
MESH PARTITIONING: A MULTILEVEL BALANCING AND

REFINEMENT ALGORITHM∗

C. WALSHAW† AND M. CROSS†

SIAM J. SCI. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
Vol. 22, No. 1, pp. 63–80

Abstract. Multilevel algorithms are a successful class of optimization techniques which ad-
dresses the mesh partitioning problem. They usually combine a graph contraction algorithm together
with a local optimization method which refines the partition at each graph level. In this paper we
present an enhancement of the technique which uses imbalance to achieve higher quality partitions.
We also present a formulation of the Kernighan–Lin partition optimization algorithm which incorpo-
rates load-balancing. The resulting algorithm is tested against a different but related state-of-the-art
partitioner and shown to provide improved results.

Key words. graph-partitioning, mesh partitioning, load-balancing, multilevel algorithms

AMS subject classifications. 05C85, 65Y05

PII. S1064827598337373

1. Introduction. The need for mesh partitioning arises naturally in many finite
element (FE) and finite volume (FV) applications. Meshes composed of elements such
as triangles or tetrahedra are often better suited than regularly structured grids for
representing completely general geometries and resolving wide variations in behavior
via variable mesh densities. Meanwhile, the modeling of complex behavior patterns
means that the problems are often too large to fit onto serial computers, either because
of memory limitations or computational demands, or both. Distributing the mesh
across a parallel computer so that the computational load is evenly balanced and the
data locality maximized is known as mesh partitioning. It is well known that this
problem is NP-complete [7], so in recent years much attention has been focused on
developing suitable heuristics, and some powerful methods, many based on a graph
corresponding to the communication requirements of the mesh, have been devised,
e.g., [5].

A particularly popular and successful class of algorithms which addresses this
mesh partitioning problem is known as multilevel algorithms. They usually com-
bine a graph contraction algorithm which creates a series of progressively smaller and
coarser graphs together with a local optimization method which, starting with the
coarsest graph, refines the partition at each graph level. In this paper we present an
enhancement of the technique which uses imbalance to achieve higher quality parti-
tions. We also present a formulation of the Kernighan–Lin (KL) partition optimization
algorithm which incorporates load-balancing.

We focus here on serial partitioning. Although emphasis in the field is switching
to parallel partitioning methods, we aim here to address one of the fundamental
mechanisms of the multilevel paradigm and thus a serial implementation provides a
clear and relatively parameter-free environment for establishing how imbalance can
affect the overall performance of the strategy. However, elsewhere we have provided
a different but related parallel formulation [21], and indeed the algorithms described
here are used directly as part of that parallel strategy.

∗Received by the editors April 15, 1998; accepted for publication (in revised form) December 10,
1999; published electronically June 13, 2000.

http://www.siam.org/journals/sisc/22-1/33737.html
†Computing and Mathematical Sciences, University of Greenwich, Park Row, Greenwich, London,

SE10 9LS, UK (C.Walshaw@gre.ac.uk), (m.cross@gre.ac.uk).

63

64 C. WALSHAW AND M. CROSS

1.1. Overview. Below, in section 1.2, we introduce the mesh partitioning prob-
lem and establish some terminology. In section 2 we then describe the multilevel
paradigm and present a new enhancement in the idea of a multilevel balancing sched-
ule. Next, in section 3, we describe a KL-type optimization algorithm which both
balances a partition of the graph to within some given tolerance and also refines it. In
section 4 we present results from the multilevel balancing and refinement algorithm,
comparing it with a similar formulation which only incorporates multilevel refinement.
We also compare different multilevel balancing schedules. Finally in section 5 we draw
some conclusions and present some ideas for further investigation.

The principal innovations described in this paper are twofold:
• In section 2.2 we formalize the idea of combining multilevel refinement with

a multilevel balancing schedule.
• In section 3.4 we describe a new formulation of a KL-type partitioning algo-

rithm (incorporating hill-climbing), which both balances and refines.
Two implementation ideas are also described:
• In section 3.3 we describe a ranking for prioritizing vertices for migration

which incorporates their weight as well as their gain.
• In section 3.5 we describe how we deal with vertices which are neighbors to

more than one subdomain.

1.2. Notation and definitions. To define the mesh partitioning problem, let
G = G(V,E) be an undirected graph of vertices V , with edges E which represent the
data dependencies in the mesh. We assume that the graph is connected. (Although
if this is not the case we have, elsewhere, discussed an algorithm for connecting the
components together [25].) We also assume that both vertices and edges are weighted
(with positive integer values) and that |v| denotes the weight of a vertex v and similarly
for edges and sets of vertices and edges. The vertex weight is used to approximate
processor loading whilst the edge weights model communication costs (although see
section 3.1). Typically both vertex and edge weights are given a unit cost although
there has been some recent work on accurate cost modeling [15], and for some real
applications the processor load can depend on many other factors such as data access
patterns. However, since this is a function of the final partition it is not possible to
estimate such costs a priori, and we do not address this issue here.

Given that the mesh needs to be distributed to P processors, define a partition
π to be a mapping of V into P disjoint subdomains Sp such that

⋃

P Sp = V . The
partition π induces a subdomain graph on G which we shall refer to as Gπ = Gπ(S,C);
there is an edge (Sp, Sq) ∈ C if there are vertices v1, v2 ∈ V with (v1, v2) ∈ E, and
v1 ∈ Sp, v2 ∈ Sq, and the weight of a subdomain is just the sum of the weights of the
vertices in the subdomain, |Sp| =

∑

v∈Sp
|v|. We denote the set of intersubdomain

or cut edges (i.e., edges cut by the partition) by Ec (note that |Ec| = |C|). Vertices
which have an edge in Ec (i.e., {v ∈ V : there exists v′ ∈ V, with (v, v′) ∈ Ec}) are
referred to as border vertices.

The definition of the graph-partitioning problem is to find a partition which evenly
balances the load (i.e., vertex weight) in each subdomain whilst minimizing the com-
munications cost. To balance the load, the optimal subdomain weight is given by
S := d|V |/P e (where the ceiling function dxe returns the smallest integer ≥ x) and
the imbalance is then defined as the maximum subdomain weight divided by the op-
timal (since the computational speed of the underlying application is determined by
the most heavily weighted processor). As is usual, throughout this paper the com-
munications cost will be estimated by |Ec|, the weight of cut edges or cut-weight,

MESH PARTITIONING: MULTILEVEL BALANCING AND REFINEMENT 65

although see section 3.1 for further discussion on this point. A more precise definition
of the graph-partitioning problem is therefore to find π such that |Sp| ≤ S and such
that |Ec| is minimized. Note that perfect balance is not always possible for graphs
with nonunitary vertex weights.

Throughout this paper we use some fairly specific terminology and in particular
we shall refer to refinement as the improvement of partition quality (i.e., the cut-
weight) without regard to load-balance; balancing will then refer to the improvement
of imbalance and optimization refers to refinement and balancing. We also make the
distinction between those algorithms, such as that of Kernighan and Lin [14], which
refine a bisection and algorithms which refine a partition of P subdomains. Such
algorithms have been known as k-way (e.g., [13]) or multiway (e.g., [24]) algorithms,
but here we shall simply refer to them as partition (as opposed to bisection) refinement
algorithms. Finally we shall use the words processor and subdomain interchangeably;
the mesh is partitioned into P subdomains each of which will be mapped onto one
processor.

2. The multilevel paradigm. In recent years it has been recognized that an
effective way of both accelerating partition refinement and, perhaps more importantly,
giving it a global perspective is to use multilevel techniques. The idea is to group ver-
tices together to form clusters, use the clusters to define a new graph, and recursively
iterate this procedure to create a series of increasingly coarse graphs until the size
of the coarsest graph falls below some threshold. A fast and possibly crude initial
partition of the coarsest graph is calculated and then successively interpolated onto
and optimized on each of the graphs in reverse order. This sequence of contraction
followed by repeated expansion/refinement loops is known as the multilevel paradigm
and has been successfully developed as a strategy for overcoming the localized nature
of the KL [14] (and other) algorithms. The multilevel idea was first proposed by
Barnard and Simon [1] as a method of accelerating spectral bisection and improved
by both Hendrickson and Leland [9] and Bui and Jones [2], who generalized it to
encompass local refinement algorithms.

2.1. Implementation. To create a coarser graph Gl+1(Vl+1, El+1) from Gl(Vl,
El) we use a variant of the graph contraction algorithm proposed by Hendrickson
and Leland [9]. The idea is to find a maximal independent subset of graph edges
or matching of graph vertices and then collapse them. The set is independent if no
two edges in the set are incident on the same vertex (so no two edges in the set are
adjacent), and maximal if no more edges can be added to the set without breaking
the independence criterion. Having found such a set, each selected edge is collapsed
and the vertices, u1, u2 ∈ Vl say, at either end of it are merged to form a new vertex
v ∈ Vl+1 with weight |v| = |u1| + |u2|. Edges which have not been collapsed are
inherited by the child graph, Gl+1, and, where they become duplicated, are merged
with their weight summed. This occurs if, for example, the edges (u1, u3) and (u2, u3)
exist when edge (u1, u2) is collapsed. Because of the inheritance properties of this
algorithm, it is easy to see that the total graph weight remains the same, |Vl+1| = |Vl|,
and the total edge weight is reduced by an amount equal to the weight of the collapsed
edges.

A simple way to construct a maximal independent subset of edges is to visit the
vertices of the graph in a random order and pair up or match unmatched vertices
with an unmatched neighbor. It has been shown [12] that it can be beneficial to the
optimization to collapse the most heavily weighted edges and our matching algorithm
uses this heuristic.

66 C. WALSHAW AND M. CROSS

The initial partition. Having constructed the series of graphs until the number
of vertices in the coarsest graph is smaller than some threshold, the normal practice of
the multilevel strategy is to carry out an initial partition. Here, following the idea of
Gupta [8] we contract until the number of vertices in the coarsest graph is the same as
the number of subdomains, P , and then simply assign vertex i to subdomain Si. Un-
like Gupta, however, we do not carry out repeated expansion/contraction cycles of the
coarsest graphs to find a well balanced initial partition but instead, since our optimiza-
tion algorithm incorporates balancing, we commence on the expansion/optimization
sequence immediately.

Note that contraction down to P vertices should always be possible provided the
graph is connected (assumed, section 1.2). To see this consider that every connected
graph of V vertices must have at least V − 1 edges and that the collapsing of an edge
results in a connected graph. Thus, if V > P there must be at least one edge which
can be collapsed to create a graph with V − 1 vertices and so on by induction.

Note also that for certain graphs the resulting initial partition can be extremely
imbalanced as a result of the weights becoming extremely inhomogeneous in the coars-
est graphs. This suggests that perhaps, for such examples, contraction down to P
vertices does not enhance the final partition. However, because the final contractions
are relatively very cheap and this imbalance does not seem to affect the final partition
quality we retain this feature in order not to introduce another parameter (i.e., a
contraction threshold) to the method.

Partition expansion. Having optimized the partition on a graph Gl, the par-
tition must be interpolated onto its parent Gl−1. The interpolation itself is a trivial
matter; if a vertex v ∈ Vl is in subdomain Sp then the matched pair of vertices that
it represents, v1, v2 ∈ Vl−1, will be in Sp.

2.2. Multilevel balancing schedule. It has been noted previously (originally
in [18] and subsequently in [13, 23]) that allowing a small amount of imbalance often
leads to a higher partition quality. We also observe that one of the most attractive
features of the multilevel paradigm is the way in which the partition quality (usually
the number of cut edges) is refined gradually as the expansion proceeds; i.e., after
each refinement the partition quality of a given graph Gl is usually better than that
of Gl+1 (because there are more degrees of freedom). In this paper we combine both
observations (imbalance can lead to higher partition quality and gradual refinement
of quality being an attractive feature) by allowing a variable amount of imbalance

which is reduced gradually as the expansion proceeds. The idea is that by allowing
a large imbalance in the coarsest graphs a better partition may be found than if
balance was rigidly enforced, but that this imbalance will not cause degradation in
the final partition of the finest graph if removed gradually throughout the expansion
procedure. Note particularly the second statement—if the finest graph starts the
refinement with a high quality but poorly balanced partition, then much of the quality
may be destroyed by balancing. (See the end of this section for an example of this
behavior.)

In fact it is often not possible to achieve perfect balance in the coarsest graphs
because the vertices may be heavily weighted and very inhomogeneous (e.g., if balance
requires moving a weight of 10 from one subdomain to another but all vertices are of
weight 20 or over, perfect balance cannot be attained). Hence it could be argued that
all multilevel algorithms employ this idea of multilevel balancing. Indeed, our previous
work in this area, e.g., [24], employs a diffusive load-balancer at every refinement level
and so the idea has been implicit in our work for sometime. In this paper, however,

MESH PARTITIONING: MULTILEVEL BALANCING AND REFINEMENT 67

p processors

n

Fig. 1. A regular domain of N = n2 vertices perfectly partitioned into P = p2 subdomains.

we formalize the idea of balancing and refinement at every level and also describe an
optimization algorithm which both achieves a given level of imbalance (if possible)
and refines for quality. Note that we make the distinction between this work and that
in the multilevel diffusion algorithm of Schloegel, Karypis, and Kumar [16], where a
diffusive load-balancer is employed at each coarse level until balance is attained and
thereafter partition quality refinement without active balancing is employed.

In order to talk about improving the balance gradually from one graph level
to another, for each graph, Gl, let Tl be the target subdomain weight. If every
subdomain, Sp, is not heavier than this target (i.e., max |Sp| ≤ Tl), then we say that
the graph is balanced and the optimization can concentrate on refinement alone (so
long as the balance is not destroyed). However, if max |Sp| > Tl, then the optimization
must concentrate on balancing (with some regard to refinement). Clearly this series
{Tl} is an arbitrary heuristic, but it must be determined with two caveats:

• If it ascends too rapidly, the balance inherited by Gl from Gl+1 may cause
the partition quality to be lost in trying to attain Tl. (See the end of this
section for an example of this behavior.)

• If it ascends too slowly, the benefits for the partition quality of having a high
imbalance tolerance may never be seen.

Some results with different functions for Tl are given in section 4.2, but with the above
in mind we derive Tl as follows:

Let G(V,E) be regular graph with N (= n×n) vertices perfectly partitioned into
P (= p× p) subdomains as in Figure 1. The maximum border length of a subdomain
is then given by

4

(

N

P

)
1

2

.

The average weight of a vertex is |V |/N , and so we can estimate the weight of border

68 C. WALSHAW AND M. CROSS

vertices in the subdomain as

4

(

N

P

)
1

2

×
|V |

N
=

4|V |

(PN)
1

2

.

Recall that for each graph Gl we wish to define a target subdomain weight Tl which
will not cause too much degradation in partition quality when balancing its parent
Gl−1 down to its target Tl−1. After some experimentation, we have chosen to allow
an excess weight in any given subdomain of approximately half one border layer of a
subdomain in the parent graph. The target weight is given by the optimal subdomain
weight plus the excess weight and so, using the regular two-dimensional (2D) model,
we set Tl to be

Tl = d|V |/P e +
1

2
×

4|V |

(PNl−1)
1

2

.

If we define the imbalance tolerance, θl, to be the maximum allowable subdomain
weight expressed as a proportion of the optimal subdomain weight, then

θl =
d|V |/P e + 2|V |(PNl−1)

− 1

2

d|V |/P e
≈ 1 + 2

(

P

Nl−1

)
1

2

.

In other words a graph Gl is considered balanced if the imbalance is less than θl =
1 + 2(P

Nl−1
)

1

2 for l > 0. For the final (and original) graph, G0, which has no parent,

we can either set θ0 = 1 to aim for perfect balancing or, as is often the case (e.g.,
[13]), allow a slight imbalance. For the results in this paper we have chosen to set

θ0 = 1.03 and then we set θl = max(θ0, 1 + 2(P
Nl−1

)
1

2) for l > 0. Note that we have

chosen a 2D model of the regular partition; a three-dimensional (3D) model using the

same arguments gives θl = 1 + 3(P
Nl−1

)
1

3 , and results using this model can be found

in section 4.2.
Figure 2 shows an example of some typical behavior for the balancing schedule

derived above and the algorithm described in section 3. The dotted line plots the
target weight or balancing schedule, and each step down represents the transition
from one graph level Gl to its parent Gl−1. Notice that at the start of the iterations
the tolerance is around 2.3—i.e., the graph is considered balanced if every subdomain
is smaller than 2.3 times the optimal weight. The solid line represents the attained
balance—this is below the target level most of the time and, by iteration 30, it tracks
the target weight exactly, showing that the optimization algorithm in section 3 is
very good at taking advantage of any leeway in the imbalance tolerance. (The final
imbalance tolerance for the method is set at θ0 = 1.03 which is why the balance never
reaches 1.0.) Finally the dashed line shows the evolution of the cut edges (scaled by
a large factor to fit onto the graph). The peaks early on in the iterations correspond
to balances which exceed the tolerance and as mentioned above this causes serious
degradation in the partition quality as the algorithm balances the graph. However,
after about iteration 30 the cut-weight decreases monotonically.

3. The balancing and refinement optimization algorithm. In this section
we describe an optimization algorithm which combines load-balancing and partition
quality refinement. It is a KL-type algorithm incorporating a hill-climbing mechanism
to enable it to escape from local minima; in other words vertex migration from subdo-
main to subdomain can be accepted even if it degrades the partition quality and later,

MESH PARTITIONING: MULTILEVEL BALANCING AND REFINEMENT 69

balance

target

cut edges (scaled)

0 10 20 30 40 50 60 70 80
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

iteration

ba
la

nc
e/

cu
t e

dg
es

Fig. 2. An example of the evolution of balance and cut-weight for the multilevel balancing and
refinement algorithm.

based on the subsequent evolution of the partition, either rejected or confirmed. The
algorithm uses bucket sorting (see section 3.3), the linear time complexity improve-
ment of Fiduccia and Mattheyses [6], and is a partition optimization formulation; in
other words it optimizes a partition of P subdomains rather than a bisection. In this
respect it most closely resembles the algorithm of Karypis and Kumar [13], but ad-
ditionally incorporates load-balancing (using the diffusive algorithm of Hu and Blake
[11]; see section 3.2. The algorithm described here is strictly serial in nature, but a
parallel formulation (in which essentially each intersubdomain interface is treated as
a separate problem) can be found in [21].

3.1. The gain function. A key concept in the method is the idea of gain.
Loosely, the gain g(v, q) of a vertex v in subdomain Sp can be calculated for every
other subdomain, Sq, q 6= p, and it expresses some “estimate” of how much the
partition would be “improved” were v to migrate to Sq. The gain is usually directly
related to some cost function which measures the quality of the partition and which
we aim to minimize. Typically the cost function used is simply the total weight of
cut edges, |Ec|, and then the gain expresses the change in |Ec|. More recently, there
has been some debate about the most important quantity to minimize, and in [20]
Vanderstraeten and Keunings demonstrate that it can be extremely effective to vary
the cost function based on a knowledge of the solver. Whichever cost function is
chosen, however, the idea of gains is generic. For the purposes of this paper we shall
assume that the gain g(v, q) just expresses the reduction in the cut-weight, |Ec|.

3.2. Load-balancing: Calculating the flow. Given a graph partitioned into
unequal sized subdomains, we need some mechanism for distributing the load equally.
To do this we solve the load-balancing problem on the subdomain graph, Gπ, in order
to determine a balancing flow, a flow along the edges of Gπ which balances the weight

70 C. WALSHAW AND M. CROSS

of the subdomains. By keeping the flow localized in this way, vertices are not migrated
between nonadjacent subdomains, and hence (hopefully) the partition quality is not
degraded (since a vertex migrating to a subdomain to which it is not adjacent is
almost certain to have a negative gain).

This load-balancing problem, i.e., how to distribute N tasks over a network of P
processors so that none have more than dN/P e, is a very important area for research
in its own right with a vast range of applications. The topic is introduced in [17] and
some common strategies are described. Much work has been carried out on parallel
or distributed algorithms and, in particular, on diffusive algorithms [3]; here we use
an elegant diffusive variant developed by Hu and Blake [11] with fast convergence.
This method was derived to minimize the Euclidean norm of the transferred weight,
although it has recently been shown that all diffusion methods minimize this quantity
[4, 10]. The algorithm simply involves solving the system Lx = b, where L is the
Laplacian of the subdomain graph:

Lpq =







degree(Sp) if p = q,
−1 if p 6= q and Sp is adjacent to Sq,
0 otherwise,

and where bp = |Sp| − S, the weight of Sp less the optimal weight. The weight to
be transferred across edge (Sp, Sq) is then given by xp − xq. Note that this method
is closely related to the standard diffusion algorithm [3], except that the diffusion
coefficients are not fixed but are determined at each iteration by a conjugate gradient
search.

This algorithm (or, in principle, any other distributed load-balancing algorithm)
is used to determine how much weight to transfer across edges of the subdomain graph
and the optimization technique below is then used to decide which vertices to move.
The algorithm is employed as suggested in [11], solving iteratively with a conjugate
gradient solver; it is solved for a real solution and the (integer) flow is determined by
rounding. Note, however, that the Laplacian of any undirected graph contains a zero
eigenvalue with the corresponding eigenvector [1, 1, . . . , 1] and the solution iterates
are orthogonalized against this [11]. If any other singularities are detected (e.g., if the
graph is disconnected) the software will switch to another method, an intuitive and
entirely localized distributed load-balancing algorithm due to Song [19].

Occasionally whilst optimization is taking place vertex migration can cause the
subdomain graph to change (e.g., two nonadjacent subdomains may become adjacent).
If an edge disappears over which flow is scheduled to move the subdomain graph must
be rebalanced, although we speed this process up by adding the extraneous flow back
into its source subdomain and rebalancing the graph from that point. We also limit
the number of possible rebalances on any graph since otherwise the system can exhibit
cyclic behavior.

3.3. Bucket sorting. The bucket sort is an essential tool for the efficient and
rapid sorting and adjustment of vertices by their gain. The concept was first suggested
by Fiduccia and Mattheyses in [6], and the idea is that all vertices of a given gain g
are placed together in a “bucket” which is ranked g. Finding a vertex with maximum
gain then simply consists of finding the (nonempty) bucket with the highest rank and
picking a vertex from it. If the vertex is subsequently migrated from one subdomain
to another then its gain and the gains of all its neighbors have to be adjusted and
resorted by gain. Using a bucket sort for this operation simply requires recalculating
the gains of the vertex and its neighbors and transferring them to the appropriate

MESH PARTITIONING: MULTILEVEL BALANCING AND REFINEMENT 71

buckets, an essentially localized operation. If a bucket sort were not used and, say,
the vertices were simply stored in a list in gain order, then the entire list would
require resorting (or at least merge-sorting with the sorted list of adjusted vertices)
an essentially O(N) operation for every migration.

In our implementation each bucket is (as usual) represented by a double linked
list of vertices (since vertices must be extracted from the list without having to search
through it). However, we additionally prefer to sort the vertices by gain and then
by weight. The reasoning behind this is simple: if, for example, a transfer of weight
3 between 2 subdomains is required, then it is preferable to pick 3 vertices each of
gain 1 and weight 1 rather than 1 vertex of gain 1 and weight 3. Conversely, if a
transfer of weight 2 is required, then it is better to move 1 vertex of weight 2 and
gain −1, rather than 2 vertices of weight 1 and gain −1. Thus we order the vertices
primarily by gain and then by weight, lightest first for positive gains and heaviest
first for negative gains. Rather than sorting the contents of each bucket we simply
provide a different bucket for each gain/weight combination, and so if W represents
the weight of the largest vertex in a given graph g(v) the gain of a vertex v, we rank
v with the formula:

rank(v) =

{

g(v) ×W + W − |v| if g(v) > 0,
g(v) ×W + |v| − 1 otherwise,

which provides the desired ordering. The ranking is unique for each combination of
g(v) and |v| because 1 ≤ |v| ≤ W for all vertices v (it is assumed that |v| > 0), and so

rank(v) ≤ g(v) ×W + W − 1 < g(v) ×W + W = [g(v) + 1] ×W.

Hence

g(v) ×W ≤ rank(v) < [g(v) + 1] ×W.

In other words, for a given vertex v with gain g(v), the upper bound on rank(v) is
strictly less than the lower bound on rank(w) for any vertex w with gain g(w) =
[g(v) + 1].

Note that in the very coarse graphs at the top of the multilevel process, it is
possible or even common to produce graphs with a wide range of vertex weights and
potential gains. For this reason, rather than maintaining a sparse but potentially huge
array of pointers to buckets, we store the nonempty buckets in a binary tree adding
and deleting buckets as required (see Figure 3). This tree structure may still be large
but cannot exceed the number of border vertices in the graph in size. In the sections
below the term bucket tree will be used to refer to the binary tree of buckets.

3.4. The iterative optimization algorithm. The serial optimization algo-
rithm, as is typical for KL-type algorithms, has inner and outer iterative loops with
the outer loop terminating when no migration takes place during an inner loop. The
algorithm is shown in pseudocode form in Figure 4. The optimization uses two bucket
trees (see section 3.3), and is initialized by calculating the gain for all border vertices
and inserting them into one of the bucket trees. These vertices will subsequently
be referred to as candidate vertices and the tree containing them as the candidate

tree. The idea of only inserting the border vertices into the bucket tree (rather than
all vertices) was first described in [23] and has subsequently been described as lazy
initialization [9].

72 C. WALSHAW AND M. CROSS

1

3

5

7

106

8double linked

list of vertices

bucket ranked 7

Fig. 3. A bucket tree.

The inner loop proceeds by examining candidate vertices highest gain first (by
always picking vertices from the highest ranked bucket), testing whether the vertex
is acceptable for migration, and then transferring it to the other bucket tree (the tree
of examined vertices). This inner loop terminates when the candidate tree is empty,
although it may terminate early if the partition cost (i.e., the number of cut edges)
rises too far above the cost of the best partition found so far. This type of early
termination is typical of KL-type algorithms; without it, the entire graph may be
searched with diminishing prospect of finding a better solution along the search path.
Once the inner loop has terminated any vertices remaining in the candidate tree are
transferred to the examined tree and finally pointers to the two trees are swapped
ready for the next pass through the inner loop.

Migration acceptance. Let T refer to the target weight for the graph (sec-
tion 2.2) and W represent the weight of the largest subdomain, W = maxP |Sp|. If
the required flow from subdomain Sp to subdomain Sq is Fpq, a candidate vertex v
with weight |v| (≥ 0) is accepted for migration from Sp to Sq (with weights |Sp| and
|Sq|) if

(a) W > T and 2Fpq > |v|
or (b) W ≤ T and |Sq| + |v| ≤ T.

(3.1)

These criteria reflect the aim of trying to balance the graph down to the target
weight, T , and then keeping it there. If the graph is not yet within the imbalance
tolerance (i.e., W > T), then (3.1a) only allows migration which reduces the required
flow. Condition (3.1b) guarantees that once balance is achieved the graph cannot
become unbalanced again.

Note that in order to satisfy the flow entirely we would only move a vertex if
from Sp to Sq if the flow, Fpq, was greater than or equal to the vertex’s weight (i.e.,
Fpq ≥ |v|). The wider acceptance condition (3.1a), 2Fpq > |v|, however, also allows
moves where |v| exceeds Fpq but which reduces the total required flow in the system.

MESH PARTITIONING: MULTILEVEL BALANCING AND REFINEMENT 73

while (optimizing) { /* outer loop */

optimizing = 0

best cost = cost

while (vertices in candidate tree) { /* inner loop */

vertex = best candidate

if (migration acceptable for vertex) {

optimizing = 1

migrate vertex {

adjust flow and subdomain weights

adjust gains of neighboring vertices

and transfer to appropriate buckets

}

adjust gain of vertex and transfer to examined tree

if (better partition) { /* confirm migration */

best_cost = cost

reset recent move list

} else {

append vertex to recent move list

if (cost - best_cost > limit) /* early termination */

break

} /* hill-climbing mechanism */

}

transfer vertex to examined tree

} /* inner loop */

for (vertices in recent move list) /* hill-climbing mechanism */

migrate vertex back to previous partition

for (vertices in candidate tree)

transfer vertex to examined tree

swap pointers to candidate and examined trees

} /* outer loop */

Fig. 4. The Kernighan–Lin partition optimization algorithm.

For example, if |v| = 5 and Fpq = 3, the migration would not be acceptable under the
condition Fpq ≥ |v|, but using (3.1a) the move is acceptable and Fpq changes to −2
(alternatively, Fqp = 2) after migration, which is a reduction in the total.

When a vertex is accepted for migration, its subdomain is changed and the sub-
domain weights and flow are adjusted. The gains are recalculated for the vertex and
all of its neighbors and they are transferred to the appropriately ranked buckets. Note
that examined vertices are transferred between buckets in the examined bucket tree
and candidate vertices are transferred between buckets in the candidate bucket tree.
Neighboring vertices which were not in the border at this point but which become
border vertices as a result of the migration are put into the candidate tree. In this way
it is actually possible for a vertex to be migrated more than once during the course
of an inner loop (if it is moved out of and back into the border region by migration it
becomes a candidate vertex at each stage), but accepted vertices which have not yet
been confirmed (see below) cannot be transferred to the candidate tree as this can
lead to infinitely cyclic behavior.

Migration confirmation and hill-climbing. The algorithm uses a KL-type

74 C. WALSHAW AND M. CROSS

hill-climbing strategy. As can be seen from (3.1) migrations can be accepted even if
they increase the partition cost (i.e., have negative gain). During each pass through
the inner loop, a record of the optimal partition achieved by migration within that
loop is maintained together with a list of vertices which have migrated since that value
was attained. If subsequent migration finds a “better” partition, then the migration
is confirmed and the list is reset. Once the inner loop is terminated, any vertices
remaining in the list (vertices whose migration has not been confirmed) are migrated
back to the subdomains they came from when the optimal cost was attained.

To define a “better” partition, let π represent the optimal partition reached so
far and πi the subsequent partition after some migration (i.e., after some iterations
of the inner loop). Each partition has a cost associated with it, C(π) (in this case
just the total weight of cut edges), and an imbalance which depends on W (π), the
weight of the largest subdomain in that partition. Again let T represent the target
weight for the graph (see section 2.2). Denoting C(πi) and W (πi) by Ci and W i (and
similarly for π), then πi is confirmed as a new optimal partition if:

(a) Ci < C,
or (b) Ci = C and W i < W,
or (c) T ≤ W i < W.

(3.2)

Condition (3.2c) simply states that, while the graph is unbalanced (i.e., W i >
T), any partition which improves the balance is confirmed. Conditions (3.2a) and
(3.2b) are more typical of KL-type algorithms and confirm any partition which either
improves on the optimal cost (3.2a) or improves on the optimal balance without raising
the cost (3.2b). Note that whilst the partition is unbalanced, the conditions in (3.2)
do not actually define an ordering of partitions (i.e., if π1 and π2 are partitions with
C1 < C2 and T < W2 < W1, then either π1 or π2 would be confirmed in preference
to the other). However, because of condition (3.1a), the behavior of the unbalanced
system is monotonic in the sense that only changes that reduce ΣpΣqFpq are accepted.

3.5. Vertices adjacent to several subdomains. In general, for graphs arising
from FE/FV meshes with coarse granularity partitions (i.e., V � P), most border
vertices will only be adjacent to vertices in one other subdomain. However, those
vertices that are adjacent to several subdomains are treated slightly differently in
that, if a tested migration is not acceptable, they are replaced in the candidate tree at
the level of their next highest gain. They are not transferred to the examined tree until
either being successfully migrated or all possible migrations have been tested. This
is best illustrated with an example: suppose a vertex is adjacent to four subdomains,
Sp, Sq, Sr, and Ss, and suppose that the respective gains are gp > gq = gr > gs. The
vertex is initially placed in the candidate tree and ranked gp. When subsequently
tested, if migration is not acceptable using the criteria in 3.1, the vertex is replaced in
the candidate tree and ranked gq (= gr). When the vertex next comes up for testing,
migration to Sp, Sq, and Sr is assessed (note that a move to Sp may now be acceptable
due to the intervening migration), and if none are acceptable the vertex is replaced
in the candidate tree with a rank gs. When the vertex is again tested, migration
to Sp, Sq, Sr, and Ss is tested, and if none are acceptable the vertex is transferred
to the examined tree ranked gp. Of course, it might be considered unnecessary to
retest moves which have already been tested (i.e., those with gains greater than the
migration under consideration), but since the edge weights to all adjacent subdomains
must be calculated to determine the next highest gain, there is no great extra expense
involved in doing so.

MESH PARTITIONING: MULTILEVEL BALANCING AND REFINEMENT 75

Table 4.1

A summary of the test meshes.

Size Degree
Mesh V E max min avg Type
crack 10,240 30,380 9 3 5.93 2D nodal graph
4elt 15,606 45,878 10 3 5.88 2D nodal graph
t60k 60,005 89,440 3 2 2.98 2D dual graph
dime20 224,843 336,024 3 2 2.99 2D dual graph
144 144,649 1,074,393 26 4 14.86 3D nodal graph
m14b 214,765 1,679,018 40 4 15.64 3D nodal graph
fe-ocean 143,437 409,593 6 1 5.71 3D dual graph
mesh1m 1,119,663 2,212,012 4 2 3.95 3D dual graph
vibrobox 12,328 165,250 120 8 26.81 vibroacoustic matrix
memplus 17,758 54,196 573 1 6.10 digital memory circuit
oliker 50,000 95,800 4 1 3.83 3D weighted dual graph
bmw1c 100,917 208,165 38 0 4.13 3D weighted nodal graph

4. Results. We have implemented the algorithms described here within the
framework of JOSTLE, a mesh partitioning software tool developed at the Univer-
sity of Greenwich and freely available for academic and research purposes under a
licensing agreement1. The experiments were carried out on a Sun SPARC 20 with a
50 MHz CPU and 320 Mbytes of memory. The test graphs have been chosen to be
a representative sample of medium to large scale real-life problems and include both
2D and 3D examples of nodal graphs (where the mesh nodes are partitioned) and
dual graphs (where the mesh elements are partitioned). We have also included two
non mesh-based graphs (vibrobox and memplus) and two weighted graphs (oliker and
bmw1c). Such weighted graphs are not widely available since most applications do
not accurately instrument costs and it is difficult to know whether such graphs are
representative; however, they do seem to perform in a broadly similar fashion to those
with unit weights.

Table 4.1 gives a list of the graphs, their sizes, the maximum, minimum, and aver-
age degree of the vertices, and a short description. The degree information (the degree
of a vertex is the number of vertices adjacent to it) gives some idea of the character
of the graphs. These range from the relatively homogeneous dual graphs, where every
vertex represents a mesh element, in these cases a triangle (2D), tetrahedron (3D),
or brick (3D), and so every vertex has at most 3, 4, or 6 neighbors, respectively, to
the non mesh-based graphs memplus which has vertices of degree 573 and vibrobox,
where the average degree is 26.8. Most of the graphs are not weighted and so the
number of vertices in V is the same as the total vertex weight |V |, and similarly for
the edges E. However we use two weighted graphs; oliker (with weighted vertices only
and |V | = 111, 690) is the root mesh for an hierarchical adaptively refined mesh and
the weights represent the number of leaf elements that each root element has been
refined into, whilst bmw1c (with |V | = 1, 073, 726, 486 and |E| = 3, 396, 572) arises
from an attempt to correctly instrument and model costs [15].

The results of using the multilevel balancing and refinement algorithm are shown
in Table 4.2 for 4 values of P (the number of processors/subdomains). The table
shows the total weight of cut edges, |Ec|, and the run time in seconds, ts. The
algorithm is allowed a final imbalance tolerance of θ0 = 1.03 (although this may be
reset at runtime). In the following sections we compare the results with different
balancing schedules and with a similar multilevel mesh partitioner which does not use

1Available from http://www.gre.ac.uk/jostle.

76 C. WALSHAW AND M. CROSS

Table 4.2

The results of the multilevel balancing and refinement algorithm showing the cut-weight |Ec|
and CPU time in seconds ts.

P = 16 P = 32 P = 64 P = 128
Mesh |Ec| ts |Ec| ts |Ec| ts |Ec| ts

crack 1,191 0.95 1,804 1.16 2,733 1.37 3,960 3.01
4elt 1,012 1.05 1,687 1.22 2,772 2.31 4,285 3.19
t60k 984 2.75 1,588 3.27 2,445 4.33 3,631 6.27
dime20 1,274 10.01 2,282 10.37 3,617 12.34 5,517 16.60
144 41,842 22.20 60,467 26.61 83,640 37.60 113,045 55.23
m14b 45,988 29.22 72,997 37.91 105,799 49.46 147,840 77.58
fe-ocean 8,879 13.01 14,302 18.58 23,098 25.73 32,248 36.18
mesh1m 24,522 87.22 35,178 100.31 51,580 117.63 72,834 154.45
vibrobox 34,521 8.43 45,374 12.11 54,439 20.60 62,436 25.97
memplus 13,958 17.33 16,125 25.34 18,616 41.20 22,466 87.22
oliker 2,129 3.12 3,864 4.61 5,449 6.76 7,591 13.14
bmw1c 39,825 5.91 59,665 10.48 91,704 11.86 132,135 17.00

a multilevel balancing schedule. In these sections the |Ec| results in Table 4.2 are also
referred to as |Ec(J)| and |Ec(T2)|.

4.1. Comparison results. To demonstrate the quality of the partitions, we
have compared the results in Table 4.2 with those produced by METIS, another state-
of-the-art partitioning package [13]. The version we have used, kmetis 2.0.6, provides
multilevel coarsening with a heavy edge heuristic and we have used the option of
a KL partition refinement algorithm. (The default is a greedy partition refinement
algorithm which is slightly faster but provides slightly lower quality partitions.) The
primary distinctions between the two partitioners, aside from implementation details,
is that METIS coarsens to 2,000 vertices and then carries out a balanced initial
partition, whilst JOSTLE coarsens to P vertices (one per subdomain) and then uses
the multilevel balancing schedule described in section 2.2 and the balancing refinement
algorithm described in section 3.4. A more recent version of METIS is now available
but only allows greedy refinement.

Table 4.3 shows a comparison of the cut-weight |Ec|. For each value of P , the first
column shows the value of |Ec| for METIS, |Ec(M)|, while the second column shows
the ratio of |Ec| for METIS over that for JOSTLE, |Ec(M)|/|Ec(J)|. As can be seen,
with 4 exceptions (mesh1m, P = 16; oliker, P = 32, and P = 128; vibrobox, P = 64),
the results for METIS are always worse and can be 17% larger (4elt, P = 16). The
average difference in the quality ranges between 4% and 9% over the different values
of P and as an overall average METIS produces partitions which are 5.9% worse than
JOSTLE. Note that for the 2 weighted graphs METIS failed to partition bmw1c for
any value of P (apparently becoming stuck in an infinite loop—we have removed this
result from the averaging) and ran very slowly for oliker. Although this does not
demonstrate a dramatic improvement for our algorithm, it does indicate a consistent
improvement on results perceived as state-of-the-art.

We also tried using METIS in a similar manner to JOSTLE, coarsening down
to P vertices. Although not as recommended by the code authors, this gave very
similar results to Table 4.3 with an overall average partition quality 6.2% worse than
JOSTLE.

It is not the primary aim of this paper to compare run times for the algorithms, but
Table 4.4 shows a similar comparison of ts. Unfortunately the results are somewhat
distorted by idiosyncrasies of the partitioners. METIS performed particularly badly

MESH PARTITIONING: MULTILEVEL BALANCING AND REFINEMENT 77

Table 4.3

A comparison of cut edge results for METIS, |Ec(M)|, and JOSTLE, |Ec(J)|.

P = 16 P = 32 P = 64 P = 128

Mesh |Ec(M)|
|Ec(M)|
|Ec(J)|

|Ec(M)|
|Ec(M)|
|Ec(J)|

|Ec(M)|
|Ec(M)|
|Ec(J)|

|Ec(M)|
|Ec(M)|
|Ec(J)|

crack 1,319 1.11 2,006 1.11 2,888 1.06 4,253 1.07
4elt 1,188 1.17 1,831 1.09 2,942 1.06 4,637 1.08
t60k 1,031 1.05 1,648 1.04 2,614 1.07 3,702 1.02
dime20 1,339 1.05 2,328 1.02 3,742 1.03 5,711 1.04
144 42,219 1.01 62,482 1.03 87,045 1.04 118,079 1.04
m14b 49,744 1.08 75,743 1.04 108,221 1.02 153,154 1.04
fe-ocean 10,108 1.14 16,215 1.13 24,786 1.07 34,974 1.08
mesh1m 24,000 0.98 36,706 1.04 54,015 1.05 75,463 1.04
vibrobox 37,391 1.08 45,850 1.01 53,888 0.99 62,836 1.01
memplus 16,785 1.20 19,527 1.21 19,858 1.07 23,844 1.06
oliker 2,270 1.07 3,788 0.98 5,604 1.03 7,534 0.99
bmw1c – – – –
Average 1.09 1.06 1.04 1.04

Table 4.4

A comparison of timings for METIS, ts(M), and JOSTLE, ts(J).

P = 16 P = 32 P = 64 P = 128

Mesh ts(M)
ts(M)
ts(J)

ts(M)
ts(M)
ts(J)

ts(M)
ts(M)
ts(J)

ts(M)
ts(M)
ts(J)

crack 1.02 1.07 1.05 0.91 1.34 0.98 1.88 0.62
4elt 1.01 0.96 1.32 1.08 1.59 0.69 2.88 0.90
t60k 2.53 0.92 2.68 0.82 2.97 0.69 4.54 0.72
dime20 14.85 1.48 15.08 1.45 15.69 1.27 16.83 1.01
144 20.74 0.93 22.98 0.86 24.44 0.65 27.01 0.49
m14b 31.75 1.09 33.87 0.89 37.16 0.75 40.73 0.53
fe-ocean 10.55 0.81 12.05 0.65 13.39 0.52 15.68 0.43
mesh1m 146.45 1.68 162.34 1.62 175.00 1.49 163.24 1.06
vibrobox 3.82 0.45 4.18 0.35 5.09 0.25 7.26 0.28
memplus 2.51 0.14 3.69 0.15 4.74 0.12 9.08 0.10
oliker 71.08 22.78 71.11 15.43 71.73 10.61 72.43 5.51
bmw1c – – – –
Average 2.94 2.20 1.64 1.06

for the weighted graphs, failing completely on bmw1c and running relatively very
slowly for oliker (up to 22 times slower, P = 16), which heavily influences the averages.
In contrast, JOSTLE runs relatively slowly for the non mesh-based graphs (up to 10
times slower for memplus, P = 128); this is because, as we discuss below (section 4.2),
the vertex weight inhomogeneity in the coarse graphs means that the load-balancer
is called with unnecessary frequency.

However, if we neglect the weighted and non mesh-based graphs, this table high-
lights a difference in implementations more than anything. For both codes the op-
eration count is approximately linearly dependent on the number of border vertices
(which increase with P), however, JOSTLE loops over border vertices while METIS
loops over all vertices in the graph. This means that for coarse granularities (larger
meshes or smaller values of P), where a relatively small number of vertices are in the
subdomain borders, JOSTLE is faster since it visits a much smaller proportion of the
data. However, for finer granularities (smaller meshes or larger values of P) METIS,
by accessing the data contiguously, gains from a relatively good cache hit rate, while
JOSTLE, which is essentially accessing the data at random, starts to lose out. These
differences can be quite marked; for P = 16 on a large graph, JOSTLE is up to 1.68

78 C. WALSHAW AND M. CROSS

Table 4.5

A comparison of cut edge results for a constant balancing schedule, |Ec(Tc)|, and the 2D sched-
ule, |Ec(T2)|.

P = 16 P = 32 P = 64 P = 128

Mesh |Ec(Tc)|
|Ec(Tc)|
|Ec(T2)|

|Ec(Tc)|
|Ec(Tc)|
|Ec(T2)|

|Ec(Tc)|
|Ec(Tc)|
|Ec(T2)|

|Ec(Tc)|
|Ec(Tc)|
|Ec(T2)|

crack 1,255 1.05 1,828 1.01 2,766 1.01 4,068 1.03
4elt 1,136 1.12 1,771 1.05 2,889 1.04 4,401 1.03
t60k 976 0.99 1,613 1.02 2,567 1.05 3,776 1.04
dime20 1,490 1.17 2,458 1.08 4,039 1.12 5,825 1.06
144 44,543 1.06 62,602 1.04 86,171 1.03 117,082 1.04
m14b 51,318 1.12 82,156 1.13 110,179 1.04 152,379 1.03
fe-ocean 9,029 1.02 15,704 1.10 23,825 1.03 33,078 1.03
mesh1m 26,997 1.10 39,375 1.12 54,491 1.06 74,941 1.03
vibrobox 38,024 1.10 45,085 0.99 52,047 0.96 61,294 0.98
memplus 14,713 1.05 16,344 1.01 17,797 0.96 21,512 0.96
oliker 2,217 1.04 3,997 1.03 5,664 1.04 7,877 1.04
bmw1c 40,932 1.03 64,462 1.08 98,158 1.07 141,521 1.07
Average 1.07 1.05 1.03 1.03

times faster (mesh1m), while for P = 128, METIS can take about half the time (144).

4.2. Different balancing schedules. Constant schedule. The balancing
schedule derived in section 2.2 is essentially an arbitrary heuristic and in this section
we test some different schedules. First, Table 4.5 shows a comparison of the cut-
weight for a constant schedule, |Ec(Tc)|, where θl is set to 1.03 for every graph Gl.
For each value of P , the second column compares the results from this fixed schedule
with the results in Table 4.2 using the 2D schedule and referred to as |Ec(T2)|. As can
be seen the constant schedule provides partition qualities which with 6 exceptions are
always worse; the average difference in the quality ranges between 3% and 7% over
the different values of P and can be as bad as 17%. This constant schedule strategy
is similar to that used by METIS (which also has an imbalance tolerance of 1.03),
where balance is established early on in the expansion/refinement process (in the case
of METIS, during the initial partitioning) and maintained thereafter and indeed the
average difference in the quality is about the same for the METIS results (Table 4.3).

Interestingly, five out of the six results for which the constant schedule is better
than the 2D schedule are for the non mesh-based graphs. Our algorithms have all
been tuned for performance with meshes (since that is where our own requirement
for mesh partitioning lies), and so perhaps this is unsurprising. However a detailed
study of the results suggests perhaps a more simple explanation. The non mesh-based
graphs are very inhomogeneous, certainly in terms of vertex degree (see Table 4.1),
and as a result the final coarsest graphs (indeed most of the coarse graphs) have very
inhomogeneous vertex weights. This in turn means that most partitions of the coarser
graphs are unbalanced (by the definition in section 2.2), and so the balancing schedule
actually has very little effect since the optimization behaves in the same way while
the graph is unbalanced, whether the imbalance is close to the threshold (as it might
be for the 2D schedule) or far away (as in the constant schedule).

3D schedule. Table 4.6 shows a comparison of the cut-weight for the 3D sched-
ule, |Ec(T3)|, mentioned in section 2.2, and where the imbalance tolerance for graph

Gl is set to θl = 1+3(P
Nl−1

)
1

3 . Again for each value of P , the second column compares

the results from this fixed schedule with the results in Table 4.2 using the 2D schedule,
|Ec(T2)|. Overall both sets of results are very similar although on the average the 3D

MESH PARTITIONING: MULTILEVEL BALANCING AND REFINEMENT 79

Table 4.6

A comparison of cut edge results for a 3D schedule, |Ec(T3)|, and the 2D schedule, |Ec(T2)|.

P = 16 P = 32 P = 64 P = 128

Mesh |Ec(T3)|
|Ec(T3)|
|Ec(T2)|

|Ec(T3)|
|Ec(T3)|
|Ec(T2)|

|Ec(T3)|
|Ec(T3)|
|Ec(T2)|

|Ec(T3)|
|Ec(T3)|
|Ec(T2)|

crack 1,206 1.01 1,826 1.01 2,714 0.99 4,019 1.01
4elt 993 0.98 1,643 0.97 2,781 1.00 4,339 1.01
t60k 967 0.98 1,588 1.00 2,418 0.99 3,581 0.99
dime20 1,291 1.01 2,323 1.02 3,569 0.99 5,418 0.98
144 44,455 1.06 62,367 1.03 82,825 0.99 114,046 1.01
m14b 48,893 1.06 71,349 0.98 105,759 1.00 147,756 1.00
fe-ocean 8,764 0.99 14,676 1.03 23,140 1.00 31,717 0.98
mesh1m 23,663 0.96 36,366 1.03 52,086 1.01 73,078 1.00
vibrobox 36,092 1.05 46,288 1.02 53,341 0.98 61,830 0.99
memplus 14,142 1.01 16,052 1.00 18,370 0.99 22,512 1.00
oliker 2,157 1.01 3,755 0.97 5,483 1.01 7,737 1.02
bmw1c 38,127 0.96 60,646 1.02 89,647 0.98 132,869 1.01
Average 1.01 1.01 0.99 1.00

results are marginally worse; the average difference in the quality ranges between 1%
better and 1% worse with an overall average of just 0.22% deterioration. One might
suspect that the 3D meshes would fare better with a 3D schedule than the 2D ones,
but this does not seem to be borne out. In fact we have experimented with a number
of different formulations and found the algorithm relatively insensitive to the schedule
provided that the initial imbalance tolerance is sufficiently high.

4.3. Summary. Overall, we conclude from these results, together with the com-
parisons with METIS, and other experiments not presented here, that the use of a
multilevel balancing schedule can improve the partition quality. The improvement is
not enormous because the multilevel paradigm with a static schedule already provides
excellent results (and hence the margin for improvement is small). However, it does
exist and provides on average a 5–6% decrease in the cut-weight.

Note also that differences in quality tend to diminish as P increases. It is tempting
to speculate that this is because the margins for difference decrease as the number
of vertices per subdomain (≈ V/P) decreases. Indeed in the limit where V = P the
only balanced partition (for an unweighted graph at least) is to put one vertex in each
subdomain and so the differences vanish altogether.

5. Conclusions and future directions. We have presented an enhancement
to the multilevel paradigm where the freedom allowed by a balancing schedule is used
to find higher quality partitions. We have also presented a formulation of a KL-
type partition optimization algorithm which incorporates a diffusive balancing flow.
The resultant algorithm has been shown to provide higher quality partitions than a
state-of-the-art partitioner and, depending on granularity, is often faster.

The algorithms are fairly simple to describe and relatively parameter-free and
as a result provide an ideal setting for testing new ideas before implementing them
within the framework of a fully parallel mesh partitioner. Recently we have provided
further results using the algorithms to address more complex partitioning problems
such as balancing multiple computational phases [25], and to minimize alternative
objective functions such as subdomain aspect ratio [22]. We also hope to use them
in the near future to optimize mapping onto parallel machine topologies (rather than
just cut-weight).

80 C. WALSHAW AND M. CROSS

REFERENCES

[1] S. T. Barnard and H. D. Simon, A fast multilevel implementation of recursive spectral bi-
section for partitioning unstructured problems, Concurrency: Practice and Experience, 6
(1994), pp. 101–117.

[2] T. N. Bui and C. Jones, A heuristic for reducing fill-in in sparse matrix factorization, in
Proceedings of the Sixth SIAM Conference on Parallel Processing for Scientific Computing,
Vol. 1, R. F. Sincovec et al., eds., SIAM, Philadelphia, 1993, pp. 445–452.

[3] G. Cybenko, Dynamic load balancing for distributed memory multiprocessors, Journal of Par-
allel and Distributed Computing, 7 (1989), pp. 279–301.

[4] R. Diekmann, A. Frommer, and B. Monien, Efficient schemes for nearest neighbor load
balancing, Parallel Comput., 25 (1999), pp. 789–812.

[5] C. Farhat, H. D. Simon, and Lanteri, TOP/DOMDEC–A software tool for mesh partitioning
and parallel processing, Computing Systems Engrg., 6 (1995), pp. 13–26.

[6] C. M. Fiduccia and R. M. Mattheyses, A linear time heuristic for improving network par-
titions, in Proceedings of the 19th IEEE Design Automation Conference, Las Vegas, NV,
IEEE, Piscataway, NJ, 1982, pp. 175–181.

[7] M. Garey, D. Johnson, and L. Stockmeyer, Some simplified NP-complete graph problems,
Theoret. Comput. Sci., 1 (1976), pp. 237–267.

[8] A. Gupta, Fast and effective algorithms for graph partitioning and sparse matrix reordering,
IBM J. Research and Development, 41 (1996), pp. 171–183.

[9] B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs, in Proceedings
Supercomputing ’95, San Diego, CA, S. Karin, ed., ACM Press, New York, NY, 1995.

[10] Y. F. Hu and R. J. Blake, The optimal property of polynomial based diffusion-like algorithms
in dynamic load balancing, in Computational Dynamics ’98, K. D. Papailiou et al., ed.,
Wiley, New York, 1998, pp. 177–183.

[11] Y. F. Hu, R. J. Blake, and D. R. Emerson, An optimal migration algorithm for dynamic
load balancing, Concurrency: Practice and Experience, 10 (1998), pp. 467–483.

[12] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359–392.

[13] G. Karypis and V. Kumar, Multilevel k-way partitioning scheme for irregular graphs, Journal
of Parallel and Distributed Computing, 48 (1998), pp. 96–129.

[14] B. W. Kernighan and S. Lin, An efficient heuristic for partitioning graphs, Bell Systems
Tech. J., 49 (1970), pp. 291–308.

[15] B. Maerten, D. Roose, A. Basermann, J. Fingberg, and G. Lonsdale, DRAMA: A library
for parallel dynamic load balancing of finite element applications, in Proceedings of the
Ninth SIAM Conference on Parallel Processing for Scientific Computing, San Antonio, TX,
1999, CD-ROM, SIAM, Philadelphia, 1999.

[16] K. Schloegel, G. Karypis, and V. Kumar, Multilevel diffusion schemes for repartitioning of
adaptive meshes, Journal of Parallel and Distributed Computing, 47 (1997), pp. 109–124.

[17] N. G. Shivaratri, P. Krueger, and M. Singhal, Load distributing for locally distributed
systems, IEEE Comput., 25 (1992), pp. 33–44.

[18] H. D. Simon and S.-H. Teng, How good is recursive bisection?, SIAM J. Sci. Comput., 18
(1997), pp. 1436–1445.

[19] J. Song, A partially asynchronous and iterative algorithm for distributed load balancing, Par-
allel Comput., 20 (1994), pp. 853–868.

[20] D. Vanderstraeten and R. Keunings, Optimized partitioning of unstructured computational
grids, Internat. J. Numer. Methods Engrg., 38 (1995), pp. 433–450.

[21] C. Walshaw and M. Cross, Parallel optimization algorithms for multilevel mesh partitioning,
Parallel Comput., to appear.

[22] C. Walshaw, M. Cross, R. Diekmann, and F. Schlimbach, Multilevel mesh partitioning for
optimising domain shape, Int. J. High Performance Comput. Appl., 13 (1999), pp. 334–353.

[23] C. Walshaw, M. Cross, and M. Everett, A Localised algorithm for optimising unstructured
mesh partitions, Int. J. Supercomputer Appl., 9 (1995), pp. 280–295.

[24] C. Walshaw, M. Cross, and M. Everett, Parallel dynamic graph partitioning for adaptive
unstructured meshes, Journal of Parallel and Distributed Computing, 47 (1997), pp. 102–
108.

[25] C. Walshaw, M. Cross, and K. McManus, Multiphase mesh partitioning, Appl. Math.
Model., submitted.

