Aaberge, R., Colombino, U. and Strøm, S. (1999). Labour Supply in Italy: An Empirical Analysis of Joint Houshold Decisions, with Taxes and Quantity Constraints, Journal of Applied Econometrics 14(4): 403–422.
Aaberge, R., Colombino, U. and Wennemo, T. (2009). Evaluating Alternative Representations of the Choice Sets in Models of Labor Supply, Journal of Economic Surveys 23(3): 586–612.
Aaberge, R., Dagsvik, J. K. and Strøm, S. (1995). Labor Supply Responses and Welfare Effects of Tax Reforms, The Scandinavian Journal of Economics 97(4): 635–659.
Alesina, A. F., Glaeser, E. L. and Sacerdote, B. (2006). Work and Leisure in the United States and Europe: Why So Different?, NBER Macroeconomics Annual 2005, Vol. 20, MIT Press, pp. 1–64.
Bargain, O. and Peichl, A. (2013). Steady-State Labor Supply Elasticities: An International Comparison, IZA Discussion Paper 7698.
Bargain, O., Orsini, K. and Peichl, A. (2014). Comparing Labor Supply Elasticities in Europe and the US: New Results, Journal of Human Resources (forthcoming).
- Blanchard, O. (2007). Comment on “Do Taxes Explain European Employment? Indivisible Labor, Human Capital, Lotteries, and Savings†(by L. Ljungqvist and T. J.
Paper not yet in RePEc: Add citation now
Bloemen, H. G. and Kapteyn, A. (2008). The estimation of utility-consistent labor supply models by means of simulated scores, Journal of Applied Econometrics 23(4): 395– 422.
Blundell, R. and Shephard, A. (2012). Employment, Hours of Work and the Optimal Taxation of Low-Income Families, Review of Economic Studies 79(2): 481–510.
Blundell, R., Duncan, A., McCrae, J. and Meghir, C. (1999). Evaluating In-Work Benefit Reform: the Working Families Tax Credit in the UK. paper presented at the Joint Center for Poverty Research conference, Northwestern University.
Borjas, G. J. (1980). The Relationship between Wages and Weekly Hours of Work: The Role of Division Bias, Journal of Human Resources 15(3): 409–423.
Chetty, R. (2012). Bounds on Elasticities with Optimization Frictions: A Synthesis of Micro and Macro Evidence on Labor Supply, Econometrica 80(3): 969–1018.
Chetty, R., Guren, A., Manoli, D. and Weber, A. (2011). Are Micro and Macro Labor Supply Elasticities Consistent? A Review of Evidence on the Intensive and Extensive Margins, American Economic Review: Papers and Proceedings 101(3): 471–475.
Chiou, L. and Walker, J. L. (2007). Masking identification of discrete choice models under simulation methods, Journal of Econometrics 141(2): 683–703.
- Dagsvik, J. K. and Strøm, S. (2004). Sectoral Labor Supply, Choice Restrictions and Functional Form, Discussion Papers Statistics Norway 388.
Paper not yet in RePEc: Add citation now
Dagsvik, J. K. and Strøm, S. (2006). Sectoral Labor Supply, Choice Restrictions and Functional Form, Journal of Applied Econometrics 21(6): 803–826.
Dagsvik, J. K., Jia, Z., Orsini, K. and van Camp, G. (2011). Subsidies on low-skilled workers’ social security contributions: the case of Belgium, Empirical Economics 40(3): 779–806.
Diamond, P. and Saez, E. (2011). The Case for a Progressive Tax: From Basic Research to Policy Recommendations, Journal of Economic Perspectives 25(4): 165–190.
Eissa, N., Kleven, H. J. and Kreiner, C. T. (2008). Evaluation of Four Tax Reforms in The United States: Labor Supply and Welfare Effects For Single Mothers, Journal of Public Economics 92(3-4): 795–816.
- Eklöf, M. and Sacklén, H. (2000). The Hausman-MaCurdy Controversy: Why Do the Results Differ across Studies?, Journal of Human Resources 35(1): 204–220.
Paper not yet in RePEc: Add citation now
Ericson, P. and Flood, L. (1997). A Monte Carlo Evaluation of Labor Supply Models, Empirical Economics 22(3): 431–460.
Euwals, R. and van Soest, A. (1999). Desired and actual labour supply of unmarried men and women in the Netherlands, Labour Economics 6(1): 95–118.
Evers, M., de Mooij, R. and van Vuuren, D. (2008). The Wage Elasticity of Labour Supply: A Synthesis of Empirical Estimates, De Economist 156(1): 25–43.
Flood, L., Hansen, J. and Wahlberg, R. (2004). Household Labor Supply and Welfare Participation in Sweden, Journal of Human Resources 39(4): 1008–1032.
Flood, L., Wahlberg, R. and Pylkkänen, E. (2007). From Welfare to Work: Evaluating a Tax and Benefit Reform Targeted at Single Mothers in Sweden, LABOUR 21(3): 443– 471.
Haan, P. (2006). Much ado about nothing: conditional logit vs. random coefficient models for estimating labour supply elasticities, Applied Economics Letters 13(4): 251– 256.
- Hausman, J. A. (1981). Labor Supply, in H. J. Aaron and J. A. Pechman (eds), How taxes affect economic behavior, Brookings Institution, pp. 27–72.
Paper not yet in RePEc: Add citation now
Hoynes, H. W. (1996). Welfare Transfers in Two-Parent Families: Labor Supply and Welfare Participation Under AFDC-UP, Econometrica 64(2): 295–332.
Immervoll, H., Kleven, H. J., Kreiner, C. T. and Verdelin, N. (2011). Optimal tax and transfer programs for couples with extensive labor supply responses, Journal of Public Economics 95(11): 1485–1500.
Keane, M. and Rogerson, R. (2012). Micro and Macro Labor Supply Elasticities: A Reassessment of Conventional Wisdom, Journal of Economic Literature 50(2): 464–476.
Keane, M. P. (2010). Structural vs. atheoretic approaches to econometrics, Journal of Econometrics 156(1): 3–20.
Keane, M. P. (2011). Labor Supply and Taxes: A Survey, Journal of Economic Literature 49(4): 961–1075.
Keane, M. P. and Moffitt, R. (1998). A Structural Model of Multiple Welfare Program Participation and Labor Supply, International Economic Review 39(3): 553–589.
- Keane, M. P. and Wasi, N. (2012). Comparing Alternative Models of Heterogeneity in Consumer Choice Behavior, Journal of Applied Econometrics 28(6): 1018–1045.
Paper not yet in RePEc: Add citation now
- Löffler, M. (2013). Fitting Complex Mixed Logit Models: An Application to Labor Supply. Mimeo, presented at the Stata Conference in New Orleans, July 2013.
Paper not yet in RePEc: Add citation now
- Luce, R. D. (1959). Individual Choice Behavior: A Theoretical Analysis, Wiley, New York.
Paper not yet in RePEc: Add citation now
MaCurdy, T. E., Green, D. and Paarsch, H. (1990). Assessing Empirical Approaches for Analyzing Taxes and Labor Supply, Journal of Human Resources 25(3): 412–490.
- McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior, in P. Zarembka (ed.), Frontiers in Econometrics, Academic Press, New York.
Paper not yet in RePEc: Add citation now
Moffitt, R. (1983). An Economic Model of Welfare Stigma, American Economic Review 73(5): 1023–1035.
Moffitt, R. (1984). The Estimation of a Joint Wage-Hours Labor Supply Model, Journal of Labor Economics 2(4): 550–566.
Peichl, A., Schneider, H. and Siegloch, S. (2010). Documentation IZAΨMOD: The IZA Policy Simulation Model, IZA Discussion Papers 4865.
Train, K. E. (2009). Discrete Choice Methods with Simulation, second edn, Cambridge University Press.
Tummers, M. P. and Woittiez, I. (1991). A Simultaneous Wage and Labor Supply Model With Hours Restrictions, Journal of Human Resources 26(3): 393–423.
van Soest, A. (1995). Structural Models of Family Labor Supply – A Discrete Choice Approach, Journal of Human Resources 30(1): 63–88.
- van Soest, A. and Das, M. (2001). Family Labor Supply and Proposed Tax Reforms in the Netherlands, De Economist 149(2): 191–218.
Paper not yet in RePEc: Add citation now
van Soest, A., Das, M. and Gong, X. (2002). A structural labour supply model with flexible preferences, Journal of Econometrics 107(1-2): 345–374.
Wagner, G. G., Frick, J. R. and Schupp, J. (2007). The German Socio-Economic Panel Study (SOEP) – Scope, Evolution and Enhancements, Journal of Applied Social Science Studies 127(1): 139–169.
Ziliak, J. P. and Kniesner, T. J. (1999). Estimating life-cycle labor supply tax effects, Journal of Political Economy 107(2): 326–359. A Joint estimation For the joint maximum likelihood estimation in Section 5, we use a Box-Cox transformed utility specification. Thus, the systematic utility of individual n choosing alternative j is given by: v Cnj, Lj = xnβ0 1 + βC,n C (λC) nj + β2C (λC) nj L (λL) j + xnβ0 3 + βL,n L (λL) j + βFC,n1(hj>0) + β41(hj=20) + β51(hj=40) (9) with C (λC) nj and L (λL) j defined as: C (λC) nj =    C∗ nj λC −1 λC if λC 6= 0 ln C∗ nj if λC = 0 L (λL) j =    L∗ j