation time required.

On the other hand the multi-trial versions of LKH offer extremely high quality solutions and results else-
where (e.g. [4, 7]) indicate that solution quality can be very close to optimal (for those instances where the
optimal solutions are known). This allows the multilevel version very little margin for improvement (be-
cause it is obviously impossible to improve on an optimal solution) and as can be seen the MLLKH and
LKH curves follow each other very closely although MLLKH does appear to achieve slightly better results.
Also interestingly, and in common with the results in [13], the multilevel versions seem to give the least
benefit to the random uniform instances. It seems likely that this is because the matching choices are not
clear-cut during the coarsening of such instances, [14].

Finally returning to Table 3, if we consider those 59 instances for which an optimal solution is known,
perhaps the most impressive statistic is that in a similar runtime MLLKH ; found 39 of the optimal solutions
as compared to 33 for LKH ; . (Note that for these instances the very highly regarded CLK algorithm with�

kicks was unable to find any optimal solutions, although admittedly its runtime is linear and it is thus
very much faster on the larger instances.)

7

4 Summary

We have discussed the modifications required to use the multilevel TSP scheme originally developed in
[13] in combination with the powerful Lin-Kernighan-Helsgaun algorithm from [4]. The results appears to
indicate that the multilevel approach can enhance the convergence behaviour of the LKH algorithm, at least
for two out of the three subclasses of problem instances tested (the same two subclasses as for the chained
Lin-Kernighan algorithm) although the single-level LKH algorithm is so good that any improvement found
by the multilevel version will only be very small. However the resulting scheme MLLKH ; managed to
find an optimal tour for 2/3 of the tested instances with a known solution. In addition, the results here
do appear to demonstrate further the flexibility and generality of the multilevel approach. Furthermore
they add further evidence to the suggestion in [14] that the multilevel paradigm is better suited to problem
instances with inherent sparsity and back up the claim, [13, 14], that the multilevel runtime overhead for
quadratic local search schemes (in this case around 20%) is considerably less than the factor of two for linear
schemes.

Acknowledgements. The author very gratefully acknowledges Keld Helsgaun for making his software
available and Gerd Reinelt, David Johnson, Lyle McGeoch & others for providing the test cases.

References

[1] G. A. Croes. A method for solving traveling salesman problems. Oper. Res., 6:791–812, 1958.

[2] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, San Francisco, 1979.

[3] M. Held and R. M. Karp. The Traveling Salesman Problem and Minimum Spanning Trees. Oper. Res.,
18:1138–1162, 1970.

[4] K. Helsgaun. An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic. Eur. J.
Oper. Res., 126:106–130, 2000.

[5] K. Helsgaun. LKH User Guide. (available via http://www.dat.ruc.dk/ S keld), 2001.

[6] D. S. Johnson and L. A. McGeoch. The travelling salesman problem: a case study. In E. Aarts and
J. K. Lenstra, editors, Local Search in Combinatorial Optimization, pages 215–310. John Wiley & Sons,
Chichester, 1997.

[7] D. S. Johnson and L. A. McGeoch. Experimental Analysis of Heuristics for the STSP. In G. Gutin and
A. Punnen, editors, The Travelling Salesman Problem and its Variations. Kluwer Academic Publishers,
2001. (To appear).

[8] S. Lin. Computer solutions of the traveling salesman problem. Bell Syst. Tech. J., 44:2245–2269, 1965.

[9] S. Lin and B. W. Kernighan. An effective heuristic for the traveling salesman problem. Oper. Res.,
21(2):498–516, 1973.

[10] O. C. Martin, S. W. Otto, and E. W. Felten. Large-Step Markov Chains for the Traveling Salesman
Problem. Complex Systems, 5(3):299–326, 1991.

[11] G. Reinelt. TSPLIB— A Traveling Salesman Problem Library. ORSA J. Comput., 3(4):376–384, 1991.

[12] G. Reinelt. TSPLIB95. Tech. Rep., Inst. Angewandte Math., Univ. Heidelberg, 1995.

[13] C. Walshaw. A Multilevel Approach to the Travelling Salesman Problem. To appear in Oper. Res.,
(originally published as Univ. Greenwich Tech. Rep. 00/IM/63), 2000.

[14] C. Walshaw. Multilevel Refinement for Combinatorial Optimisation Problems. Tech. Rep. 01/IM/73,
Comp. Math. Sci., Univ. Greenwich, London SE10 9LS, UK, June 2001.

8

Table 3: LKH ; & MLLKH ; results

LKH D MLLKH D
Average % excess Average % excess

instance HKLB opt <>=�< ?A@ HKLB opt <>=�< ?A@
dsj1000 0.610 0.003 702.179 0.612 0.004 467.857
pr1002 0.888 0.000 145.444 0.888 0.000 200.667
u1060 0.660 0.012 1281.150 0.648 0.000 1039.000

vm1084 1.327 0.000 673.000 1.327 0.000 585.529
pcb1173 0.960 0.000 375.526 0.960 0.000 509.474

d1291 1.349 0.167 850.105 1.180 0.000 1483.474
rl1304 1.547 0.000 285.143 1.547 0.000 383.333
rl1323 1.649 0.000 387.700 1.649 0.000 699.000

nrw1379 0.429 0.000 398.087 0.429 0.000 603.478
fl1400 1.926 0.184 1459.098 1.931 0.189 1204.275
u1432 0.285 0.000 894.478 0.285 0.000 1038.957
fl1577 1.723 0.063 3744.333 1.686 0.027 3156.567
d1655 0.940 0.000 678.280 0.940 0.000 860.120

vm1748 1.354 0.000 621.933 1.354 0.000 867.167
u1817 0.905 0.000 1184.792 0.947 0.042 1408.042
rl1889 1.551 0.001 671.194 1.550 0.000 685.452
d2103 1.488 0.046 3700.269 1.451 0.010 4985.769
u2152 0.684 0.065 1679.667 0.618 0.000 2293.074
u2319 0.018 0.000 2853.338 0.018 0.000 3110.954

pr2392 1.216 0.000 1162.211 1.216 0.000 1361.684
pcb3038 0.810 0.000 3512.640 0.810 0.000 2570.740

fl3795 1.179 0.142 10955.608 1.081 0.045 6265.785
fnl4461 0.552 0.003 2635.115 0.552 0.003 3657.333

rl5915 1.595 0.035 3254.656 1.585 0.025 3584.989
rl5934 1.479 0.097 5816.422 1.381 0.000 5573.244

pla7397 0.581 0.000 18954.725 0.581 0.000 22729.732
rl11849 1.024 0.006 13629.236 1.061 0.042 18371.661

usa13509 0.668 0.007 14796.812 0.669 0.007 21160.387
brd14051 0.491 28222.618 0.495 34580.087

d15112 0.533 0.009 24606.889 0.534 0.009 37055.553
d18512 0.504 46048.025 0.496 56023.919

C1k (10) 0.541 0.003 544.527 0.552 0.014 450.817
C3k (5) 0.615 0.001 1765.447 0.614 0.000 1885.290

C10k (3) 0.830 7216.154 0.761 6102.328
E1k (10) 0.741 0.005 275.122 0.740 0.004 401.178
E3k (5) 0.710 0.006 1902.020 0.709 0.004 2217.182

E10k (3) 0.684 10308.446 0.687 12869.865
Average 0.820 0.016 4108.781 0.811 0.010 4842.779

9

