
Annals of Operations Research 131, 325–372, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Multilevel Refinement for Combinatorial Optimisation
Problems

CHRIS WALSHAW ∗ C.Walshaw@gre.ac.uk
Computing and Mathematical Sciences, University of Greenwich, Old Royal Naval College, Greenwich,
London, SE10 9LS, UK

Abstract. We consider the multilevel paradigm and its potential to aid the solution of combinatorial optimi-
sation problems. The multilevel paradigm is a simple one, which involves recursive coarsening to create a
hierarchy of approximations to the original problem. An initial solution is found (sometimes for the original
problem, sometimes the coarsest) and then iteratively refined at each level. As a general solution strategy,
the multilevel paradigm has been in use for many years and has been applied to many problem areas (most
notably in the form of multigrid techniques). However, with the exception of the graph partitioning prob-
lem, multilevel techniques have not been widely applied to combinatorial optimisation problems. In this
paper we address the issue of multilevel refinement for such problems and, with the aid of examples and
results in graph partitioning, graph colouring and the travelling salesman problem, make a case for its use
as a metaheuristic. The results provide compelling evidence that, although the multilevel framework can-
not be considered as a panacea for combinatorial problems, it can provide an extremely useful addition to
the combinatorial optimisation toolkit. We also give a possible explanation for the underlying process and
extract some generic guidelines for its future use on other combinatorial problems.

Keywords: multilevel refinement, combinatorial optimisation, metaheuristic, graph partitioning, travelling
salesman, graph colouring

1. Introduction

In this paper we consider the multilevel paradigm and its potential to aid the solution of
combinatorial optimisation problems. The multilevel paradigm is a simple one, which at
its most basic involves recursive coarsening to create a hierarchy of approximations to
the original problem. An initial solution is found (sometimes for the original problem,
sometimes at the coarsest level) and then iteratively refined at each level. Projection
operators can transfer the solution from one level to another.

As a general solution strategy, the multilevel paradigm has been in use for many
years and has been applied to many problem areas (for example multigrid techniques
can be viewed as a prime example of the multilevel paradigm). Overview papers such
as (Brandt, 1988; Teng, 1999) attest to its efficacy. However, with the exception of the
graph partitioning problem, multilevel techniques have not been widely applied to com-
binatorial optimisation problems and in this paper we consider their potential benefits.
In particular we are interested in the broad class of discrete systems, with a finite but
usually exponential number of states, in which the requirement is to find the minimum

∗ URL: http://staffweb.cms.gre.ac.uk/∼c.walshaw

326 WALSHAW

(or maximum) of a cost function (a function that gives a value in N, or sometimes R,
to every state). There are many such problems which are known to be NP-hard (Garey
and Johnson, 1979) (for example the graph partitioning problem, the travelling salesman
problem, the quadratic assignment problem, etc.). In other words a true minimum for the
cost function cannot be found in polynomial time and so a heuristic, which will not be
able to guarantee finding an optimum solution, must be used. The problem is therefore
relaxed to finding a ‘good’ solution in ‘reasonable’ time.

Our interest in the multilevel paradigm arose with work in the field of graph par-
titioning, e.g., (Walshaw and Cross, 2000; Walshaw et al., 1999). It was clear from
some of these examples that the multilevel framework was sometimes able to impart a
‘global’ quality to local search heuristics (see section 2.2 below and (Walshaw, 2001d,
section 2.3)). More recently the paradigm was applied to force-directed (FD) graph
drawing (which is not a combinatorial problem but shares some of the characteristics).
Although FD methods are generally limited to sparse problems, the multilevel frame-
work was able to extend the size of graphs to which they can be applied by several orders
of magnitude, again through the ‘global’ improvement given by the multilevel scheme
(Walshaw, 2001a). With the realisation that this global quality might be put to good
use for other discrete problems, and a possible explanation of the underlying process (at
least for combinatorial optimisation problems), multilevel algorithms were then derived
for the travelling salesman problem (Walshaw, 2002), and for graph colouring (Walshaw,
2001b).

In this paper, we aim to draw together some of this work, address the issue of
multilevel combinatorial refinement and, with the aid of examples in graph partition-
ing, graph colouring and the travelling salesman problem, make a case for its use as a
metaheuristic. In particular we hope to achieve three objectives:

• Firstly to demonstrate that, for the problems on which it has been tested, the mul-
tilevel paradigm when used in combination with a local search strategy can often
either accelerate the convergence rate of the local search or even improve the asymp-
totic convergence in solution quality. Indeed sometimes it appears to even impart a
more ‘global’ quality to the final solution. The evidence here is confined to results
from three example problem areas, but within these areas it is compelling. Related
work on other problems, although patchy, substantiates this claim.

• Secondly, and more importantly, we shall attempt to explain the underlying process
and hypothesise about why this process allows the multilevel strategy to enhance the
local search algorithms.

• Finally we shall extract some of the generic principles underlying existing multilevel
algorithms and suggest how they might be applied to other combinatorial optimisa-
tion problems.

The ultimate aim is not to show that any one specific multilevel scheme dominates
for a given problem, but that, if the reader has a favourite local search algorithm for some
problem, then it could be well worth considering the implementation of a multilevel
version.

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 327

1.1. Overview

The rest of the paper is organised as follows. In sections 2–4 we discuss the evidence
for the strengths of the multilevel paradigm by describing three existing multilevel im-
plementations and presenting some sample results. Thus in section 2 we describe the
widespread use of multilevel techniques as applied to the graph partitioning problem
(GPP). The multilevel paradigm has been employed in this field since 1993 and is one
of the key ideas that has enabled such high quality solutions to be found so rapidly. In
section 3 we then discuss the recent application of the multilevel strategy to the travel-
ling salesman problem (TSP). The TSP is perhaps the most widely studied combinatorial
optimisation problem in existence and yet it has been dominated by a single heuristic,
the Lin–Kernighan algorithm, and an iterated version of the same for nearly 30 years.
Nonetheless the multilevel strategy when used in combination with this heuristic was
able to significantly improve on its results. Next, in section 4, we discuss the appli-
cation, also recent, of the multilevel paradigm to the graph colouring problem (GCP).
For this very challenging problem, often cited as one of the most difficult combinatorial
problems, the multilevel techniques were not universally successful but for graphs of
sparse and low-density were able to improve the convergence behaviour of two different
local search algorithms. These results also give an indication of where the multilevel
techniques might fail. In section 5 we then suggest the process that underlies the multi-
level coarsening and speculate as to the properties that it imparts to the local refinement
and which allow it to enhance the results. We also extract some guiding principles that
might aid the application of the strategy to other problems. A discussion of related
work, including applications of multilevel algorithms to other problems, can be found
in section 5.5. Finally we summarise the findings in section 6 and suggest some future
research.

Note that this paper brings together results and ideas from a number of sources.
In particular the TSP results are drawn from (Walshaw, 2002, 2001c), whilst some of
the GCP results appear in (Walshaw, 2001b). In addition, some of the generic multilevel
ideas discussed and extended here can be found in (Walshaw, 2002, 2001b) as motivation
for multilevel approaches to the TSP and GCP. However the GPP results, and the issues
raised about multilevel partitioning for denser instances, are new.

1.2. Notation and definitions

For all three example problems we use graph-based terminology and so it makes sense
to define some common notation here. Let G = G(V,E) be an undirected graph of
vertices V , with edges E. We use |.| to denote the number of elements in a set, e.g., |V |
is the number of vertices, and if the graph has weights (either for the vertices and/or the
edges) ‖.‖ denotes the summed weight of a set of vertices or edges (and as a shorthand
‖x‖ = ‖{x}‖ denotes the weight of a single object). For a set of vertices S ⊂ V , we use
�(S) to denote the neighbourhood of S, the set of vertices adjacent to, but not including,
vertices in S, i.e. �(S) = {v ∈ V − S: there exists (u, v) ∈ E with u ∈ S} and as
a shorthand we write �(v) = �({v}) to denote the neighbourhood of a single vertex v.

328 WALSHAW

A complete graph is one for which every vertex is adjacent to every other (and so �(v) =
V − {v} for all v ∈ V). We then define the edge density, �, as � = 2|E|/|V |(|V | − 1)

so that a complete graph with |V |(|V | − 1)/2 edges has density 1.0 or 100% density.
A subset of vertices S ⊂ V forms a connected component if each vertex in S can be
reached from every other vertex in S by traversing paths of edges and if �(S) is empty
(�(S) = ∅). As a special case, an isolated vertex is one which has no neighbours, i.e.
�(v) = ∅, and hence forms a trivial component. The graph G(V,E) is connected if
V is a connected component; a disconnected graph, therefore, is one with two or more
components and a proper disconnected graph is one two or more non-trivial components.

1.3. Experimental methodology

Below we outline results in 3 problem areas: graph partitioning, graph colouring and the
travelling salesman problem. In each case we wish to demonstrate that given a (single-
level) local search strategy for the problem (or potentially even a more complex scheme
such as a genetic algorithm) then a multilevel version can improve the convergence of the
local search (either the convergence rate or even the asymptotic convergence in solution
quality). In that sense our aim is not necessarily to show that a multilevel implementation
is better than any other strategy in that field, although we pick local search algorithms
which are either dominant over or at least competitive with other solution methods for
the problem in question.

Typically such local search algorithms contain a parameter which allows the user
to specify how long the search should continue before giving up. At its simplest this
can be just a time interval, but perhaps more commonly it is the number of iterations of
some outer loop of the algorithm, either in absolute terms or in terms of the number of
failures to achieve a better solution (e.g., sections 2.1.2 and 4.1.2). We refer to this as
the intensity, λ, of the search.

To assess a given algorithm, we measure the runtime and solution quality for a
chosen group of problem instances and for a variety of intensities. Since all of the
algorithms tested here have a degree of randomisation we run each test with several
random seed values. For problem instance p, at search intensity λ, with random seed
s, this gives a pair, Qλ,p,s, the solution quality found, and Tλ,p,s, the runtime. For each
intensity value and problem instance we average the solution quality and runtime results
over the number of seed values, ns , to give

Qλ,p = 1

ns

ns∑

s=1

Qλ,p,s, T λ,p = 1

ns

ns∑

s=1

Tλ,p,s.

We then normalise these values with reference solution quality and runtime values to
prevent instances with a large absolute solution quality or larger than average runtime
from dominating the results. Finally these normalised values are averaged over all prob-
lem instances to give a single data point of averaged normalised solution quality, Qλ, and
runtime, Tλ, for a given intensity λ. By using several intensity values, λ, we can then
plot Qλ against Tλ to give an indication of algorithmic performance over those instances.

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 329

The normalisation of solution quality is calculated as (Qλ,p − Q∗
p)/Q∗

p where Q∗
p

is either the best known (and often optimal) solution for instance p, or a lower bound on
the optimal solution quality. The actual normalisation values used are discussed further
in the relevant results sections (sections 2.2, 3.2 and 4.2). The time normalisation is
more simple and we just calculate T λ,p/T

A

p where T
A

p is the average runtime on an
instance p for some well known reference algorithm, A. Note that in choosing such a
reference algorithm we aimed to use schemes which were linear in the problem size,
e.g., O(|V | + |E|) for the graph based problems. We also tried normalising with the
problem size, N = |V |, and qualitatively the behaviour was almost identical, however
this does not express so well the densities differences for the graph based problems.

To summarise then, for a set of problem instances P , we plot averaged normalised
solution quality Qλ against averaged normalised runtime Tλ for a variety of intensities,
λ, and where:

Qλ = 1

|P |
∑

p∈P

(Qλ,p − Q∗
p)

Q∗
p

, Tλ = 1

|P |
∑

p∈P

T λ,p

T
A

p

.

As well as demonstrating typical performance behaviour, the plots also give a useful
guide to picking a good default value for the intensity. Thus setting λ = λ∗ at, or
close to, the turning point in the gradient of a typical convergence curve provided by the
experimentation below should give the best return in solution quality for the least runtime
cost. Note that typically then for these sorts of methods it would be a good idea to use
intensity values λ � λ∗ to get maximum benefit from the optimisation and so more
importance should be attached to the right hand (slow decay) end of the convergence
curves.

The tests discussed here were all carried out on a DEC Alpha machine with a 466
MHz CPU and 1 Gbyte of memory. Typically, although not universally, the runtime
for a particular local search strategy at intensity λ is about the same as the runtime for
a multilevel version at intensity λ/2 (see section 5.3) and this factor of two prompts
the choice of intensity values during the testing. For each instance and each intensity
value we ran 3 tests with different random seed values. In each case the runtime mea-
surement includes reading in the problem, output of the solution and any initialisation
required including an initial solution construction algorithm for the single-level local
search schemes. Raw data for the testing can be found online.1

2. The graph partitioning problem

The k-way graph partitioning problem (GPP) can be stated as follows: given a graph
G(V,E), possibly with weighted vertices and/or edges, partition the vertices into k dis-
joint sets such that each set contains the same vertex weight and such that the cut-weight,
the total weight of edges cut by the partition, is minimised. The GPP has a number of ap-
plications including circuit partitioning for optimal placement of electronic components
on printed circuit boards and the partitioning of unstructured meshes for parallel process-

330 WALSHAW

ing (mesh partitioning). It is well known that this problem is NP-complete (Garey and
Johnson, 1979), so in recent years much attention has been focused on developing suit-
able heuristics. It is quite common in applications such as mesh partitioning to slightly
relax the balancing constraint in order to improve the partition quality.

Typically many researchers have approached this problem by studying its restric-
tion to 2 subsets, the graph bisection problem. This can then be easily extended to the
full problem by recursion, i.e. the graph is bisected into two sub-problems which are
then themselves bisected to give 4 sub-problems and so on. This technique is known
as recursive bisection and has been used with a variety of bisection algorithms, e.g.,
(Simon, 1991). It is still widely used and is able to give guarantees on satisfying the
balancing constraint, although the resulting partition quality may be limited (Simon and
Teng, 1997). However with the advent of robust k-way partitioning algorithms, which
arguably can be parallelised more easily and are perhaps better suited to dynamic load-
balancing, there is now a considerable body of research on methods which solve the full
problem in one go. In fact multilevel approaches have been applied to both recursive bi-
section, e.g., (Battiti, Bertossi, and Cappelletti, 1999; Bui and Jones, 1993; Karypis and
Kumar, 1998a; Pellegrini and Roman, 1996) and k-way algorithms, e.g., (Hendrickson
and Leland, 1995a; Karypis and Kumar, 1998b; Walshaw and Cross, 2000) and we test
both approaches below, section 2.2.

2.1. Multilevel graph partitioning

The GPP was the first combinatorial optimisation problem to which the multilevel para-
digm was applied and there is now a considerable volume of literature about multilevel
partitioning algorithms. Initially used as an effective way of speeding up partitioning
schemes, it was soon recognised as, more importantly, giving them a more ‘global’ per-
spective (Karypis and Kumar, 1998a), and has been successfully developed as a strategy
for overcoming the localised nature of the Kernighan–Lin (KL) (Kernighan and Lin,
1970), and other optimisation algorithms. Typically such multilevel implementations
match and coalesce pairs of adjacent vertices to define a new graph and recursively ap-
ply this procedure until the graph size falls below some threshold. The coarsest graph
is then partitioned (possibly with a crude algorithm) and the partition is successively
refined on all the graphs starting with the coarsest and ending with the original. At each
change of levels, the final partition of the coarser graph is used to give the initial partition
for the next level down. The use of multilevel combinatorial refinement for partitioning
was first proposed by both Hendrickson and Leland (1995a) and Bui and Jones (1993),
inspired by Barnard and Simon (1994), who used a multilevel numerical algorithm to
speed up spectral partitioning.

Figure 1 shows an example of a multilevel partitioning scheme in action. On the
top row (left to right) the graph is coarsened down to 4 vertices which are (trivially)
partitioned into 4 sets (bottom right). The solution is then successively extended and
refined (right to left; each graph shows the final partition for that level). Although at
each level the refinement is only local in nature, a high quality partition is still achieved.

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 331

Figure 1. An example of multilevel partitioning.

2.1.1. Multilevel framework
Graph contraction. A common method to create a coarser graph Gl+1(Vl+1, El+1)

from Gl(Vl, El) is the edge contraction algorithm proposed by Hendrickson and Le-
land (1995a). The idea is to find a maximal independent subset of graph edges, or a
matching of vertices, and then collapse them. The set is independent if no two edges
in the set are incident on the same vertex (so no two edges in the set are adjacent), and
maximal if no more edges can be added to the set without breaking the independence
criterion. Having found such a set, each selected edge is collapsed and the vertices,
u1, u2 ∈ Vl say, at either end of it are merged to form a new vertex v ∈ Vl+1 with weight
‖v‖ = ‖u1‖ + ‖u2‖. Edges which have not been collapsed are inherited by the child
graph, Gl+1, and, where they become duplicated, are merged with their weight summed.
This occurs if, for example, the edges (u1, u3) and (u2, u3) exist when edge (u1, u2) is
collapsed. Because of the inheritance properties of this algorithm, it is easy to see that
the total vertex weight remains the same, ‖Vl+1‖ = ‖Vl‖, and the total edge weight is
reduced by the sum of the collapsed edge weights.

A simple way to construct a maximal independent subset of edges is to create a
randomly ordered list of the vertices and visit them in turn, matching each unmatched
vertex with an unmatched neighbour (or with itself if no unmatched neighbours exist).
Matched vertices are removed from the list. If there are several unmatched neighbours
the choice of which to match with can be random, but it has been shown by Karypis and
Kumar (1998a), that it can be beneficial to the optimisation to collapse the most heavily
weighted edges.

This simple but rapid algorithm (which has O(|E|) complexity) is guaranteed to
construct a maximal matching (because no more edges can be added without breaking the
independence criterion). However it will not necessarily construct a maximum matching,
a matching with the largest possible size (which is bounded above by |V |/2 – i.e. if every
vertex is matched with another then there will be |V |/2 edges in the set). A maximum
matching is much more costly to construct (certainly greater than O(|E|) in complexity)
and algorithms for this purpose are the subject of a considerable body of literature, e.g.,
(Cook and Rohe, 1999). In practice the fact that a suboptimal matching is found appears
not to matter (although see section 6.3.2 for further discussion).

332 WALSHAW

The initial partition. The hierarchy of graphs is constructed recursively until the num-
ber of vertices in the coarsest graph is smaller than some threshold and then an initial
partition is found for the coarsest graph. At its simplest, the contraction can be termi-
nated when the number of vertices in the coarsest graph is the same as the number of
subsets required, k, and then vertex i is assigned to subset Si . However, since the vertices
of the coarsest graph are not generally homogeneous in weight, this does require some
mechanism for ensuring that the final partition is balanced, i.e. each subset has (approx-
imately) the same vertex weight. Various methods have been proposed for achieving
this, commonly either by terminating the contraction so that the coarsest graph GL still
retains enough vertices, |VL|, to achieve a balanced initial partition (i.e. so that typically
|VL| � k) (Hendrickson and Leland, 1995a; Karypis and Kumar, 1998a), or by incorpo-
rating load-balancing techniques alongside the refinement algorithm, e.g., (Walshaw and
Cross, 2000), where it is also shown that relaxing the balance constraint on the coarser
levels and tightening it up gradually can enhance the resulting partition quality.

Partition extension. Having optimised the partition on a graph Gl , the partition must
be extended onto its parent Gl−1. The extension algorithm is trivial; if a vertex v ∈ Vl

is in subset Si then the matched pair of vertices that it represents, v1, v2 ∈ Vl−1, are also
assigned to Si .

2.1.2. Refinement: the Kernighan–Lin algorithm
At each level, the partition from the previous level is extended to give an initial partition
and then refined. Various refinement schemes have been successfully used including
greedy refinement, a steepest descent approach, which is allowed a small imbalance in
the partition (typically 3–5%) and transfers border vertices from one subset to another
if either (a) the move improves the cost without exceeding the allowed imbalance; or
(b) the move improves the balance without changing the cost. Although this scheme
cannot guarantee perfect balancing, it has been applied to very good effect (Karypis and
Kumar, 1998b), and is extremely fast.

A more sophisticated class of method is based on the Kernighan–Lin (KL) bi-
section optimisation algorithm (Kernighan and Lin, 1970), which includes limited hill-
climbing to enable it to escape from local minima. Recent implementations almost uni-
versally use the linear time complexity improvements (e.g., bucket sorting of vertices)
introduced to partitioning by Fiduccia and Mattheyses (1982). We outline the KL re-
finement algorithm to illustrate the process, however in principle any iterative refine-
ment scheme can be used and examples of successful multilevel implementations exist
for simulated annealing (Vanderstraeten et al., 1996), tabu search (Battiti, Bertossi, and
Cappelletti, 1999; Vanderstraeten et al., 1996), genetic algorithms (Kaveh and Rahimi-
Bondarabady, 2000), cooperative search (Toulouse, Thulasiraman, and Glover, 1999),
and even ant colony optimisation (Langham and Grant, 1999).

A typical KL-type algorithm will have inner and outer iterative loops with the
outer loop terminating when no vertex transfers take place during an inner loop. It is
initialised by calculating the gain – the potential improvement in the cost function (the

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 333

cut-weight) – for all border vertices. The inner loop proceeds by examining candidate
vertices, highest gain first, and if the candidate vertex is found to be acceptable (i.e. it
does not overly upset the load-balance), it is transferred. Its neighbours have their gains
updated and, if not already tested in the current iteration of the outer loop, join the set of
candidate vertices.

The KL hill-climbing strategy allows the transfer of vertices between subsets to
be accepted even if it degrades the partition quality and later, based on the subsequent
evolution of the partition, the transfers are either rejected or confirmed. During each pass
through the inner loop, a record of the best partition achieved by transferring vertices
within that loop is maintained together with a list of vertices which have been transferred
since that value was attained. If, during subsequent transfers, a better partition is found
then the transfer is confirmed and the list is reset.

This inner loop terminates when a specified number of candidate vertices have been
examined without improvement in the cost function. This number (i.e. the maximum
number of continuous failed iterations of the inner loop) provides the user specified
intensity of the search, λ (see section 1.3). Note that if λ = 0 then the refinement
is purely greedy in nature (as mentioned above). Once the inner loop is terminated,
any vertices remaining in the list (vertices whose transfer has not been confirmed) are
transferred back to the subsets they came from when the best cost was attained.

The KL algorithm has been extended to k-way partitioning in different ways by
several authors (e.g., Hendrickson and Leland, 1995a; Karypis and Kumar, 1998b; Wal-
shaw and Cross, 2000). For example Hendrickson and Leland achieve this by calculat-
ing the gain for moving each border vertex to any of the k − 1 other sets (Hendrickson
and Leland, 1995a). Unfortunately this can add a significant time and memory penalty
(Hendrickson and Leland, 1995b), and so in the k-way version used below, Walshaw and
Cross just calculate the gain for each set to which the border vertex is adjacent and only
store the highest gain value (Walshaw and Cross, 2000).

Weighted graphs. Even though the original graph may not be weighted, the coarsened
graphs will all have weights attached to both vertices and edges because of the contrac-
tion process. Furthermore the original problem is not correctly represented unless the
weights are used to evaluate partitions of the coarsened graphs and so the refinement
algorithm must take them into account. In fact it is not difficult to incorporate the edge
weights into the gain function. For the vertex weights it is not always so straightforward
to modify the load-balancing mechanisms (particularly in the original version of KL
where pairs of vertices are swapped), but the relaxation to allow imbalanced partitions
does facilitate their use, e.g., (Walshaw and Cross, 2000).

2.1.3. Iterated multilevel partitioning
If a partition of the graph already exists prior to optimisation it can be reused during the
multilevel procedure. Thus, given a k-way partition of the original problem we can carry
out solution-based coarsening by insisting that, at each level, every vertex v matches
with a neighbouring vertex in the same set. When no further coarsening is possible this

334 WALSHAW

will result in a partition of the coarsest graph with the same cost as the initial partition of
the original. Provided the refinement algorithms guarantee not to find a worse partition
than the initial one (in fact even if they do find a worse partition it can be replaced by
the initial one) the multilevel refinement can then guarantee to find a new partition that
is no worse than the initial one.

This technique can be used to find very high quality partitions, albeit at some ex-
pense, by repeatedly coarsening and uncoarsening to iterate the procedure. At each
iteration the current solution can be used to create a solution-based coarsening and con-
struct a new hierarchy of graphs and as we have seen the process guarantees not to find
a worse solution than the initial one. However, if the matching includes a random factor,
each iteration is very likely to give a different hierarchy of graphs to previous itera-
tions and hence allow the refinement algorithm to visit different solutions in the search
space.

We refer to this process as an iterated multilevel algorithm (see also (Toulouse,
Thulasiraman, and Glover, 1999) for a variation of this technique); it is analogous to the
use of V -cycles in multigrid. Note that it requires the user to specify a second intensity
parameter, γ , namely the number of failed outer iterations (i.e. the number of times the
algorithm coarsens and uncoarsens the graph without finding a better solution). Clearly
the optimal choices of λ and γ are somewhat interdependent and it would require con-
siderable experimentation to determine the best combination, if such a characterisation
is even possible; for now we choose λ = λ∗ (see section 1.3). We can then vary γ

to test the iterated multilevel algorithm and give some sample results for this scheme
below.

2.2. Experimental results

To illustrate the potential gains offered by multilevel schemes we conducted a number
of experiments. These are not intended to be exhaustive but merely give an indication of
typical performance behaviour.

We use the Kernighan–Lin (KL) scheme to demonstrate the performance of the
multilevel algorithm because arguably the multilevel KL scheme represents the state of
the art in graph partitioning – see (Schloegel, Karypis, and Kumar, 2004). As further ev-
idence we would cite the fact that all of the five public-domain graph partitioning pack-
ages use multilevel refinement and four (Chaco (Hendrickson and Leland, 1995a), Jostle
(Walshaw and Cross, 2000), Metis (Karypis and Kumar, 1998b), and Scotch (Pellegrini
and Roman, 1996)) use a multilevel Kernighan–Lin variant as the default setting (of-
ten referred to as Fiduccia–Mattheyses after the linear-time complexity improvements in
(Fiduccia and Mattheyses, 1982), see section 2.1.2 above). Meanwhile the fifth package,
Party (Monien, Preis, and Diekmann, 2000), uses a multilevel version of a refinement
scheme known as helpful sets, itself an extension of the KL algorithm which swaps sev-
eral vertices at a time (Diekmann et al., 1996). Furthermore there is evidence that these
packages tend produce reasonably similar results, e.g., (Monien, Preis, and Diekmann,
2000; Pellegrini and Roman, 1996; Soper, Walshaw, and Cross, 2000; Walshaw and

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 335

Cross, 2000), with no particular version dominating the others in terms of both runtime
and solution quality, although Metis is usually the fastest. Even in the case of other more
general local search schemes such as simulated annealing or tabu search there is good
evidence that the multilevel approach can enhance the partitioning results, e.g., (Battiti,
Bertossi, and Cappelletti, 1999; Kaveh and Rahimi-Bondarabady, 2000; Langham and
Grant, 1999; Toulouse, Thulasiraman, and Glover, 1999; Vanderstraeten et al., 1996),
and so although there is no recent experimental survey which compares a range of al-
gorithms it seems hard to deny that the state of the art in graph partitioning involves a
multilevel algorithm in some way. It is true that there are also geometric partitioning
schemes which might also make a claim, e.g., (Gilbert, Miller, and Teng, 1998), but
these are really suitable for mesh-partitioning as they require coordinates for the vertices
plus some quality guarantees on the mesh.

We use two test suites, one of which is a collection of 16 sparse, mostly mesh-based
graphs drawn from a number of real-life applications and collected together online2 with
some larger examples for benchmarking partitioning algorithms (Soper, Walshaw, and
Cross, 2000). The other test suite consists of 90 instances compiled to test graph colour-
ing algorithms for the 2nd DIMACS implementation challenge (Johnson and Trick,
1996), augmented by further examples added since then3 and including a number of
randomly generated examples. Although perhaps not representative of partitioning ap-
plications, some interesting results came to light with this suite in (Walshaw, 2001b)
whilst testing multilevel colouring algorithms and we were interested in investigating
this sort of behaviour further for partitioning. This colouring test suite is further sub-
divided, as in (Walshaw, 2001b), into 3 density classes; low (0% � � � 331

3 %) with
58 out of 90 instances, medium (33 1

3 % < � � 662
3 %) with 23 instances and high

(662
3 < � � 100%) with just 9 instances.

Note that although the distinction between sparse and low-density graphs is not
always clear, typically by sparse we mean families of graphs for which the number
of edges |E| is O(|V |) and so the density decreases with increasing |V |. Meanwhile
by low-density we tend to mean families of graphs which have O(|V |2) edges but for
which the density, � � 100%, remains constant with increasing |V | (for example the
colouring suite contains a series of randomly generated graphs of different sizes but fixed
density of 0.1).

The tests compare both the k-way and recursive bisection based Kernighan–Lin
algorithms against multilevel versions at a range of intensities (see section 1.3). The
solution quality normalisation is against the best known solutions found to date. These
are in the public-domain4 and were found through extensive testing by a range of algo-
rithms, most notably a combined evolutionary/multilevel scheme (Soper, Walshaw, and
Cross, 2000), which can take weeks to run for large instances, but also including the
multilevel partitioning packages, Chaco, Jostle, and Metis, as well as recursive spectral
bisection (Barnard and Simon, 1994), and (where the graph has vertex coordinate infor-
mation) recursive coordinate bisection (Simon, 1991). We normalise the runtime using
the greedy partition construction algorithm (Farhat, 1988), because this simple but well-
known scheme is O(|V | + |E|) in complexity thus capturing the problem size well. All

336 WALSHAW

tests were required to look for 16-way partitions and were allowed an imbalance of 3%;
this is indicative only and more thorough testing, at least for sparse graphs, can be found
elsewhere.

2.2.1. Direct k-way partitioning
The first set of test results compares a k-way Kernighan–Lin algorithm (kKL) against
a multilevel version (MLkKL). The initial partition for the kKL results was provide
by the greedy partition construction algorithm (Farhat, 1988), also used for runtime
normalisation. All of the algorithms used are available within the framework of Jostle,
a partitioning tool developed at the University of Greenwich and freely available for
academic and research purposes under a licensing agreement.5

The intensity parameter was the number of failed iterations of the KL inner loop
(see section 2.1.2) and for the multilevel versions λl , the search intensity at level l, is set
to λl = λ/(l + 1) where the original problem is level 0 and so λ0 = λ. Note that if the
intensity were to control the outer loop we would expect, for kKL at least, that the curve
should decrease monotonically. This is because for λ1 < λ2, a test at intensity λ2 would
typically just extend the optimisation from the best solution found at intensity λ1. Since
the optimisation can always return to the best solution found for λ1, the solution found
for λ2 should never be worse than that found for λ1. However, because here the intensity
controls the inner loop, this monotonicity is lost and the quality does sometimes degrade
slightly as the intensity increases, e.g., figure 2(a).

Using the methodology described in section 1.3 we conducted tests to compare
kKLλ (with λ = 0 and λ = 2m with m = 0, . . . , 14) against MLkKLλ (with λ = 0
and λ = 2m with m = 0, . . . , 13). Figure 2(a) shows the results for the sparse graphs
and the dramatic quality improvement imparted by the multilevel framework is immedi-
ately clear. Even for purely greedy refinement (i.e. the extreme left-hand point on either
curve where λ = 0 – see section 2.1.2 above) the MLkKL solution quality is far better
than kKL and it is results like these that have helped to promote multilevel partitioning
algorithms to the status they enjoy today.

Figures 2(b)–(d) show the partitioning results for the colouring test suite. Here we
test kKLλ (with λ = 0 and λ = 2m with m = 0, . . . , 10) against MLkKLλ (with λ = 0
and λ = 2m with m = 0, . . . , 9). Figure 2(b) more or less confirms the conclusions
for the sparse results and although the curves are closer together, MLkKL is the clear
winner. For the medium and high-density examples however, it is a surprise (especially
considering the widely accepted success of multilevel partitioning) to find that these
conclusions are no longer valid. For the high-density instances, figure 2(d), MLkKL is
still the leading algorithm, although only marginally. However for the medium-density
results, figure 2(c), MLkKL fails to achieve the same performance as kKL and the mul-
tilevel framework appears to actually hinder the optimisation. This could simply be due
to the fact that one of the algorithms is tuned badly for this particular class but since
multilevel algorithms are widely accepted for partitioning this should raise a note of
caution to practitioners. For now this is left as an observation but we discuss it further in
section 6.1.

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 337

Figure 2. Plots of convergence behaviour for the GPP.

To measure the variation of algorithmic performance across the test suite, we com-
puted, σ , the standard deviation (in this case the deviation from the percentage excess
over best known solutions), for each data point in figure 2. The absolute values of the σ

values are difficult to summarise (and space precludes plots of them), but a comparison
between the two methods, MLkKL and kKL, revealed that the values were around 25–
100% worse for kKL across the colouring suite and around 8 times worse for the sparse
instances. Interestingly this was true even for the medium density instances where kKL
produces better results on average. The implications are that MLkKL has a much lower
variation of results across the test suite and we take this to mean that the multilevel
framework ‘stabilises’ kKL in some way.

Although we do not present raw data here, it can be found online.6 However within
each class the runtimes scale reasonably well with problem size and for example if
λ = λ∗ = 64 (see section 1.3), MLkKL can achieve a good quality partition for a
typical sparse graph, 4elt, with |V | = 15,606 and |E| = 45,878 in around 0.3 seconds.
Meanwhile for the colouring suite the random low, medium and high-density graphs,
DSJC1000.1, DSJC1000.5 and DSJC1000.9, each with |V | = 1,000 and |E| = 49,629,
|E| = 249,826 and |E| = 449,449, can be partitioned in around 9, 120 and 240 sec-

338 WALSHAW

onds, respectively. The apparent discrepancy between the 4elt and DSJC1000.1 runtimes
(with very similar numbers of edges) arises from the fact that higher densities and hence
higher connectivities significantly complicate the partitioning problem.

Finally note that the scale on the vertical axis is very different for each plot in
figure 2. This is because, as the density increases, the proportion of edges which must
be cut, even for an optimal partition, increases whilst the number of edges which may or
may not be cut, depending on the solution quality, decreases.

2.2.2. Recursive bisection partitioning
To augment the evidence above we decided to apply a different implementation and
configuration of the KL algorithm to the same test suite. We chose the Chaco software,7

developed by Hendrickson and Leland, because it is well established and because, of the
five packages mentioned above, apart from Jostle it is the only one which gives explicit
control over an intensity parameter. For the tests we then chose a recursive bisection
version of the KL algorithm (i.e. via recursive application of 2-way partitioning) and
which we refer to as 2KL. Although Chaco offers quadrisection and octasection in addi-
tion, the authors note that because their implementation calculates k − 1 gains for each
border vertex, these options can significantly increase the time and memory complexity
(Hendrickson and Leland, 1995b). Recursive bisection also broadens the scope of the
testing.

The intensity parameter, λ, is the number of failed iterations of the outer loop
(each pass of the outer loop may produce different results because of randomisation in
the ordering within the bucket sorting structure). The tests then compare 2KLλ (with
λ = 0 and λ = 2m with m = 0, . . . , 10) against ML2KLλ (with λ = 0 and λ = 2m with
m = 0, . . . , 9). The initial partitions for single-level version were computed by linear
assignment (the first 	|V |/k
 vertices are assigned to set 1, etc.) and the multilevel
version collapsed the graph down to 16 vertices.

The results are shown in figure 3 alongside the k-way results. Note that because
of large variations in runtime between the two approaches we plot the log of average
normalised runtime. Thus figure 3 includes the same information as figure 2 but the
horizontal scaling is very different and arguably less visually representative of typical
behaviour with its long shallow decay curves. The plots broadly confirm the conclu-
sions from the previous section that multilevel enhancement of KL can be spectacularly
successful on sparse and low-density problems. Indeed ML2KL (and 2KL) significantly
improve on the kKL results for the low-density instances (although it is not clear why
this should be the case). This illustrates very well the primary conclusion of this paper
– although no one algorithm is dominant across all problem instances and intensities,
nonetheless, given a good local search algorithm, a multilevel version of that scheme
may be able to improve on the results over a significant proportion of its application
range and hence the multilevel paradigm is worth considering as an addition to the com-
binatorial optimisation toolkit.

A number of other observations can be made about the 2KL results. Firstly in con-
trast to kKL, ML2KL still dominates 2KL for the medium density instances, although

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 339

Figure 3. Plots of convergence behaviour for the GPP with logarithmic runtime scaling.

the asymptotic convergence is considerably worse than both kKL and MLkKL. Secondly
the 2KL and ML2KL results do not decrease monotonically as λ increase; this is also
true for kKL, as mentioned above, but the results seem to be markedly more unstable
here. We believe that this is due to the underlying optimisation structure inherent in re-
cursive bisection schemes. Thus a decision about improving one particular bisection has
no regard to subsequent bisections of the subproblems and indeed may have deleterious
effects. This has been investigated in detail by Simon and Teng (1997), who show that
even optimal bisections at each recursion may lead to a final k-way partition that is far
from optimal. We believe that this also accounts for the fact that increasing the intensity
beyond about λ = 64 fails to improve the results significantly and hence the curves have
a long unstable tail (as compared with the smooth slow decay of the kKL curves).

The recursive bisection results showed very similar variation of performance to the
k-way results (at least as measured by the standard deviation) with much higher deviation
from the average for 2KL as compared with ML2KL. Again we take this to indicate that
the multilevel framework stabilises the performance of 2KL in some way.

Once again raw data can be found online,8 but to give some example of runtime
for λ = 64, ML2KL can partition a typical sparse graph, 4elt, in around 4 seconds

340 WALSHAW

Figure 4. Plots of convergence behaviour including iterated multilevel partitioning results.

and the random low, medium and high-density graphs, DSJC1000.1, DSJC1000.5 and
DSJC1000.9, in around 2, 11 and 26 seconds, respectively.

2.2.3. Iterated multilevel results
Figure 4 illustrates the results for the iterated multilevel algorithm (IMLkKL) described
in section 2.1.3 alongside the MLkKL and kKL results for low and medium-density sub-
classes of the colouring suite. These plots contain the same information about MLkKL
and kKL as figures 2(b) and 2(c) only it is more compressed here because of the long
IMLkKL runtimes. For the IMLkKL results the inner intensity parameter was fixed at
λ = λ∗ = 64 (see section 2.1.3) whilst the iterated intensity parameter, γ , is varied with
γ = 2l and l = 0, . . . , 4.

We do not show results for the sparse and high-density instances because they are
not so interesting; for the sparse suite IMLkKL more or less continues the MLkKL curve
in figure 2(a) with a few percentage points improvement and very shallow decay whilst
for the high-density instances IMLkKL does not appear to offer much improvement
at all. However for the low and medium-density subclasses, in figures 4(a) and 4(b),
respectively, the asymptotic performance offered by IMLkKL is impressive and worthy
of further and more thorough investigation. In both cases IMLkKL improves on MLkKL
(and ML2KL) and, for the medium-density instances, even appears to overcome the
shortcomings of MLkKL and exceeds the kKL results.

3. The travelling salesman problem

The travelling salesman problem (TSP) can be stated as follows: given a collection of
‘cities,’ find the shortest tour which visits all of them and returns to its starting point.
Typically the cities are given coordinates in the 2D plane and then the tour length is
measured by the sum of Euclidean distances between each pair on the tour. However, in

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 341

the more general form, the problem description simply requires a metric which specifies
the distance between every pair of cities.

The TSP has been shown to be NP-hard (Garey and Johnson, 1979), but has a num-
ber of features which make it stand out amongst combinatorial optimisation problems.
Firstly, and perhaps because of the fact that the problem is so intuitive and easy to state,
it has almost certainly been more widely studied than any other combinatorial problem.
For example Johnson and McGeoch (1997), survey a wide range of approaches which
run the gamut from local search, through simulated annealing, tabu search and genetic
algorithms to neural nets. Remarkably, and despite all this interest, the local search al-
gorithm proposed by Lin and Kernighan (1973), still remains at the heart of the most
successful approaches. In fact Johnson and McGeoch describe the Lin–Kernighan (LK)
algorithm as the world champion heuristic for the TSP from 1973 to 1989. Further,
this was only conclusively superseded by chained or iterated versions of LK (CLK/ILK)
originally proposed by Martin, Otto, and Felten (1991).

Even until recently, in spite of all the work on exotic and complex combinatorial
techniques, Johnson and McGeoch (1997), concluded in 1997 that an iterated or chained
Lin–Kernighan (ILK/CLK) scheme provides the highest quality tours for a reasonable
cost and that CLK/ILK variants are ‘the most cost effective way to improve on Lin–
Kernighan, at least until one reaches stratospheric running times.’ In fact, more recently
an interesting LK variant has been developed by Helsgaun (2000), which, at least in its
multi-trial version, can significantly improve on CLK/ILK results. However this scheme,
which we shall refer to here as the Lin–Kernighan–Helsgaun (LKH) algorithm, suffers
from running times which are quadratic in N , the problem size, and hence is unsuited to
large instances.

Another unusual feature of the TSP is that, for problems which have not yet been
solved to optimality (typically with 10,000 or more cities), an extremely good lower
bound can be found for the optimal tour length. This bound, known as the Held–Karp
Lower Bound (HKLB), was developed in 1970 by Held and Karp (1970), and usually
comes extremely close to known optimal tour lengths (often within 1%). Thus to mea-
sure the quality of an algorithm for a given set of problem instances (some or all of
which have unknown solutions), we can simply calculate the average percentage excess
of tours produced by the algorithm over the HKLB for each instance.

It is sometimes convenient to use graph notation (see section 1.2) for the TSP
in which case we refer to the cities as vertices and the problem can be specified as a
complete graph with weighted edges, i.e. there is an edge between every pair of cities
and the weight of the edge specifies the distance between them.

3.1. A multilevel algorithm for the travelling salesman problem

Recently the multilevel paradigm has been applied to the TSP (Johnson and McGeoch,
2002; Walshaw, 2002, 2001c). Although the scheme is perhaps less intuitive than mul-
tilevel partitioning, clearly the LK algorithm or one of its variants should make a good
refinement method. However, with no graph as such, how can the problem be coarsened?

342 WALSHAW

In fact from (Walshaw, 2002) it seems that the crucial point in devising a coars-
ening algorithm is the requirement that the solution to each coarsened problem must
contain a solution of the original problem. One way of achieving this is for the coarsen-
ing to successively fix edges into the tour. For example, given a TSP instance P of size
N , if we fix an edge between cities ca and cb then we create a smaller problem P ′ of size
N − 1 (because there are N − 1 edges to be found) where we insist that the final tour
of P ′ must somewhere contain the fixed edge (ca, cb). Having found a tour T ′ for P ′
we can then return to P and look for better tours using T ′ as the initial tour. In fact we
can fix many distinct edges in one coarsening step, again by vertex matching, and hence
reduce the size of the problem considerably at every level.

Figure 5 shows an example of this. The top row demonstrates the coarsening
process where dotted lines represent matchings of vertices (and hence new fixed edges)
whilst solid lines represent fixed edges that have been created in previous coarsening
steps. Notice in particular that after the second coarsening step chains of fixed edges are
reduced down to a single edge with a vertex at either end and any vertices internal to
such a chain are removed. The coarsening terminates when the problem is reduced to
one fixed edge and two vertices and at this point the tour is initialised. The initialisation
is trivial and merely consists of completing the cycle by adding an edge between the two
remaining vertices. The procedure then commences the extend/refine loop (bottom row,
right to left). Again solid lines represent fixed edges whilst dotted lines represent free
edges which may be changed by the refinement. The extension itself is straightforward;
we simply expand all fixed edges created in the corresponding coarsening step and add
the free edges to give an initial tour for the refinement process. The refinement algorithm
then attempts to improve on the tour (without changing any of the fixed edges) although
notice that for the first refinement step no improvement is possible. The final tour is
shown at the bottom left of the figure; note in particular that fixing any edge during
coarsening does not force it to be in the final tour since for the final refinement step all
edges are free to be changed. However, fixing an edge early on in the coarsening does
give it fewer possibilities for being flipped.

Figure 5. An example of a multilevel TSP algorithm at work.

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 343

3.1.1. Multilevel framework
Matching and coarsening. The implementation of this coarsening process in which
vertices are matched and edges fixed between them is fully described in (Walshaw,
2002). In fact it is more convenient for the data structure to use edge objects and so
in practice a matching of edges is created at each level (in much the same way that a
matching of vertices is created for the multilevel partitioning algorithm). Initially each
edge is of zero length and has the same vertex at either end; however after the first
coarsening most edges will have different vertices at either end.

The aim during the matching process should be to fix those edges that are most
likely to appear in a high quality tour thus allowing the refinement to concentrate on the
others. Indeed, if by some good fortune, the matching only selected optimal edges then
the optimal tour would have been found by the end of the matching process and the re-
finement would have no possible improvements. However, in the absence of information
about the optimal tour, vertices are matched with their nearest unmatched neighbours.

The implementation of this process uses a superimposed grid of spacing h to avoid
O(N) searches to find the nearest neighbours. An important consequence is that at each
level vertices are only allowed to match with neighbours within a distance h, although at
each level h is increased (to keep the average number of vertices per grid cell constant).
This prevents long-range matching on the lower levels of the coarsening and appears to
have an important effect on the results (see section 3.2).

Initialisation. The coarsening ceases when further contraction would cause a degener-
ate problem, in this case when there remain only two vertices with a fixed edge between
them. This is guaranteed to occur because each coarsening level will match at least
one pair of vertices and so the problem size will shrink. Initialisation is then trivial and
consists of adding an edge between the two vertices to complete the tour.

3.1.2. Refinement: the Lin–Kernighan algorithm and variants
The multilevel TSP algorithm described in (Walshaw, 2002) uses the chained Lin–
Kernighan (CLK) algorithm for the refinement step of the multilevel procedure, probably
the most effective local search technique for iteratively optimising a TSP tour. However
in a recent extension of the scheme, a version which uses the Lin–Kernighan–Helsgaun
algorithm has also been developed (Walshaw, 2001c).

Typically TSP tour optimisation takes place by ‘flipping’ edges. Thus, if the tour
contains the edges (v1, w1) and (w2, v2) in that order, then these two edges can al-
ways be flipped to create (v1, w2) and (w1, v2). This sort of step forms the basis of the
2-opt algorithm (Croes, 1958), which is a steepest descent approach, repeatedly flipping
pairs of edges if they improve the tour quality until it reaches a local minimum of the
objective function and no more such flips exist. In a similar vein, the 3-opt algorithm
of Lin (1965), exchanges 3 edges at a time. The Lin–Kernighan (LK) algorithm (Lin
and Kernighan, 1973), also referred to as variable-opt, however incorporates a limited
amount of hill-climbing by searching for a sequence of exchanges, some of which may
individually increase the tour length, but which combine to form a shorter tour. A vast

344 WALSHAW

amount has been written about the LK algorithm, including ideas to improve its perfor-
mance together with much on its efficient implementation; for an excellent overview of
techniques see the surveys of Johnson and McGeoch (2002, 1997).

The basic LK algorithm employs a good deal of randomisation and for many years
the accepted method of finding the shortest tours was simply to run it repeatedly with
different random seed values and pick the best (a technique which also had the advantage
that it could be run in parallel on more than one machine at once). Martin, Otto, and Fel-
ten’s important contribution to the field (Martin, Otto, and Felten, 1991), came with the
observation that, instead of restarting the procedure from scratch every time, it was more
efficient to perturb the final tour of one LK search and use this as the starting point for the
next. In their original approach, Martin et al. referred to their algorithm as chained local
optimisation and used it as a form of accelerated simulated annealing. Thus they would
perturb or ‘kick’ a tour and use LK to find a nearby local minimum. If the new tour was
not as good as the champion tour at that point, the algorithm would decide whether or
not to keep it as a starting point for the next perturbation by using a simulated annealing
cooling schedule. Subsequent implementations however generally discard any new tour
which does not improve on the current champion and always perturb the champion, e.g.,
(Applegate et al., 1999; Johnson and McGeoch, 1997). The version used here takes this
approach and is known as the chained Lin–Kernighan (CLK) algorithm.

We also experiment with a new and highly effective variant of the LK algorithm
developed by Helsgaun (2000). This scheme employs a number of important innovations
including sequential 5-opt moves and the use of sensitivity analysis to direct the search.
It has been shown to compute solutions extremely close to the optimal (where known)
but suffers from the drawback of runtimes which are quadratic in N , the problem size,
and so may not be suitable for large problem instances (e.g., if N > 10,000 the runtime
for N trials can be measured in days whilst for N = 30,000 it runs to weeks). The al-
gorithm is most effective in its multi-trial version where the optimisation is run multiple
times, each with a different initial tour, the construction of which is biased by the edges
in the existing champion tour. This is slightly different from the kicks used in the CLK
algorithm where each initial tour is constructed by perturbing the existing champion tour
and appears to be a very effective modification.

Fixed edges. The only additional requirement to the refinement scheme necessary for
the implementation of the multilevel version is to ensure that none of the fixed edges are
exchanged. For CLK this was enforced by altering the subroutine which calculated edge
lengths between a given pair of cities to return a large negative value whenever it was
asked to evaluate the length of a fixed edge; for LKH this functionality was already built
into the software.

3.2. Experimental results

The multilevel CLK algorithm is tested in detail in (Walshaw, 2002) and we summarise
the results here. We use the chained Lin–Kernighan algorithm of Applegate et al. (1999),
because this is representative of the state of the art in finding tours for the TSP (Johnson

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 345

and McGeoch, 2002). This has been demonstrated recently in the 8th DIMACS imple-
mentation challenge,9 a comprehensive and exemplary survey of TSP heuristics aimed
at creating ‘a reproducible picture of the state of the art in the area of TSP heuristics
(their effectiveness, their robustness, their scalability, etc.),’ and in which researchers
were invited to submit their own results on a given test set of problems (Johnson and
McGeoch, 2002). This study indicates that the chained/iterated Lin–Kernighan variants
are ahead of the field, at least in terms of algorithms which are subquadratic in com-
plexity. Furthermore, (Johnson and McGeoch, 2002) shows that the implementation of
Applegate et al. is amongst the leading variants (at least it is not dominated by any other
algorithm). However if better results are required and runtime is not a prime consid-
eration, another contender, although with O(|V |2) complexity and hence suitable for
small/medium-sized instances only, is the Lin–Kernighan–Helsgaun (LKH) variant and
we include results for this algorithm in section 3.2.2.

The experiments were carried out on a test suite of 80 TSP problem instances,
a large subset of the 90 instances compiled for the DIMACS challenge. We excluded
2 instances too large for our test platform, i.e. with 3 million or more vertices and 8
specified by a distance matrix because the matching algorithm requires coordinate in-
formation (although this is not an inherent attribute of the multilevel framework and it
should be possible to develop suitable matching techniques). The instances used are then
in three groups:

(I) All 33 symmetric and geometric instances of 1,000 or more vertices from
TSPLIB,10 a collection of sample TSP instances, including some from real-life
applications, compiled by Reinelt (1991).

(II) 24 randomly generated instances with uniformly distributed vertices. These range
in size from 1,000 to 1,000,000 vertices, going up in size gradations of

√
10 and

were constructed by Johnson, Bentley, and McGeoch specifically to study asymp-
totic behaviour in tour finding heuristics.

(III) 23 randomly generated instances with randomly clustered vertices. These range in
size from 1,000 to 100,000 and have the same origin and purpose as (II) although
clustered examples such as these are generally considered to be more difficult to
solve.

The CLK software is contained in an optimisation package written by Applegate
et al. (1999), and known as concorde11 whilst the LKH software is available from its
author, Helsgaun.12 The intensity parameter, λ (see section 1.3) was chosen as the num-
ber of outer iterations or (chainings or trials) expressed as a fraction of N the problem
size, i.e. λ = xN for some factor x. For the multilevel versions, the intensity parameter
at each level, λl, was then set to λl = xNl where Nl is the problem size (the number of
free edges) at level l.

We use the runtime of the LK algorithm to normalise the timing results because it is
such a well-known TSP heuristic. We then use the Held–Karp lower bound to normalise
the solution quality because it provides a very good estimate of optimal tour length (see

346 WALSHAW

Figure 6. Plots of convergence behaviour for the TSP.

above). It is a standard way of expressing TSP solution quality and in particular is used
for the 8th DIMACS implementation challenge (Johnson and McGeoch, 2002). As an
estimate it is not entirely uniform across the problem classes; for example, for the 29
out of 33 TSPLIB instances with known optimal solutions the average excess over the
HKLB is 1.00%, whilst for the 15 out of 24 random uniform instances this is 0.73% and
for the 15 out of 23 random clustered instances it is 0.56% (giving an overall average
of 0.82% for the 59 out of 80 instances with known optimum solutions). We have not
drawn these lines on the plots in figures 6 and 7 because they do not apply to the larger
instances in each class; however, if the figures were the same across the entire suite then
the multilevel results look even more impressive.

3.2.1. The chained Lin–Kernighan algorithm
In figure 6 the chained Lin–Kernighan algorithm (CλLK) is compared with a multi-
level version (MLCλLK) at several values of the intensity parameter, λ. In particu-
lar, the results compare MLCλLK with λ = 0, N/20, N/10, N/2, N against CλLK
with λ = 0, N/10, N/5, N, 2N . These intensity values were chosen on the basis that
MLCλ/2LK has approximately the same runtime as CλLK (justified below in section 5.3)

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 347

Figure 7. Plots of convergence behaviour for the TSP with logarithmic runtime scaling.

and because they are typical values for TSP experiments, e.g., (Johnson and McGeoch,
2002, 1997). In figure 6(a) this is illustrated graphically for the entire test suite by plot-
ting the average percentage excess over the HKLB against average normalised runtime
(i.e. the methodology described in section 1.3). The left-hand point on each curve cor-
responds to λ = 0 or in other words the standard LK algorithm and a multilevel version
of it. The runtime factor of 2 is illustrated by the fact that each point of the MLCλ/2LK
curve is almost directly below underneath that for the CλLK curve. Most importantly
figure 6(a) clearly shows the clear improvement in the asymptotic convergence of the
solution quality. The multilevel technique brings the apparent asymptotic convergence
down from around 1.4% for CLK to around 1.0% over the Held–Karp lower bound.
Indeed because this is a lower bound on optimal solution quality the actual level for
optimal solutions lies somewhat above 0% making this a more impressive reduction.
Finally note that although the difference of just fractions of percentage points sounds
insignificant, in fact schemes such as CLK are well known to be extremely effective and
so it is not uncommon to make comparisons based on tenths or even hundredths of a
percentage point, e.g., (Applegate et al., 1999; Helsgaun, 2000; Johnson and McGeoch,
2002, 1997).

348 WALSHAW

The results in figure 6(a) are based on averaged results over all 80 test instances
and so to explore them further we split the test suite into its three subclasses, TSPLIB
instances (class I), random instance with uniform distribution (class II) and random
instances with clustered distribution (class III), figures 6(b)–(d). This subdivision is
highly illuminating. The TSPLIB instances, figure 6(b), with their wide range of ex-
amples, some from real-life applications, mirror fairly closely the results over the entire
test suite with the multilevel version achieving considerably better asymptotic conver-
gence. For the uniformly distributed random instances, figure 6(c), however the picture
is completely different. The multilevel performance is actually slightly worse initially,
presumably because of the additional runtime overhead, and although the asymptotic
convergence looks to be about the same, it is clear that the multilevel process does not
really contribute to the quality. Finally for the randomly clustered examples, figure 6(d),
those which the CLK algorithm finds more difficult to optimise, the ability of the mul-
tilevel framework to aid the convergence is at its most dramatic. (In fact, looking at
the raw data in (Walshaw, 2002), this is even more striking for some of the real life
instances from TSPLIB.) CLK variants typically have great difficulty with these exam-
ples, e.g., (Applegate et al., 1999; Johnson and McGeoch, 1997), and indeed Neto has
suggested modifications to the CLK algorithm to make it cluster-aware (Neto, 1999),
although testing during the DIMACS challenge suggested that these modifications did
not really work (Johnson and McGeoch, 2002). Nonetheless the multilevel variants find
very good solutions and it seems likely that this is because the multilevel algorithm is
good at regarding clusters as a single entity, or mega-city. In a high quality tour, typi-
cally a cluster will only have one inbound edge and one outbound. The algorithm can
thus concentrate on getting these longer edges correct when it has a much simpler coarse
representation of the problem and then sort out the tour details within the cluster later
on.

As with the GPP, we measured the standard deviation, σ , to assess the performance
variation and found a similar trend. Thus the CLK values for σ much worse than the
multilevel version, in this case around 3–8 times larger (and again this is true even for
the random uniform instances, where the average quality is very similar). This seems to
indicate, as with the GPP, that the multilevel scheme is stabilising the performance of
the local search, in this case CLK, in some way.

Raw runtime data for these tests can be found in (Walshaw, 2002) and online,13 but
as an example for the uniformly distributed instances, the runtime for MLCNLK, which
although not linear with problem size is certainly subquadratic, is around 9 seconds for
instances with N = 1,000, 221 seconds for N = 10,000, 59 minutes for N = 100,000
and 16.5 hours for N = 1,000,000.

Overall then, at least for the instances tested, the multilevel framework seems to
offer considerable benefits. On the more clustered examples it is able to dramatically en-
hance the CLK algorithm whilst for those instances with a uniform distribution, although
it does not improve the performance, neither does it appear to hinder the optimisation
significantly.

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 349

3.2.2. The Lin–Kernighan–Helsgaun algorithm
A multilevel version of the LKH algorithm is tested in (Walshaw, 2001c) and we present
convergence plots in figure 7. However because the LKH algorithm exhibits runtimes
which are quadratic in N , the problem size, it is impractical as a general solution strategy
for large problems and we therefore reduced the test suite to include only those instances
with N < 20,000. We also include the CLK results in this plot and, because of the
extreme differences in runtime, plot the log of average normalised runtime. Thus figure 7
includes the same information as figure 6 (although on a reduced test suite) but the
horizontal scaling is very different (and hence arguably less visually representative of
typical behaviour with its long shallow decay curves).

Of course the fact that LKHN does achieve extremely good (and often optimal)
results for medium sized problems and this means that the capacity for improvement by
the addition of multilevel techniques is severely limited (it is obviously impossible to
improve on an optimal solution). Nonetheless, MLLKH did achieve convergence im-
provements over the LKH results and this is certainly evident for the single trial tests
(the extreme left hand point of each LKH curve) in figures 7(a), (b), (d). It is also
just discernible in figure 7(b) where MLLKH does show a slight improvement over
LKH for the entire range of intensities. Otherwise the algorithms look to have very
similar convergence behaviour although to pick a single statistic, for the 67 instances
tested, the N trial version, LKHN , found optimal solutions for 33 out of 59 instances
with known optimal solutions whilst the multilevel version, MLLKHN , found 39 out of
59 optimal solutions. Furthermore, because of the quadratic runtime and as predicted
in (Walshaw, 2002, section 4.5) MLLKHN only added around an average 18% time
penalty over LKHN rather than the ‘factor of two’ derived below (section 5.3) for linear
refinement schemes. More interestingly, as for CLK, the convergence improvements are
concentrated in the TSPLIB and randomly clustered subclasses.

The differences in the standard deviation, σ , of the results is similar to that seen
for CLK only much less extreme. Thus LKH has typical σ values only around 20–30%
worse than that of MLLKH (except for the single trial variants, LKH1 and MLLKH1

where it is 3–4 times worse). Again this seems to suggest that the multilevel framework
stabilises the performance of LKH somewhat, but less so than for CLK.

Raw runtime data can be found in (Walshaw, 2001c), but as an example for the
uniformly distributed instances, the runtime for MLLKHN is around 105 seconds for
instances with N = 1,000 and 9.5 hours for N = 10,000.

4. The graph colouring problem

The graph colouring problem (GCP) can be stated as follows: given a graph G(V,E),
assign a colour to each vertex in V such that no two adjacent vertices have the same
colour and so that the number of colours is minimised. The GCP is well studied and has
many applications including scheduling, timetabling and the solution of sparse linear
systems, see, e.g., (Leighton, 1979; Lewandowski and Condon, 1996). However it is
also often cited as one of the most difficult combinatorial optimisation problems, e.g.,

350 WALSHAW

(Johnson and Trick, 1996). In fact, if we use χ(G) to denote the minimum number of
colours required to colour a graph G − χ(G) is known as the chromatic number of G

– then not only is the problem of finding χ(G) NP-hard (Garey and Johnson, 1979),
but Lund and Yannakakis have even shown that, for some ε > 0, approximate graph
colouring within a factor of Nε is also NP-hard (Lund and Yannakakis, 1994).

4.1. A multilevel algorithm for the graph colouring problem

Recently a multilevel algorithm has been introduced for the GCP (Walshaw, 2001b). As
we have seen above multilevel algorithms require a good local search algorithm to refine
the solution at each level and, although the GCP has not been generally viewed as a
prime candidate for local search heuristics, nonetheless some success has been achieved
in this area. For example, Hertz and de Werra (1987), and Glover, Parker, and Ryan
(1996), have applied tabu search, Johnson et al. have looked at simulated annealing
(Johnson et al., 1991), and Culberson, Beacham, and Papp have investigated the iterated
greedy algorithm (Culberson, Beacham, and Papp, 1995; Culberson and Luo, 1996).
In (Walshaw, 2001b) multilevel versions of two such approaches, tabu search and the
iterated greedy algorithm, are investigated; here we summarise and discuss those results.

4.1.1. Multilevel framework
Since the problem is graph-based and the solution set-based, the coarsening and un-
coarsening procedures can be implemented in a similar manner to that used in graph
partitioning. Thus each coarse graph Gl+1 is created from its parent graph Gl by match-
ing pairs of vertices and representing each matched pair of parent vertices in Gl with
a child vertex in Gl+1. Figure 8 shows an example of this with a graph of 7 vertices
coarsened down to a (complete) graph of 3 vertices in 2 contraction steps. The dotted
lines indicate the vertex matching used to create the child graph at each stage.

Vertex matching. The matching procedure is also based on algorithms used in graph
partitioning, e.g., (Hendrickson and Leland, 1995a; Walshaw and Cross, 2000), with
one very important difference; rather than matching neighbouring vertices, matches are
made between those that are not adjacent. This works on the basis that if a child vertex w

is assigned a colour then the same colour can be assigned to its parents without colouring
conflicts. Furthermore vertices are only allowed to match with neighbours of neighbours

Figure 8. An example of graph contraction for the colouring problem.

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 351

rather than any non-adjacent vertex. Thus in figure 8(a), v1 is allowed to match with v2

but not v3, v4, v5 (because they are adjacent) and not with v6, v7 (because they are not
neighbours of neighbours). In set notation (using the definitions in section 1.2) a vertex v

is allowed to match with any vertex in �(�(v)), or �2(v) for short, rather than any vertex
in V − �(v).

The matching algorithm used in (Walshaw, 2001b) is essentially the same as for
many of the graph partitioning implementations, e.g., (Hendrickson and Leland, 1995a;
Karypis and Kumar, 1998a; Walshaw and Cross, 2000). An ordering of the vertices is
chosen and they are visited in turn using a linked list. If a vertex v has unmatched candi-
date vertices (i.e. �2(v) is non-empty and contains vertices which are not yet matched)
then a candidate vertex u is selected and u and v are matched and removed from the list.
If a vertex has no unmatched candidates then it is matched with itself and removed from
the list.

This leaves just two ‘parameters’ to the method: (a) how to choose the initial order-
ing of the vertices, and (b) prioritising the candidate vertices in order to select one which
will best aid the colouring algorithms. After considerable experimentation it appeared
that for (a) initially sorting the vertices by decreasing degree (i.e. largest first) gave the
best results. Meanwhile for (b) the priority which then seemed to work best was, for a
vertex v, to pick u which maximised the number of neighbours common to both u and v.
In the event that there were several such vertices, the one which minimised the number
of distinct neighbours (i.e. those adjacent to either u or v but not both) was chosen and, in
the event of a further tie-break, a random choice was made. These priorities also match
choices made for other well known graph colouring algorithms (Walshaw, 2001b).

Graph contraction. The child graph is constructed by merging matched pairs of ver-
tices and representing them with a single child vertex. Edges which then become dupli-
cated are also merged. Although weights can be incorporated here, unlike partitioning
they are not essential to represent the problem correctly and in (Walshaw, 2001b) they
are suggested only as a possible future enhancement to the method (e.g., for aiding oth-
erwise random decisions during refinement).

Termination. The coarsening process is terminated when the initialisation is trivial.
This certainly occurs when a child graph turns out to be a complete graph (i.e. all ver-
tices are adjacent to each other) and in this case matching is no longer possible anyway,
as in figure 8(c). In fact it is not difficult to see that if the graph is connected but not com-
plete then matching and hence contraction is always possible and that, since contraction
always reduces the size of the graph, the process must always result in a complete graph
(even if it only contains two vertices and one edge). Indeed the process can be termi-
nated even earlier if we can identify the graph easily and if we know a trivial colouring
algorithm for the graph and some other possibilities are identified in (Walshaw, 2001b).
Disconnected graphs (see section 1.2) are then best coloured by multilevel refinement
on a component by component basis. Apart from making the termination criteria much
simpler, this can also save time (Walshaw, 2001b).

352 WALSHAW

Initialisation. The initial colouring is trivial (and optimal for the coarsest graph at least)
if the final graph is complete since for such a graph, Gl(Vl, El), every vertex must have
a different colour and so χ(Gl) = |Vl|.
Extension. As indicated above, the extension of a k-colouring for graph Gl to its parent
Gl−1 is a trivial operation and, since each pair of parent vertices are never adjacent,
simply assigning the same colour to them as their child renders a legitimate k-colouring
for Gl−1.

4.1.2. Refinement: tabu search and the iterated greedy algorithm
Tabu search. Tabu search is a general technique, proposed by Glover (1986), for find-
ing approximate solutions to combinatorial optimisation problems. Given an existing
solution, the search moves stepwise through the solution space and at each iteration
steps to the neighbouring solution with the lowest cost (even if that cost is higher than
the current one). However to prevent cyclic behaviour, i.e. stepping straight back to the
solutions that the algorithm has just left and hence becoming stuck in local minima, a
‘tabu’ list is maintained containing disallowed moves to solutions that the algorithm has
recently visited. Generally moves only remain tabu during a certain number of iterations
and so the tabu list is normally implemented as a fixed length queue where the oldest
move is dropped every time a new move is added.

Hertz and de Werra proposed a tabu search algorithm for the graph colouring prob-
lem in (Hertz and de Werra, 1987). Strictly speaking this implementation does not move
through the solution space but instead moves through a closely related space to try and
find a legitimate colouring. Thus given an existing k-colouring of the graph and a target
colour, kt < k, the vertices of the graph are placed in kt colour classes (with inevitable
colouring conflicts). This is a point of the search space and neighbours of this point can
be generated by picking any vertex in conflict and moving it to a different colour class.
Hertz and de Werra’s algorithm works by generating a random neighbourhood and step-
ping to the neighbour with the minimum number of conflicts. If a state is found with no
conflicts then a kt -colouring has been achieved and the search terminates.

Of course there is a strong possibility that no kt -colouring will be found and so
additional termination criterion are needed. In Culberson’s implementation the search
intensity, λ, can be specified and the algorithm will terminate if no improvement is seen
in the cost function (in this case the number of edge conflicts (Culberson and Luo, 1996))
after λ iterations. In (Walshaw, 2001b) this is combined with a top down refinement
search. Thus given a k0-colouring, the target colour is set to kt := k0 − 1; every time a
kt -colouring is found, the target colour is set to kt := kt − 1 and the process is iterated
until failure occurs.

The iterated greedy algorithm. The greedy algorithm (or sequential algorithm as it is
sometimes known) was one of the earliest heuristics for the graph colouring problem,
e.g., (Christofides, 1975; Matula, Marble, and Isaacson, 1972). The idea is to visit the
graph in a specified order and insert each successive vertex into the minimum colour
class that does not cause any conflicts with previously coloured vertices. Here each

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 353

colour class, Cj , is an independent set of vertices (i.e. no two vertices in a set are ad-
jacent) assigned the same colour, j . Various suggestions have been proposed for the
initial ordering of the vertices (e.g., based on vertex degree (Christofides, 1975; Matula,
Marble, and Isaacson, 1972)). The greedy algorithm is a constructive approach (i.e. a
solution is constructed from scratch rather than refined).

Constructive algorithms are generally seen as a single-pass approach to finding a
solution and are often used as an initialisation procedure for iterative refinement meth-
ods. The iterated version of this algorithm, however, relies on a clever observation (Cul-
berson and Luo, 1996), about the reordering of an existing greedy colouring. Given
any k-colouring of a graph, if the vertices are reordered so that vertices in each colour
class are contiguous then it is trivial to prove that using the greedy procedure on this
new ordering will result in another colouring with no more than k colours. In fact, if the
previous colouring has been generated by the greedy algorithm, then for a colour class,
Ci , every vertex in Ci must be adjacent to a vertex in Cj for 1 � j < i. However the
converse does not hold and every vertex in Cj , for some 1 � j < i, need not be adjacent
to a vertex in Ci . Therefore, if the colour classes are reordered (whilst maintaining the
property that the vertices of each class are contiguous) so that the vertices in Ci precede
those in Cj in the ordering, then it is possible that some of the vertices in Cj may be
given a different colour and that the greedy algorithm may find a colouring with fewer
than k colours.

This neat argument forms the basis of Culberson’s iterated greedy algorithm (Cul-
berson, Beacham, and Papp, 1995; Culberson and Luo, 1996). At each iteration a re-
ordering of the colour classes is chosen from a variety of possibilities (e.g., reversing the
order, random order, or sorted so that the classes are in order of decreasing total degree).
Furthermore in Culberson’s implementation, the code will randomly pick one of these
possibilities according to a weighting supplied by the user. This gives the algorithm
many different possibilities to jump out of local minima traps. The implementation also
allows the user to specify a search intensity, λ, in the form of the number of failed itera-
tions; i.e. if no improvement in the cost function is seen after λ iterations the algorithm
terminates.

4.2. Experimental results

We use tabu search and the iterated greedy algorithm as representative colouring
schemes to illustrate the effectiveness of the multilevel approach. It is difficult to assess
the state of the art in graph colouring as the most recent survey of heuristics dates back
to the 2nd DIMACS implementation challenge of 1993. As with the 8th implementation
challenge for the TSP (see section 3.2) this was aimed at characterising heuristics in
the areas of the maximum clique, graph colouring and maximum satisfiability problems
(Johnson and Trick, 1996). Unfortunately, there were few entrants in the colouring sec-
tion and the editors suggest that this is ‘due to its difficulty.’ It is therefore hard to know
what algorithm(s) represents the state of the art in colouring, although careful study of
the papers in (Johnson and Trick, 1996), and in particular (Fleurent and Ferland, 1996),

354 WALSHAW

does seem to indicate that tabu search is at least a contender. In fact it seems very likely
that no one method is universally dominant and that the best methods are hand-tuned
hybrids. For example some of the best results are found in (Fleurent and Ferland, 1996),
where Fleurent and Ferland switch between tabu search and a clique finding algorithm
used on the complement of the graph.

In (Walshaw, 2001b) the above procedures are tested on a large suite of 90 in-
stances which consists of the examples compiled for the 2nd DIMACS implementation
challenge (Johnson and Trick, 1996), augmented by further examples added since then.14

As well as summarising the results from (Walshaw, 2001b) here we have extended them
by including an additional set of experiments on the sparse test suite used for the GPP in
section 2.2 (mirroring the testing of the partitioning algorithms on the colouring suite).
Again the test methodology in section 1.3 was employed and to normalise the solution
quality the results we use the best known solutions found either during the testing or
taken from the literature (Johnson and Trick, 1996; Joslin and Clements, 1999). In fact
optimal solutions are known for 66 out of the 90 instances in the colouring suite although
the exact algorithms used to compute them do not scale to give feasible runtimes for the
larger test cases, e.g., (Sewell, 1996). We used the greedy algorithm for runtime nor-
malisation; as with partitioning (although an entirely different algorithm) this scheme is
O(|V |+ |E|) in complexity thus capturing the problem size well. The intensity parame-
ter was the number of failures to find a better solution and for the multilevel versions λl ,
the search intensity at level l, is set to λl = λ/(l + 1) where the original problem is level
0 and so λ0 = λ.

4.2.1. Tabu search
Plots of convergence behaviour for the colouring test suites are shown in figure 9.
Note that for each plot the limits of the y-axis have been chosen so that every data
point is included but the performance behaviour for the left hand end of each curve,
where it is obscured by the y-axis, is only visible in figure 10 (although this region
of the curve is perhaps of less interest to practitioners – see section 1.3). Figure 9(a)
shows the colouring results for the sparse test suite where we test TSλ (with λ = 2m

and m = 0, . . . , 10) against MLTSλ (with λ = 2m and m = 0, . . . , 9) and, as can
clearly be seen, MLTS appears to both converge faster and has better asymptotic con-
vergence, although not dramatically so. Note that for this set of results the runtime
factor of 2 (see section 5.3) does not hold true (i.e. it is not the case that the run-
time for MLTSλ/2 is approximately the same as that for TSλ). Indeed for intensity
λ = 512, the multilevel version (the final point on the MLTS curve) is much faster
than the single-level version (the penultimate point on the TS curve) even though os-
tensibly MLTS should have more work to do. This is because MLTS manages to
carry out most of the optimisation on higher levels, leaving the final level with an
easier problem to optimise. However this observation should not be given too much
weight since the current implementation of the colouring algorithms is not optimised
for sparse graphs and the edges are stored in an adjacency matrix containing |V |2 en-
tries.

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 355

Figure 9. Plots of convergence behaviour for the GCP.

As in (Walshaw, 2001b) and in section 2.2 above, the colouring test suite is split
into 3 subclasses based on edge density �: low (0% � � � 331

3 %) with 58 out of 90 in-
stances, medium (331

3 % < � � 662
3 %) with 23 instances and high (662

3 < � � 100%)
with just 9 instances. Figures 9(b)–(d) show the convergence behaviour on these sub-
classes and compare TSλ (with λ = 2m and m = 0, . . . , 15) against MLTSλ (with λ = 2m

and m = 0, . . . , 14). The comparison is inconclusive on the medium-density test cases,
figure 9(c), and both variants seem to be reaching approximately the same asymptotic
convergence. Indeed, for the high-density examples in figure 9(d), the multilevel frame-
work actually appears to hinder the colouring and MLTS has poorer convergence than
TS. It is only for the low-density test cases, figure 9(b), that the multilevel version truly
dominates and MLTS is slightly although distinctly better than TS. These results appear
to be in line with a general trend established in the previous sections and we discuss the
overall behaviour in section 6.1.

As for the GPP and TSP, we computed the standard deviation, σ , for each data
point to measure the variation of performance. However, although at low intensities, the
values of σ for TS (and IG below) are up to around 50% worse than MLTS (and MLIG),
the asymptotic values of σ are very similar across all 4 methods indicating that none of
them exhibit very different variations in performance.

356 WALSHAW

Figure 10. Plots of convergence behaviour for the GCP with logarithmic runtime scaling.

Finally, although we do not present raw data here, it can be found online15 and
a snapshot of the results can be found in (Walshaw, 2001b). To give typical examples
though, for λ = λ∗ = 128, the runtime for MLTS on a large sparse graph, 4elt, with
|V | = 15,606 and |E| = 45,878 is around 962 seconds (although the methods are not
optimised for sparse graphs). Meanwhile for the colouring suite and λ = 2,048, the ran-
dom low, medium and high-density graphs, DSJC1000.1, DSJC1000.5 and DSJC1000.9,
each with |V | = 1,000 and |E| = 49,629, |E| = 249,826 and |E| = 449,449, can be
coloured in around 27, 26 and 24 seconds, respectively.

4.2.2. The iterated greedy algorithm
We augment the above results by running similar tests on the iterated greedy algorithm,
this time testing IGλ (with λ = 2m and m = 0, . . . , 10 for the sparse suite and m =
0, . . . , 14 for the colouring suite) against MLIGλ (with λ = 2m and m = 0, . . . , 9 for the
sparse suite and m = 0, . . . , 13 for the colouring suite). Once again, as in sections 2.2.2
and 3.2.2, we use logarithmic scaling for the runtime; although it does not give such
a good visual representation of convergence this helps with the comparison of the two
different local searches. It also elaborates the low intensity values shown in figure 9 for
TS.

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 357

As can be seen from the plots, for the sparse and low-density instances, MLIG
and IG both appear to reach the same asymptotic convergence (which was poorer than
both TS and MLTS) although MLIG appears to converge to this limit faster than IG. For
the medium and high-density subclasses IG and MLIG outperform both TS and MLTS.
However although IG leads for low intensities, it is inconclusive as to which is better
out of MLIG and IG as the convergence levels off and over most of the range tested (the
right-hand half of the curves which, because of the logarithmic scaling, represents far
more of the time taken than would appear).

Again to give some typical runtime data, for λ = λ∗ = 64, the runtime for MLIG
on 4elt, with |V | = 15,606 and |E| = 45,878 is around 438 seconds. For the colouring
suite the random low, medium and high-density graphs, DSJC1000.1, DSJC1000.5 and
DSJC1000.9 can be coloured in around 19, 46 and 111 seconds, respectively, for λ =
1,024.

5. Multilevel combinatorial optimisation

In this section we attempt to draw together the common elements of the examples in
the previous sections. We give a possible explanation for the strengths of the multilevel
paradigm and derive some generic guidelines for future attempts at other combinatorial
problems.

5.1. The generic multilevel paradigm

As we have seen, the multilevel paradigm is a simple one, which at its most basic in-
volves recursive coarsening to create a hierarchy of approximations to the original prob-
lem. An initial solution is found and then iteratively refined, usually with a local search
algorithm, at each level in reverse order. Considered from the point of view of the
hierarchy, a series of increasingly coarser versions of the original problem are being
constructed. It is hoped that each problem Pl retains the important features of its parent
Pl−1 but the (usually) randomised and irregular nature of the coarsening precludes any
rigorous analysis of this process.

On the other hand, viewing the multilevel process from the point of view of the
optimisation problem and, in particular, the objective function is considerably more en-
lightening. For a given problem instance the solution space, X , is the set of all possible
solutions for that instance. The objective function or cost function, f :X → R, assigns
a cost to each solution in X . Typically the aim of the problem is to find a state x ∈ X
at a minimum (or maximum) of the objective function. Iterative refinement algorithms
usually attempt to do this by moving stepwise through the solution space (which is hence
also known as a search space) but often can become trapped in local minima of f .

Suppose then for either the partitioning or colouring problems that two vertices
u, v ∈ Gl are matched and coalesced into a single vertex v′ ∈ Gl+1. When a refinement
algorithm is subsequently used on Gl+1 and whenever v′ is assigned to a subset (or
colour class), both u and v are also both being assigned to that subset. In this way the

358 WALSHAW

matching restricts the refinement of Gl+1 to consider only those configurations in the
solution space in which u and v lie in the same subset, although the particular subset
to which they are assigned is not yet specified. Similarly for the travelling salesman
problem, when two vertices u, v ∈ Gl are matched, the problem is restricted to consider
only those tours in which u and v are adjacent, although their exact position in the tour is
not yet specified. Since, in all 3 cases, many vertex pairs are generally coalesced from all
parts of Gl to form Gl+1 this set of restrictions is in some way a filtering of the solution
space and hence the surface of the objective function.

This is an important point. Previously authors have made a case for multilevel
schemes (and in particular partitioning) on the basis that the coarsening successively
approximates the problem. In fact it is somewhat better than this; the coarsening filters
the solution space by placing restrictions on which solutions the refinement algorithm
can visit. Furthermore, an investigation of how the filtering actually performs for the
GPP and TSP is carried out in (Walshaw and Everett, 2002) and it is shown that typically
the coarsening filters out the higher cost solutions at a much faster rate than the low cost
ones.

We can then hypothesise that, if the coarsening manages to filter the solution
space so as to gradually smooth the objective function, the multilevel representation
of the problem combined with an iterative refinement algorithm should work well as
an optimisation metaheuristic. In other words, by coarsening and smoothing the prob-
lem, the multilevel component allows the refinement algorithm to find regions of the
solution space where the objective function has a low average value (e.g., broad val-
leys). This does rely on a certain amount of ‘continuity’ in the objective function
but it is not unusual for these sort of problems that changing one or two components
of the solution tends not to change the cost very much. On a more pragmatic level
this same process also allows the refinement to take larger steps around the solution
space (e.g., for the GPP and GCP, rather than swapping single vertices, the local search
algorithm can swap whole sets of vertices as represented by a single coarsened ver-
tex).

Figure 11 shows an example of how this might work for a search space X and
objective function f (X) which we aim to minimise. On the left hand side the objective
function is gradually filtered and smoothed (the filtration points are circled and all inter-
mediate values removed to give the next coarsest representation). The initial solution for
the final coarsened space (shown as a black dot in the bottom right hand figure) is then
trivial (because there is only one possible state) although the resulting configuration is
not an optimal solution to the overall problem. However this state is used as an initial
configuration for the next level up and a steepest descent refinement policy finds the
nearest local minimum (steepest descent refinement will only move to a neighbouring
configuration if the value of the objective function is lower there). Recursion of this
process keeps the best found solution (indicated by the black dot) in the same region of
the solution space. Finally this gives a good initial configuration for the original problem
and (in this case) the optimal solution can be found. Note that it is possible to pick a
different set of filtration points for this example for which the steepest descent policy

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 359

Figure 11. The multilevel scheme in terms of a simple objective function.

will fail to find the global minimum, but this only indicates, as might be expected, that
the multilevel procedure is somewhat sensitive to the coarsening strategy.

Of course this motivational example might be considered trivial or unrealistic (in
particular an objective function cannot normally be pictured in 2D). However, consider
other heuristics (such as repeated random starts combined with steepest descent local
search, or even simulated annealing) applied to the same problem; without lucky initial
guesses either might require many iterations to find the optimal solution.

To summarise the paradigm, multilevel optimisation combines a coarsening strat-
egy together with a refinement algorithm (employed at each level in reverse order) to
provide an optimisation metaheuristic. Figure 12 contains a schematic of this process in
pseudo-code. Here Pl refers to the coarsened problem after l coarsening steps, Cl is a
solution of this problem and C0

l denotes the initial solution.

5.2. Algorithmic requirements

Assuming that the above analysis does apply, how can a multilevel strategy be imple-
mented for a given combinatorial problem? Here we discuss the algorithmic require-
ments illustrated by examples from the graph partitioning, graph colouring and travelling
salesman problems (the GPP, GCP and TSP, respectively).

First of all let us assume that we know of a refinement algorithm for the problem,
which refines in the sense that it attempts to improve on existing solutions. If no such
refinement algorithm exists (e.g., if the only known heuristics for the problem are based

360 WALSHAW

multilevel refinement(input problem instance P0 , output solution C0)

begin
l := 0
while (coarsening)

Pl+1 = coarsen(Pl)

l := l+1
end
Cl = initialise(Pl)

while (l > 0)

l := l−1
C0

l = extend(Cl+1, Pl)

Cl = refine(C0
l

, Pl)

end
end

Figure 12. A schematic of the multilevel refinement algorithm.

on construction) it is not clear that the multilevel paradigm can be applied. Typically the
refinement algorithm will be a local search strategy which can only explore small regions
of the solution space neighbouring to the current solution. However the paradigm does
not preclude the use of more sophisticated techniques and examples of multilevel parti-
tioning schemes exist for simulated annealing (Vanderstraeten et al., 1996), tabu search
(Battiti, Bertossi, and Cappelletti, 1999; Vanderstraeten et al., 1996), genetic algorithms
(Kaveh and Rahimi-Bondarabady, 2000), cooperative search (Toulouse, Thulasiraman,
and Glover, 1999), and even ant colony optimisation (Langham and Grant, 1999). The
refinement algorithm must also be able to cope with any additional restrictions placed on
it by the coarsening (e.g., for the GPP coarsened graphs are always weighted whether or
not the original is; for the TSP the refinement must not flip fixed edges in the coarsened
levels).

To implement a multilevel algorithm, given a problem and a refinement strategy
for it, we then require three additional basic components: a coarsening algorithm, an
initialisation algorithm and an extension algorithm (which takes the solution on one
problem and extends it to the parent problem). It is difficult to talk in general terms
about these requirements, but the existing examples suggest that the extension algorithm
can be a simple and obvious reversal of the coarsening step which preserves the same
cost. The initialisation is also generally a simple canonical mapping where by canonical
we mean that a (non-unique) solution is ‘obvious’ (e.g., GPP – assign k vertices one each
to k subsets; GCP – colour a complete graph; TSP – construct a tour to visit 2 cities)
and that the refinement algorithm cannot possibly improve on the initial solution at the
coarsest level (because there are no degrees of freedom).

This just leaves the coarsening algorithm which is then perhaps the key component
of a multilevel optimisation implementation. For the existing examples three principles
seem to hold:

• Any solution in any of the coarsened spaces should induce a legitimate solution on
the original space. Thus at any stage after initialisation the current solution could

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 361

simply be extended through all the problem levels to achieve a solution of the original
problem.

• Any solution in a coarsened space should have the same cost with respect to the
objective function as its extension to the original space. This requirement ensures
that the coarsening is truly filtering the solution space (rather than approximating
and/or distorting it).

• The number of levels need not be determined a priori but coarsening should cease
when any further coarsening would render the initialisation degenerate.

This still does not tell us how to coarsen a given problem and the examples (above
and in section 5.5) suggest that it is very much problem-specific. Furthermore it has
been shown (for partitioning at least), that it is usually more profitable for the coars-
ening to respect the objective function in some sense (e.g., Karypis and Kumar, 1998a;
Walshaw et al., 1999). In this respect it seems likely that the most difficult aspect of
finding an effective multilevel algorithm for a given problem and refinement scheme is
the (problem-specific) task of devising the coarsening strategy.

5.3. Typical runtime

One of the concerns that might be raised by a newcomer to multilevel algorithms is that
instead of having just one problem to optimise, the scheme creates a whole hierarchy of
approximately O(log2 N) problems (assuming that the coarsening approximately halves
the problem size at each level). In fact, it is not too difficult to show that there is an
approximate factor of two runtime between a local search algorithm at intensity λ, LSλ,
and the multilevel version, MLLSλ. In other words, if T (A) denotes the runtime of
algorithm A, then T (MLLSλ) ≈ 2T (LSλ).

Suppose first of all that the LS algorithm is O(N) in execution time. Now suppose
that the multilevel coarsening manages to halve the problem size at every step. This is
an upper bound and in practice the coarsening rate is actually somewhat lower (e.g., be-
tween 5/8 to 6/8 is typical for the examples provided rather than the theoretic maximum
of 1/2) but experience indicates that typically this is not too far off. Let TL = T (LSλ)

be the time for LSλ to run on a given instance of size N and TC the time to coarsen
and contract it. The assumption on the coarsening rate gives us a series of problems
of size N,N/2, . . . , N/N whilst the assumption on LSλ having linear runtime gives
the total runtime for MLLSλ as TC + TL/N + · · · + TL/2 + TL. If λ is small then
TC can take large proportion of the runtime and so multilevel algorithms using purely
greedy refinement policies (i.e. typically λ = 0) tend to take more than twice the run-
time of the equivalent local search although this depends on how long the coarsening
takes compared with the solution construction (typically both O(N)). However, if λ

is large enough then typically TC � TL and so we can neglect it giving a total run-
time of TL/N + · · · + TL/2 + TL ≈ 2TL, i.e. MLLSλ takes twice as long as LSλ to
run.

362 WALSHAW

Furthermore, if the local search scheme is also linear in λ, the intensity, it follows
from T (MLLSλ) ≈ 2T (LSλ) that T (MLLSλ) ≈ T (LS2λ). This effect is particularly
visible for the TSP where the data points in figure 6 line up vertically. In this case the
local search scheme, CLK, although not linear in N , is certainly subquadratic (Johnson
and McGeoch, 1997), and more importantly is also linear in λ, which expresses the
number of solution perturbations as a factor of N . For the GPP and GCP however, even
where the local search schemes are linear (e.g., the iterated greedy algorithm for the
GCP), λ expresses the number of failed iterations of some loop of the scheme and so this
factor of two ‘rule of thumb’ breaks down. Nonetheless it does give a good ‘ball-park’
figure for the cost of a multilevel scheme.

Finally note that if the multilevel procedure is combined with an O(N2) or even
O(N3) refinement algorithm then this analysis comes out even better for the multilevel
overhead, i.e. T (MLLSλ) < 2T (LSλ), as the final refinement step would require an even
larger proportion of the total (and this conclusion is backed up by experimental data for
the LKH algorithm in figure 7).

5.4. Solution-based coarsening and iterated multilevel algorithms

We have seen (in section 2.1.3) an example of solution-based coarsening for use with an
iterated multilevel partitioning algorithm. In fact this procedure can be easily generalised
to the other problem areas. Thus, if a solution of a given problem already exists prior
to optimisation it can be reused during the multilevel procedure to carry out solution-
based coarsening by insisting that, at each level, every vertex matches with a candidate
vertex that will not change the cost (e.g., for the TSP with one of its 2 neighbours in
the existing tour and for the GCP with a vertex of the same colour). When no further
coarsening is possible this will result in a solution for the coarsest problem with the
same cost as the initial solution for the original problem. Once again, provided the
refinement algorithm guarantees not to find a worse solution than the initial one the
multilevel refinement can guarantee to find a new solution to the original problem with
a cost no worse than the initial one. The multilevel process can then be iterated by
using repeated coarsening/uncoarsening loops where at each iteration the best solution
found previously is used to create a solution-based coarsening. A random element to
the matching then means that then each iteration is likely to give a different hierarchy of
graphs to previous iterations and hence allow the refinement algorithm to visit different
solutions in the search space. We have not yet made any serious tests of this procedure
for the TSP and GCP and indeed initial investigation has proved discouraging, however
initial results for the GPP (section 2.2.3) indicate that it can sometimes be very helpful
and further investigation is worthwhile.

5.5. Related work

Because multilevel algorithms are well-known in many other areas of mathematics there
is a large body of literature which could be said to be related to the methods presented
here. For interested readers a good start are the overview papers (Brandt, 1988; Teng,

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 363

1999). In particular however, an idea related in scope and design to the principles behind
multilevel refinement is the search space smoothing scheme of Gu and Huang (1994).
This uses recursive smoothing (analogous to recursive coarsening) to produce versions
of the original problem which are simpler to solve. Thus in the example application Gu
and Huang apply their technique to the TSP by forcing the inter-city edges to become
increasingly uniform in length at each smoothing phase (if all edges between all cities
are the same length then every tour is optimal). The obvious drawback is that each
smoothing phase distorts the problem further (so that a good solution to a smoothed
problem may not be a good solution to the original). In addition, the smoothed spaces are
the same size as the original problem, even if the solution is potentially easier to refine,
and hence may be equally as expensive to optimise. By contrast, multilevel coarsening
filters rather than smoothing directly (although with the obvious drawback that the best
solutions may be removed from the coarsened spaces) and so the coarsened spaces are
smaller and hence can be refined more rapidly. It is also unclear whether search space
smoothing is as general as coarsening and hence whether it could be applied to problems
other than the TSP.

More specifically, multilevel schemes are starting to appear for other NP-hard com-
binatorial problems. For example, Boman and Hendrickson describe the use of a mul-
tilevel algorithm for reducing the envelope of sparse matrices (Boman and Hendrick-
son, 1996), a technique which aims to place all the non-zeroes as close as possible to
the diagonal of a matrix and which can help to speed up the solution of sparse lin-
ear systems. They report good results, better than some of the commonly used meth-
ods, although they conclude that their scheme would probably be better if combined
with a state-of-the-art local search algorithm. This conclusion is confirmed by Hu and
Scott who have also developed a multilevel method for the same problem and which
uses such a scheme, the hybrid Sloan algorithm, on the coarsest graph only (Hu and
Scott, 2000). They report results which are of similar quality to the standalone hy-
brid Sloan algorithm (i.e. as good as the best known results) but which, on aver-
age, can be computed in half the time. Very recently Koren and Harel described the
use of a multilevel algorithm for the linear arrangement problem (Koren and Harel,
2002), which has the aim of ordering the vertices of a graph so that the sum of edge
lengths in the corresponding linear arrangement is minimised, a problem with several
diverse applications. They report good results, similar in quality to the best known ap-
proaches, but with much better running times. In (Romeijn and Smith, 1999), Romeijn
and Smith describe a parallel algorithm for approximately solving shortest path prob-
lems in large scale directed graphs. They only test the scheme using a 2-level (aggre-
gation based) algorithm but prove a result on time complexity for a multilevel ver-
sion.

In addition multilevel schemes have been applied to a number of variant parti-
tioning problems including hypergraphs and problems with multiple constraints and/or
costs, e.g., see (Hendrickson and Kolda, 2000; Schloegel, Karypis, and Kumar,
2004; Walshaw, 2001d). These provide further evidence for the flexibility of the par-
adigm.

364 WALSHAW

6. Summary and future work

6.1. Review of empirical data

It is clear from the examples above that the multilevel paradigm can positively affect
the results of local search algorithms, sometimes dramatically so – e.g., figures 2(a),
2(b) for the GPP and figure 6(d) for the TSP. However it is also clear that under certain
conditions adverse effects can occur – e.g., figure 2(c) for the GPP and figure 9(d) for
the GCP. Furthermore the ability of multilevel refinement to aid local search varies from
problem class to problem class (e.g., it seems to be much easier to obtain improvements
for the GPP and TSP than it is for the GCP).

After some consideration, and with the experience of many more results not pre-
sented here, we believe that it may be possible to characterise these effects by two fea-
tures. Firstly it seems likely that the multilevel approach is better able to aid local search
algorithms for problems in which the cost function has a sensitive dependence on local
conditions. By this characterisation we mean that changing just a few elements of the
solution local to some region will change the value of cost function, even if only a little
and typically it occurs because the optimisation problem is intended to minimise a sum.
This is certainly true for the GPP and TSP and tends to mean that the optimal solution
of a given problem instance depends not only on some global quality in the solution, but
also on local elements. We illustrate this in figure 13 for the GPP. The optimal bisec-
tion partition is shown in figure 13(a) with a cut-weight of 4. Two other partitions are
shown in figures 13(b) and 13(c); however, whilst both have a cut-weight of 8, clearly
figure 13(b) is globally poor but locally optimal, whilst figure 13(c) is close to the global
solution but locally poor. We believe that through this dependence of the cost function on
local conditions, the multilevel framework may offer the refinement algorithm a smooth
transition through the problem levels whilst optimising the cost function.

By contrast the GCP does not have a very sensitive dependence on local condi-
tions and, given a solution (especially a sub-optimal one) for a particular instance, is it
often easy to change many elements of the solution without changing the value of the
cost function. In other words the surface of the cost function has large plateau-like ar-
eas which render local search algorithms much more directionless – i.e. it is not easy
to tell if changes in the solution will eventually result in a lower cost. This may mean
that coarsened versions of the problem contain high quality solutions which are nonethe-

Figure 13. Example bisection partitions showing different global and local qualities.

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 365

less far away from the best solutions of the original problem and hence the multilevel
techniques are not as helpful to the local search as they could be.

For a given problem class, the second characteristic in which may help in decid-
ing whether a particular problem instance will be susceptible to multilevel refinement
appears to be related to the density of that instance. For both the GPP and GCP, the
multilevel framework applied to medium/high-density instances appears either to add
no particular benefits or to actually hinder the local search. We believe that this may
be because it is so unclear which vertices to match together (because there are so many
possible candidates). As a result unfavourable matching may take place (i.e. between
vertices which tend not to be in the same set in high quality solutions) and the filtering
may remove the better solutions from the coarsened spaces. In this sense it is perhaps
not strictly the density which determines whether or not a problem instance is likely to
be susceptible to multilevel refinement, but whether the instance has inherent matching
affinities. In other words, if it is easy to pick matches with good probability that the
match will appear as part of a high quality solution then it is likely that multilevel re-
finement will be successful. The density is then a good indicator of inherent matching
affinities with sparse and low-density instances providing the clearest matching choices.

Indeed this explanation can be extended to account for the behaviour of the multi-
level TSP algorithm on random instances, figure 6(c), since matching priorities are not
very clear for a uniform distribution of vertices. We can even compute a density indi-
cator, given a Euclidean TSP instance of size N , by superimposing a grid of spacing
1/

√
N , say. By counting the occupied cells we can then define the density � as the

number of occupied cells, No, over the total number of cells, � = No/N . Random
instances with a uniform distribution will then typically have a high density with most
of the cells occupied, whilst clustered instances, whether randomly generated or real-
life instances, will typically have a much higher incidence of cells occupied by many
vertices and hence a much lower density.

These conclusions are confirmed in (Walshaw and Everett, 2002) which investi-
gates how the filtering of the solution spaces actually performs for the GPP and TSP. In
particular it is shown that the coarsening manages to filter out the high cost solutions at
a much faster rate than the low cost ones but that this process is inhibited as the density
of the problem increases.

One further general observation that can be made from the computation of standard
deviations is that the multilevel framework often seems to have the effect of stabilising
the performance of the local search schemes. Thus for the GPP and TSP (and the GCP
at low intensities) the multilevel versions appear to have much lower performance varia-
tion. Furthermore this is true even for those cases, e.g., figure 2(c), where the multilevel
version produces worse average results than the original local search scheme.

Finally, the results also give a salutary warning to practitioners about the depen-
dency of the computational experiments on the test suite. If we had just considered
random, uniformly-distributed medium-density instances (as in some existing papers on
both the TSP and the GCP) we could not have demonstrated that the multilevel frame-
work offered any significant advantages. Clearly then algorithms need to be tested on as

366 WALSHAW

broad a range of examples as possible and preferably on a suite which includes real-life
instances.

6.2. Conclusions

To summarise then, it seems from the results presented and from additional sources of
evidence (section 5.5), that the multilevel paradigm can aid local search algorithms to
find better or faster solutions for certain combinatorial problems. Two of the problem
classes tested, the GPP and GCP, require a solution which splits the vertices into subsets
whilst the TSP requires a permutation of the vertices. Meanwhile two of the cost func-
tions, those for the GPP and TSP, aim to minimise a sum whilst the GCP aims to min-
imise the number of sets. It therefore seems that the paradigm is fairly flexible. Within
each problem class it appears that multilevel algorithms are best suited to low-density
or sparse problems where the number of possible vertex matches are not overwhelm-
ing and that they probably give the best results for problem classes where the objective
function has a sensitive dependence on local conditions. However it appears that, even
for inappropriate problem classes, there may sometimes be modifications which render
useful results such as the iterated multilevel algorithm for medium-density GPP problem
instances, figure 4(b).

Although these restrictions might appear somewhat limiting, it is commonly ac-
knowledged for combinatorial problems that often no one solution technique is appro-
priate for all instances, e.g., (Lewandowski and Condon, 1996). Moreover many problem
instances from real-life applications fall into such classes and for example Leighton says,
with reference to scheduling problems, that ‘for most large-scale practical applications,
the edge density of the graphs to be colored is generally small’ (Leighton, 1979). Indeed
the original success of multilevel partitioning came from the requirement to partition
large, sparse, mesh-based problems. Furthermore, the results on appropriate problem
classes can sometimes be spectacular, e.g., figures 2(a) and 6(d).

Overall this augments existing evidence that, although the multilevel framework
cannot be considered as a panacea for combinatorial optimisation problems, it can pro-
vide a valuable, sometimes remarkably valuable, addition to the combinatorial optimi-
sation toolkit. In other words, although no specific multilevel scheme dominates for
a given problem, we hope to have convinced the reader that if they have a favourite
local search algorithm for some problem, then it could be well worth considering the
implementation of a multilevel version. We therefore believe that the multilevel frame-
work is a good candidate for a new metaheuristic. Of course strictly speaking it is not
new since multilevel techniques have been in use for many years; however they have
not been widely applied to combinatorial problems. In addition it is somewhat differ-
ent from other metaheuristics as it cannot be used in isolation and requires a refinement
algorithm. On the other hand, neither is it in competition with them and existing mul-
tilevel versions of simulated annealing, tabu search, genetic algorithms and ant colony
optimisation, indicate that it can even be used alongside them. In this way we believe

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 367

that multilevel refinement could have a real impact on many applications from discrete
applied mathematics through to business decision support.

6.3. Future research

Clearly it is of great interest to further validate (or contradict) the conclusions of this
paper by extending the range of problem classes. The sort of problems for which a
multilevel approach appears attractive are of necessity those for which we seek only
an approximate solution and probably those for which the optimisation is time critical.
In particular, very large problems for which simulated annealing or population-based
strategies such as genetic algorithms require excessive memory/CPU time seem appro-
priate. However it is important to bear in mind the lessons learned above and instances
with no inherent sparsity are unlikely to be susceptible.

Obvious subjects for further work on the existing problem classes include the use of
different refinement strategies such as simulated annealing or even genetic/evolutionary
algorithms and the further investigation of iterated multilevel algorithms. Beyond this,
some more specific topics are listed below.

6.3.1. Sparsification
A slightly disappointing feature of the multilevel partitioning and colouring algorithms,
at least in the manifestations described here, was the sometime inability to aid the solu-
tion of medium/high-density graphs. Clearly of great interest would be any technique for
overcoming this difficultly and one way to achieve this might be through sparsification.
For example in the case of colouring the problem size can be reduced by picking one or
more independent sets Si from G and removing the vertices in Si plus all edges incident
on Si . Whether or not this results in a sparsification of the problem depends on the rela-
tive number of vertices and edges removed but it seems quite promising as a technique.
It also fits in with the hybrid scheme successfully used by Hertz and DeWerra (1987),
and by Fleurent and Ferland (1996), who shrink the number of graph vertices by remov-
ing a number of maximal independent sets prior to using tabu search-based colouring on
the remainder of the graph. However it is not so easy to imagine an analogous technique
for partitioning.

6.3.2. Advanced matching
Another approach which might improve the results for medium/high-density problems
would be the use of better (although possibly more expensive) matching algorithms.
It seems likely that finding a good matching (one which will aid the refinement) for
such instances is more challenging because of the large number of candidates matches
and the difficulty of choosing between them. This choice is usually made using some
empirically-based prioritisation and hence inherent to the matching algorithms is a built
in cost function (e.g., for the GPP – maximise the edge weight between matched pairs;
for the TSP – minimise the distance between matched pairs; for the GCP – maximise
the number of neighbours in common to matched pairs) which is not directly related

368 WALSHAW

to the cost function of the problem in question. There is also plenty of evidence, for
partitioning at least, that judicious choice of the matching cost function can strongly
affect the final solution quality, e.g., (Karypis and Kumar, 1998a; Walshaw et al., 1999).
However, it is not always clear which cost function the matching should be aiming to
optimise (apart from maximising the number of matches) and for instance the heavy edge
matching scheme (Karypis and Kumar, 1998a), commonly used for partitioning can only
operate on weighted graphs and hence cannot be applied for the first coarsening step if
the original graph is not weighted.

The computation of matchings of this type is known as the minimum-weight per-
fect matching problem where here the weight refers to the matching cost function. Poly-
nomial algorithms which can compute optimal matchings are available, e.g., (Cook and
Rohe, 1999), although they are usually too expensive to include in multilevel schemes.
Nonetheless it might be of interest to apply such an algorithm and investigate the effect
it has on solution quality.

A second possibility might be the sort of locally optimal matching scheme pro-
posed by Monien, Preis, and Diekmann for graph partitioning (Monien, Preis, and Diek-
mann, 2000). Currently in all 3 example matching schemes used above, a vertex v0

picks a preferred candidate v1 and they are matched regardless of whether v1 has avail-
able matches which are more advantageous than v0. Hence, in the scheme of Monien,
Preis, and Diekmann, rather than a match being made at this point, v1 then picks its pre-
ferred match and the process is repeated until a pair of vertices is generated that mutually
select each other as a match. Tie-breaking of matches by random selection is forced to
be commutative to prevent infinite loops.

6.3.3. Vertical refinement
For the multilevel processes described in this paper, including the iterated multilevel
scheme, we can think of the refinement as horizontal in nature since the local search
algorithms operate on one level at a time and terminate on a given level before moving
on to the next level. However, in the course of writing this report we came across an
intriguing paper by Brandt, one of the foremost practitioners of multilevel optimisation
in all of its forms, and dating from 1988 (Brandt, 1988). Here Brandt proposes a mul-
tilevel annealing scheme for discrete-state problems. Unlike the work presented above,
however, he suggests that the refinement algorithm (in this case a version of simulated
annealing) should take a step on a level l only after calculating its effects on all finer
levels. In other words the potential new state sl on problem level Pl is projected down
onto the next finest level, Pl−1, and the refinement looks for the nearest local minimum,
sl−1 on Pl−1 which is then projected down onto Pl−2 and so on recursively; only if this
produces a better solution on the original problem is the new state accepted. This type
of vertical refinement is an intriguing idea and well worth more investigation. It may
be more expensive and is not without difficulties; in particular using existing refinement
software as a kind of black-box (as in sections 3 and 4) will be problematic. However,
since the coarsening can never give a truly representative filtration of the objective func-

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 369

tion, each step is much more precise way of moving around the solution space than the
methods described above.

Notes

1. At http://staffweb.cms.gre.ac.uk/∼c.walshaw/data
2. At http://staffweb.cms.gre.ac.uk/∼c.walshaw/partition
3. Available from http://mat.gsia.cmu.edu/COLOR/instances.html
4. Available from http://staffweb.cms.gre.ac.uk/∼c.walshaw/partition
5. Available from http://staffweb.cms.gre.ac.uk/jostle
6. At http://staffweb.cms.gre.ac.uk/∼c.walshaw/data
7. Available from http://www.cs.sandia.gov/∼bahendr/chaco.html
8. At http://staffweb.cms.gre.ac.uk/∼c.walshaw/data
9. See http://www.research.att.com/∼dsj/chtsp/

10. Available from http://www.iwr.uni-heidelberg.de/iwr/comopt/software/
TSPLIB95/

11. Available from http://www.keck.caam.rice.edu/concorde/download.html
12. From http://www.dat.ruc.dk/∼keld/research/LKH
13. At http://staffweb.cms.gre.ac.uk/∼c.walshaw/data
14. Available from http://mat.gsia.cmu.edu/COLOR/instances.html
15. At http://staffweb.cms.gre.ac.uk/∼c.walshaw/data

References

Applegate, D., R. Bixby, V. Chvátal, and W.J. Cook. (1999). “Finding Tours in the TSP.” Technical Report
TR99-05, Dept. Comput. Appl. Math., Rice University, Houston, TX.

Barnard, S.T. and H.D. Simon. (1994). “A Fast Multilevel Implementation of Recursive Spectral Bisection
for Partitioning Unstructured Problems.” Concurrency: Practice and Experience 6(2), 101–117.

Battiti, R., A. Bertossi, and A. Cappelletti. (1999). “Multilevel Reactive Tabu Search for Graph Partition-
ing.” Preprint UTM 554, Dip. Mat., University Trento, Italy.

Boman, E.G. and B. Hendrickson. (1996). “A Multilevel Algorithm for Reducing the Envelope of Sparse
Matrices.” Technical Report 96-14, SCCM, Stanford University, CA.

Brandt, A. (1988). “Multilevel Computations: Review and Recent Developments.” In S.F. McCormick
(ed.), Multigrid Methods: Theory, Applications, and Supercomputing, Proc. of 3rd Copper Mountain
Conf. Multigrid Methods, Lecture Notes in Pure and Applied Mathematics, Vol. 110. New York: Marcel
Dekker, pp. 35–62.

Bui, T.N. and C. Jones. (1993). “A Heuristic for Reducing Fill-In in Sparse Matrix Factorization.” In
R.F. Sincovec et al. (eds.), Parallel Processing for Scientific Computing. Philadelphia, PA: SIAM,
pp. 445–452.

Christofides, N. (1975). Graph Theory, an Algorithmic Approach. London: Academic Press.
Cook, W.J. and A. Rohe. (1999). “Computing Minimum-Weight Perfect Matchings.” INFORMS J. Comput.

11(2), 138–148.
Croes, G.A. (1958). “A Method for Solving Traveling Salesman Problems.” Oper. Res. 6, 791–812.
Culberson, J.C., A. Beacham, and D. Papp. (1995). “Hiding Our Colors.” In CP’95 Workshop on Studying

and Solving Really Hard Problems, September, pp. 31–42.
Culberson, J.C. and F. Luo. (1996). “Exploring the k-Colorable Landscape with Iterated Greedy.” In

D.S. Johnson and M.A. Trick (eds.), Cliques, Coloring, and Satisfiability, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, Vol. 26. Providence, RI: AMS, pp. 245–284.

370 WALSHAW

Diekmann, R., R. Luling, B. Monien, and C. Spraner. (1996). “Combining Helpful Sets and Parallel Simu-
lated Annealing for the Graph-Partitioning Problem.” Parallel Algorithms Appl. 8, 61–84.

Farhat, C. (1988). “A Simple and Efficient Automatic FEM Domain Decomposer.” Comput. and Structures
28(5), 579–602.

Fiduccia, C.M. and R.M. Mattheyses. (1982). “A Linear Time Heuristic for Improving Network Partitions.”
In Proc. 19th IEEE Design Automation Conf. Piscataway, NJ: IEEE, pp. 175–181.

Fleurent, C. and J.A. Ferland. (1996). “Object-Oriented Implementation of Heuristic Search Methods for
Graph Coloring, Maximum Clique and Satisfiability.” In D.S. Johnson and M.A. Trick (eds.), Cliques,
Coloring, and Satisfiability, DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, Vol. 26. Providence, RI: AMS, pp. 619–652.

Garey, M.R. and D.S. Johnson. (1979). Computers and Intractability: A Guide to the Theory of NP-
Completeness. San Francisco: Freeman.

Gilbert, J.R., G.L. Miller, and S.-H. Teng. (1998). “Geometric Mesh Partitioning: Implementation and
Experiments.” SIAM J. Sci. Comput. 19(6), 2091–2110.

Glover, F. (1986). “Future Paths for Integer Programming and Links to Artificial Intelligence.” Comput.
Oper. Res. 13, 533–549.

Glover, F., M. Parker, and J. Ryan. (1996). “Coloring by Tabu Branch and Bound.” In D.S. Johnson and
M.A. Trick (eds.), Cliques, Coloring, and Satisfiability, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, Vol. 26. Providence, RI: AMS, pp. 285–307.

Gu, J. and X. Huang. (1994). “Efficient Local Search With Search Space Smoothing: A Case Study of the
Traveling Salesman Problem (TSP).” IEEE Trans. Syst. Man and Cybernetics 24(5), 728–735.

Held, M. and R.M. Karp. (1970). “The Traveling Salesman Problem and Minimum Spanning Trees.” Oper.
Res. 18, 1138–1162.

Helsgaun, K. (2000). “An Effective Implementation of the Lin–Kernighan Traveling Salesman Heuristic.”
Eur. J. Oper. Res. 126, 106–130.

Hendrickson, B. and T.G. Kolda. (2000). “Graph Partitioning Models for Parallel Computing.” Parallel
Comput. 26(12), 1519–1534.

Hendrickson, B. and R. Leland. (1995a). “A Multilevel Algorithm for Partitioning Graphs.” In S. Karin
(ed.), Proc. Supercomputing ’95, San Diego. New York: ACM Press.

Hendrickson, B. and R. Leland. (1995b). “The Chaco User’s Guide: Version 2.0.” Technical Report SAND
94-2692, Sandia Natl. Lab., Albuquerque, NM, July.

Hertz, A. and D. de Werra. (1987). “Using Tabu Search Techniques for Graph Coloring.” Computing 39,
345–351.

Hu, Y.F. and J.A. Scott. (2000). “Multilevel Algorithms for Wavefront Reduction.” RAL-TR-2000-031,
Comput. Sci. and Engrg. Dept., Rutherford Appleton Lab., Didcot, UK.

Johnson, D.S., C.R. Aragon, L.A. McGeoch, and C. Schevon. (1991). “Optimization by Simulated Anneal-
ing: Part II, Graph Coloring and Number Partitioning.” Oper. Res. 39(3), 378–406.

Johnson, D.S. and L.A. McGeoch. (1997). “The Travelling Salesman Problem: A Case Study.” In E. Aarts
and J.K. Lenstra (eds.), Local Search in Combinatorial Optimization. Chichester: Wiley, pp. 215–310.

Johnson, D.S. and L.A. McGeoch. (2002). “Experimental Analysis of Heuristics for the STSP.” In The
Travelling Salesman Problem and its Variations. Dordrecht: Kluwer Academic, pp. 369–443.

Johnson, D.S. and M.A. Trick (eds.). (1996). Cliques, Coloring, and Satisfiability, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, Vol. 26. Providence, RI: AMS.

Joslin, D.E. and D.P. Clements. (1999). “ “Squeaky Wheel” Optimization.” J. Artificial Intelligence Res. 10,
353–373.

Karypis, G. and V. Kumar. (1998a). “A Fast and High Quality Multilevel Scheme for Partitioning Irregular
Graphs.” SIAM J. Sci. Comput. 20(1), 359–392.

Karypis, G. and V. Kumar. (1998b). “Multilevel k-way Partitioning Scheme for Irregular Graphs.” J. Paral-
lel Distrib. Comput. 48(1), 96–129.

Kaveh, A. and H.A. Rahimi-Bondarabady. (2000). “A Hybrid Graph-Genetic Method for Domain Decom-
position.” In B.H.V. Topping (ed.), Computational Engineering Using Metaphors from Nature, Proc. of
Engrg. Comput. Technology, Leuven, Belgium, Edinburgh: Civil-Comp Press, pp. 127–134.

MULTILEVEL REFINEMENT FOR COMBINATORIAL OPTIMISATION PROBLEMS 371

Kernighan, B.W. and S. Lin. (1970). “An Efficient Heuristic for Partitioning Graphs.” Bell Syst. Tech. J. 49,
291–308.

Koren, Y. and D. Harel. (2002). “A Multi-Scale Algorithm for the Linear Arrangement Problem.” Technical
Report MCS02-04, Faculty Maths. Comp. Sci., Weizmann Inst. Sci., Rehovot, Israel.

Langham, A.E. and P.W. Grant. (1999). “A Multilevel k-way Partitioning Algorithm for Finite Element
Meshes using Competing Ant Colonies.” In W. Banzhaf et al. (eds.), Proc. Genetic and Evolutionary
Comput. Conf. (GECCO-1999). San Francisco: Morgan Kaufmann, pp. 1602–1608.

Leighton, F.T. (1979). “A Graph Colouring Algorithm for Large Scheduling Problems.” J. Res. National
Bureau Standards 84, 489–503.

Lewandowski, G. and A. Condon. (1996). “Experiments with Parallel Graph Coloring and Applications
of Graph Coloring.” In D.S. Johnson and M.A. Trick (eds.), Cliques, Coloring, and Satisfiability, DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 26. Providence, RI:
AMS, pp. 309–334.

Lin, S. (1965). “Computer Solutions of the Traveling Salesman Problem.” Bell Syst. Tech. J. 44, 2245–2269.
Lin, S. and B.W. Kernighan. (1973). “An Effective Heuristic for the Traveling Salesman Problem.” Oper.

Res. 21(2), 498–516.
Lund, C. and M. Yannakakis. (1994). “On the Hardness of Approximating Minimization Problems.” J. ACM

41(5), 960–981.
Martin, O.C., S.W. Otto, and E.W. Felten. (1991). “Large-Step Markov Chains for the Traveling Salesman

Problem.” Complex Systems 5(3), 299–326.
Matula, D.W., G. Marble, and J.D. Isaacson. (1972). “Graph Coloring Algorithms.” In R.C. Read (ed.),

Graph Theory and Computing. New York: Academic Press, pp. 109–122.
Monien, B., R. Preis, and R. Diekmann. (2000). “Quality Matching and Local Improvement for Multilevel

Graph-Partitioning.” Parallel Comput. 26(12), 1605–1634.
Neto, D.M. (1999). “Efficient Cluster Compensation for Lin–Kernighan Heuristics.” Ph.D. Thesis, Dept.

Comp. Sci., University Toronto, Canada.
Pellegrini, F. and J. Roman. (1996). “SCOTCH : A Software Package for Static Mapping by Dual Recur-

sive Bipartitioning of Process and Architecture Graphs.” In H. Liddell et al. (eds.), High-Performance
Computing and Networking, Proc. HPCN’96, Brussels, Lecture Notes in Computer Science, Vol. 1067.
Berlin: Springer, pp. 493–498.

Reinelt, G. (1991). “TSPLIB – A Traveling Salesman Problem Library.” ORSA J. Comput. 3(4), 376–384.
Romeijn, H.E. and R.L. Smith. (1999). “Parallel Algorithms for Solving Aggregated Shortest-Path Prob-

lems.” Comput. Oper. Res. 26(10–11), 941–953.
Schloegel, K., G. Karypis, and V. Kumar. (2004). “Graph Partitioning for High Performance

Scientific Simulations.” In J.J. Dongarra et al. (eds.), CRPC Parallel Computing Handbook,
to appear. Available from http://www-users.cs.umn.edu/∼karypis/publications/
partitioning.html

Sewell, E.C. (1996). “An Improved Algorithm for Exact Graph Coloring.” In D.S. Johnson and M.A. Trick
(eds.), Cliques, Coloring, and Satisfiability, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, Vol. 26. Providence, RI: AMS, pp. 359–373.

Simon, H.D. (1991). “Partitioning of Unstructured Problems for Parallel Processing.” Computing Systems
Engrg. 2, 135–148.

Simon, H.D. and S.-H. Teng. (1997). “How Good is Recursive Bisection?” SIAM J. Sci. Comput. 18(5),
1436–1445.

Soper, A.J., C. Walshaw, and M. Cross. (2000). “A Combined Evolutionary Search and Multilevel Opti-
misation Approach to Graph Partitioning.” Technical Report 00/IM/58, Comp. Math. Sci., University
Greenwich, London, UK, April, to appear in J. Global Optimization.

Teng, S.-H. (1999). “Coarsening, Sampling, and Smoothing: Elements of the Multilevel Method.” In
M.T. Heath et al. (eds.), Algorithms for Parallel Processing, IMA Volumes in Mathematics and its
Applications, Vol. 105. New York: Springer, pp. 247–276.

372 WALSHAW

Toulouse, M., K. Thulasiraman, and F. Glover. (1999). “Multi-level Cooperative Search: A New Paradigm
for Combinatorial Optimization and an Application to Graph Partitioning.” In P. Amestoy et al. (eds.),
Proc. Euro-Par’99 Parallel Processing, Lecture Notes in Computer Science, Vol. 1685. Berlin: Springer,
pp. 533–542.

Vanderstraeten, D., C. Farhat, P.S. Chen, R. Keunings, and O. Zone. (1996). “A Retrofit Based Methodol-
ogy for the Fast Generation and Optimization of Large-Scale Mesh Partitions: Beyond the Minimum
Interface Size Criterion.” Comput. Methods Appl. Mech. Engrg. 133, 25–45.

Walshaw, C. (2001a). “A Multilevel Algorithm for Force-Directed Graph Drawing.” In J. Marks (ed.),
Graph Drawing, 8th Intl. Symp. GD 2000, Lecture Notes in Computer Science, Vol. 1984. Berlin:
Springer, pp. 171–182.

Walshaw, C. (2001b). “A Multilevel Approach to the Graph Colouring Problem.” Technical Report
01/IM/69, Comp. Math. Sci., University Greenwich, London, UK, May.

Walshaw, C. (2001c). “A Multilevel Lin–Kernighan-Helsgaun Algorithm for the Travelling Salesman Prob-
lem.” Technical Report 01/IM/80, Comp. Math. Sci., University Greenwich, London, UK, September.

Walshaw, C. (2001d). “Multilevel Refinement for Combinatorial Optimisation Problems.” Technical Report
01/IM/73, Comp. Math. Sci., University Greenwich, London, UK, June.

Walshaw, C. (2002). “A Multilevel Approach to the Travelling Salesman Problem.” Oper. Res. 50(5). (Orig-
inally published as University Greenwich Technical Report 00/IM/63.)

Walshaw, C. and M. Cross. (2000). “Mesh Partitioning: A Multilevel Balancing and Refinement Algo-
rithm.” SIAM J. Sci. Comput. 22(1), 63–80. (Originally published as Univ. Greenwich Technical Report
98/IM/35.)

Walshaw, C., M. Cross, R. Diekmann, and F. Schlimbach. (1999). “Multilevel Mesh Partitioning for Opti-
mising Domain Shape.” Intl. J. High Performance Comput. Appl. 13(4), 334–353. (Originally published
as University Greenwich Technical Report 98/IM/38.)

Walshaw, C. and M.G. Everett. (2002). “Multilevel Landscapes in Combinatorial Optimisation.” Technical
Report 02/IM/93, Comp. Math. Sci., University Greenwich, London, UK, April.

