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Abstract Privacy has become a factor of increasing importance in auc-
tion design. We propose general techniques for cryptographic first-price and
(M + 1)st-price auction protocols that only yield the winners’ identities and
the selling price. Moreover, if desired, losing bidders learn no information
at all, except that they lost. Our security model is merely based on compu-
tational intractability. In particular, our approach does not rely on trusted
third parties, e.g., auctioneers. We present an efficient implementation of the
proposed techniques based on El Gamal encryption whose security only relies
on the intractability of the decisional Diffie-Hellman problem. The resulting
protocols require just three rounds of bidder broadcasting in the random or-
acle model. Communication complexity if linear in the number of possible
bids.

Keywords Auctions, Cryptographic Protocols, Homomorphic Encryption

1 Introduction

Auctions have become the major phenomenon of electronic commerce during
the last years. They are not only widespread mechanisms to sell goods, but
have also been shown applicable to task assignment, scheduling, or finding
the shortest path in a network with selfish nodes. In recent times, the need
for privacy has been a factor of increasing importance in auction design and
various schemes to ensure the safe conduction of sealed-bid auctions have
been proposed. The cryptographic protocols presented in this paper differ
from existing work in that they do not require trusted third parties. They
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are merely based on computational intractability. Privacy is preserved to
a maximal extent without compromising much of the round-efficiency that
distinguishes sealed-bid auctions.

Our setting consists of one seller and n bidders that intend to come to an
agreement on the selling of a good.1 The two major (sealed-bid) mechanisms
that yield such an agreement are the first-price and second-price (Vickrey)
[49] auctions. In both mechanisms, each bidder submits a sealed bid ex-
pressing how much he is willing to pay to a trusted-third party called the
auctioneer. The auctioneer declares the bidder who submitted the highest bid
as the winner of the auction. In the first-price auction, the winning bidder
pays the amount that he bid, whereas in the second-price auction, he has to
pay the amount of the second -highest bid. Both auction formats have their
strengths and weaknesses. For example, the first-price auction yields more
revenue when bidders are risk-averse. The second-price auction, on the other
hand, is strategy-proof, which means that bidders are always best off bidding
their true valuation of the good to be sold (when valuations are indepen-
dent). This eliminates an agent’s need to counterspeculate on other agents’
valuations. Interestingly, the side-effects of this striking and celebrated ad-
vantage are said to contribute to the sparseness of the second-price auction
in the real world for two reasons [42,41,44]:

– Bidders are reluctant to reveal their true valuations to the auctioneer.
– Bidders doubt the correctness of the result as they do not pay what they

bid (unlike in the first-price auction).

For example, the auctioneer might create a fake second-highest bid after
having received all bids in order to increase his revenue (see e.g., [40]). Both
above-mentioned issues are based on a lack of trust in the auctioneer. For this
reason, it would be desirable to somehow “force” the auctioneer to always
select the right outcome (correctness) and “prohibit” the propagation of pri-
vate bid information (privacy). Various schemes for satisfying these desider-
ata (for first-price as well as second-price auctions) have been proposed in
recent years (see Section 3). Virtually all of them rely on trusted third par-
ties. The goal of this paper is to construct efficient multiparty protocols that
allow bidders to jointly compute the auction outcome without revealing fur-
ther information. In the rest of this paper, this will be called emulation of an
auction mechanism. The two main objectives when designing our protocols
were

– absolute privacy without assumptions in addition to intractability, and
– maximal round-efficiency.

We propose protocols for first-price and (M + 1)st-price auctions. The latter
are a generalization of second-price auctions. In an (M + 1)st-price auction,
the seller offers M indistinguishable items (1 ≤ M < n) and each bidder
desires to buy one of them (this is called the “unit demand” case). It has
been proven that it is a strategy-proof mechanism to sell those items to the

1 All the presented results also hold for similar auctions for other areas of appli-
cation, in particular procurement auctions where there is one buyer and multiple
sellers.
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M highest bidders for the uniform price given by the (M + 1)st highest bid
[49]. The Vickrey auction is just a special case of this mechanism for the
selling of a single good (M = 1).

The remainder of this paper is structured as follows. In Section 2, we
describe the general security model underlying this work. Recent related
research on cryptographic auction protocols is reviewed and compared to
our approach in Section 3. In Section 4, we give a detailed description of the
concepts to be used in the concrete implementation presented in Section 5.
Section 6 contains an analysis of the security and efficiency of the proposed
protocols. The paper concludes with a brief overview of the obtained results
in Section 7.

2 Security Model

Our primary goal is privacy that cannot be broken by any coalition of third
parties or bidders. For this reason, we advocate a security model in which
bidders themselves jointly compute the auction outcome so that any subset
of bidders is incapable of revealing private information. Clearly, extensive in-
teraction by bidders is undesirable in practice (but unavoidable given our ob-
jective). In order to minimize interaction, our secondary goal is to keep round
complexity at a minimum (i.e., small constants). The main drawbacks im-
plied by our setting are low resilience and relatively high computational and
communication complexity. However, auctions that require such a high degree
of privacy typically take place with few, well-known (i.e., non-anonymous)
bidders, for instance when auctioning off radio spectrum licenses or former
state-owned enterprises.

We consider cryptographic protocols for n bidders and one seller (to be
called agents in the following). Each bidder i possesses a private input, his
bid bidi ∈ B. Agents engage in a multiparty protocol to jointly and securely
compute the outcome function f . In our context, security consists of correct-
ness (f is computed correctly) and privacy (no agent learns more information
than what he can infer from the outcome and his private input). The classic
results of secure multiparty computation (MPC) state that any such function
f can be computed securely when

– at most ⌊n−1
2 ⌋ agents share their information and trapdoor permutations

exist [23], or
– at most ⌊n−1

3 ⌋ agents share their information and a complete network of
private channels exists [3,11].

The first assumption is known as the computational model whereas the sec-
ond one is called unconditional model. Neither assumption can be made in
our context since it would enable a fraction of bidders to manipulate the auc-
tion outcome and uncover other agents’ bids. However, there are additional
assumptions that allow for the secure computation of arbitrary functions in
the computational model, and a restricted class of functions in the uncon-
ditional model, without trusted thresholds of agents. Privacy that only relies
on the fact that less than all agents collude will be called full privacy in the
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following. In the computational model (on which we will focus in this paper),
any function f can be computed fully privately when

– trapdoor permutations exist, and
– a designated agent does not quit or reveal information prematurely.2

In the auction protocols presented in this paper, the seller will take the role
of the designated agent (see Section 6 for a justification). It is important to
note that even when the seller quits or reveals information early, the worst
thing that can happen is that a bidder learns the outcome and quits the
protocol before the remaining agents were able to learn the outcome. Bid
privacy is not affected by premature abort. Another common way to obtain
fairness without a trusted majority is the incremental release of secrets (e.g.,
[50,24,21]).

Whenever a malicious bidder disrupts the protocol by sending faulty mes-
sages or failing to prove the correctness of his behavior in zero-knowledge,
this bidder will be removed and the protocol will be restarted (termination
is guaranteed after at most n−M iterations). We presume that the “public”
is observing the protocol and therefore a malicious bidder can undoubtedly
be identified, independently of how many of the remaining agents are trust-
worthy. As malicious bidders can easily be fined and they do not gain any
information, there should be no incentive to disrupt the auction and we
henceforth assume that a single protocol run suffices.

Due to the inefficiency of existing general MPC schemes, it is inevitable to
design special-purpose protocols for the computation of particular functions.
Let b = (bid1, bid2, . . . , bidn) be the vector of all bids and f : Bn → On+1

the outcome function where

f(b) = (f1(b), f2(b), . . . , fn(b), (f1(b), f2(b), . . . , fn(b)))

so that bidder i learns fi(b) and the seller learns (f1(b), f2(b), . . . , fn(b)). If
bidder i won the auction, fi(b) yields the selling price. Otherwise “useless”
information is returned. This will be called the private outcome setting be-
cause the outcome (selling price and winners’ identity) are only revealed to
the concerned parties (seller and winners). For reasons of transparency and
efficiency, we will also consider the computation of a public outcome function
where all fi(b) are identical and yield the identity of the auction winner and
the selling price.

In Sections 4.1 and 4.2, outcome functions and corresponding compu-
tation protocols for first-price and (M + 1)st-price sealed-bid auctions are
proposed, respectively.

3 Related Work

The interest in cryptographic protocols for auctions has been dramatically
increasing. Starting with the work by Nurmi and Salomaa [37] and Franklin

2 This self-evident but very useful restriction to circumvent fairness problems was
used in our previous work (e.g., [7,6]). Independently, the security of such a model
was recently analyzed in [25].
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and Reiter [20], numerous secure sealed-bid auction schemes have been pro-
posed in recent years, e.g. [1,2,27,29,32,35,36,43]. Basically, all of the exist-
ing protocols have in common that privacy is obtained by distributing the
computation of the outcome on a group of third parties. In symmetric pro-
tocols, there are multiple auctioneers that jointly determine the outcome by
using threshold MPC (e.g., [27,32,43]). Asymmetric protocols introduce a
second instance, for instance an “auction issuer” or “auction authority”, in
addition to the auctioneer (e.g., [1,2,29,35,36]).

3.1 Cryptographic Auction Protocols

In the following, we briefly survey the security and efficiency of selected
existing protocols.

Auction protocols based on Yao’s garbled circuit technique [36,29] are
very efficient both in terms of round complexity (O(1)) and communication
complexity (O(n log k) where k is the number of possible bids). However,
Yao’s protocol was originally conceived for a model with passive adversaries.
If you take into account malicious deviation by either one of the two parties,
costly verification techniques such as cut-and-choose, consistency proofs, and
the additional evaluation of a majority circuit need to be implemented [39].
Moreover, due to a lack of verifiability, a coalition of both third parties can
not only reveal all private information but also claim an arbitrary auction
outcome.

The protocol by Baudron et al [2] is based on the joint evaluation of a
special-purpose Boolean circuit with the help of a third party. The communi-
cation complexity is exponential in the number of bidders (O

(

n(log k)n−1
)

)
which makes the scheme only applicable to a very limited number of bidders
(five to six, as stated by the authors). After the result is broadcasted, the
winner is required to claim that he won (violating non-repudiation). This is
a disadvantage because the winner is able to back out of the protocol if he is
not satisfied with the selling price. When computing the outcome of a Vick-
rey auction, additional interaction is required to compute the second-highest
bid (while also revealing the identity of the second-highest bidder which is
undesirable). Bidders’ actions are verifiable. However, it is not possible to
verify whether the third party behaves correctly.

The protocol by Lipmaa et al [35] requires a single semi-trusted third
party, the auction authority, in addition to the seller. The auction authority
receives all bids (blinded by the seller using homomorphic encryption), iden-
tifies the second-highest bid and proves the correctness of the outcome by
applying a novel efficient zero-knowledge proof. Winning bidders are required
to claim that they won (violating non-repudiation). The protocol scales well
with respect to the number of bidders, but only provides limited privacy as
the auction authority learns all bid amounts. The only information hidden
from the authority is the connection between bidders and bids. Neither the
seller nor the auction authority can manipulate the outcome without being
detected.

Like our protocols, the protocol by Abe et al [1] is based on bid vectors
as defined in Section 4. However, the position of the (M +1)st-highest bid is
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Protocol Price Auctioneers Rounds Computation V. N.R.

S00 [43] 1st m O(k) O(nk) X X

BS01 [2] 1st 1 O(1) O(n(log k)n−1) – –

HTK98 [27] 2nd m O(log k) O(n log k) – X

LAN02 [35] (M + 1)st 2 O(1) O(k) X –

NPS99 [36]
JS02 [29]

(M + 1)st 2 O(1) O(n log k) – X

K01 [32] (M + 1)st m > k O(log k) O(n log k) – X

AS02 [1] (M + 1)st 2 O(log k) O(k) X X

Proposed 1st 0 O(1) O(k) X X

Proposed (M + 1)st 0 O(1) O(nk) X X

V.: verifiability, N.R.: non-repudiation, n: bidders, k: prices/possible bids

Note 1: In order to enable a fair comparison, we assume that M is constant and each protocol’s
security parameter is greater than the number of bidders n.

Note 2: In protocol LAN02, complete bid statistics are revealed to one party.

Table 1 Cryptographic Auction Protocols

jointly determined by the auctioneer and an “authority” using a binary search
protocol. More specifically, the auctioneer releases mixed vector components
to the authority who decrypts them to detect if there are either more than
M bidders or less than M + 1 bidders willing to pay. The entire process
takes log k rounds. The protocol is based on Jakobsson et al’s mix-and-match
technique [28] and is publicly verifiable.

There are various other protocols (e.g., [27,32,43]) based on multiple
auctioneers using threshold MPC. The round complexity of such protocols
is generally not constant. Table 1 summarizes important features of all men-
tioned protocols.

3.2 Bidder-Resolved Auctions

Generally, the privacy of protocols listed in the previous section relies on the
assumption that a collusion of all involved third parties is ruled out. In this
paper, we extend our recent work on fully private “bidder-resolved” auction
protocols [6,5] in which bidders jointly emulate the auctioneer without rely-
ing on third parties. When comparing the efficiency of our (M + 1)st-price
auction protocol to existing ones, it stands out that communication complex-
ity is linear in n and k while there are other protocols, namely Naor et al’s [36]
and Lipmaa et al’s [35], whose complexity is logarithmic in either parameter.
However, these asymmetric protocols, as well as those based on threshold
MPC, cannot be modified to obtain fully private bidder-resolved protocols.
Additionally, our protocols are the only ones to provide public verifiability,
non-repudiation, and constant round complexity at the same time. Finally,
in contrast to all existing protocols, we also present private outcome proto-
cols in which losing bidders learn no information at all. Due to conceptual
differences, the high degree of privacy provided by bidder-resolved auction
protocols naturally leads to weaker resilience when compared to protocols
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with multiple auctioneers. For example, if the highest bidder refuses to pay,
the entire protocol needs to be restarted to determine the bidder who submit-
ted the second-highest bid. However, as argued in Section 2, bidder-resolved
auctions are aimed at high-value transactions involving few non-anonymous
bidders who can be fined when aborting the protocol. All of the protocols
mentioned in the previous section rely on the existence of a broadcast channel.
In contrast to protocols with multiple auctioneers, bidder-resolved protocols
additionally require that bidders can use the broadcast channel.

This paper exclusively deals with auction emulation in the computational
model. In a related study, it has been shown that the fully private emulation
of second-price auctions in the unconditional model is impossible whereas
first-price auctions can only be emulated in a number of rounds that is expo-
nential in the bid size [8]. As a tradeoff between both models, we previously
proposed a second-price auction protocol that is unconditionally anonymous
and computationally private [5]. Besides first-price and (M + 1)st-price auc-
tions, there are also cryptographic protocols for certain types of combinatorial
auctions (e.g., [46,47,10]).

Parallel to our work on fully private auction and social choice protocols
(e.g., [4,5,7,9,8]), there is an independent, yet quite similar, stream of re-
search on self-tallying elections [30,31,26]. In both settings, agents jointly
determine the outcome of a social choice function without relying on trusted
third parties. What we call ”full privacy” is termed “perfect ballot secrecy”
in Kiayias et al’s work. Similarly, the terms “self-tallying” and ”dispute-free”
[30] can be translated to “bidder-resolved” and “weakly robust” [4], respec-
tively. In order to achieve fairness, both approaches assume a weakly trusted
party (a “dummy voter” and the auction seller, respectively). Besides these
similarities, Kiayias et al’s approach mainly differs in the emphasis of non-
interactiveness (once the random-generating preprocessing phase is finished)
while computing rather simple outcome functions (e.g., the sum of input
values).

4 Conceptional Protocol Description

In this section, we propose an abstract description of our auction protocols.
No matter whether an MPC scheme is based on verifiable secret sharing,
homomorphic encryption, or other techniques, the addition of secret values
can usually be performed very efficiently whereas the multiplication of se-
crets requires a high amount of communication resources. For this reason,
our protocols only require the computation of linear combinations of inputs
(which can be solely based on addition) and multiplications with jointly cre-
ated random values (for which we propose an efficient sub-protocol in Sec-
tion 5.1). When computing on vectors of secrets, the computation of linear
combinations enables the addition and subtraction of secret vectors, and the
multiplication of vectors with predefined known matrices.

Let p be a vector of k possible prices (or valuations), p = (p1, p2, . . . , pk),
and bidi ∈ {1, 2, . . . , k} the bid of bidder i. The bid vector bi of bidder i
is defined so that bi,bidi

= 1 (bidder i bids pbidi
) and all other components
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are 0, i.e.,

bi =























bik

...
bi,bidi−1

bi,bidi

bi,bidi+1

...
bi1























=























0
...
0
1
0
...
0























.

This representation allows for efficient proofs of the vector’s correctness by

showing ∀j ∈ {1, 2, . . . , k} : bij ∈ {0, 1} and
∑k

j=1 bij = 1 (see Section 5 for

details). Yet, the main advantage of the vector representation is the possibil-
ity to efficiently perform certain computations. For example, the “integrated”
bid vector (a notion introduced by Abe et al [1])

b′

i =

























b′ik
...
b′i,bidi−1

b′i,bidi

b′i,bidi+1
...
b′i1

























=























0
...
0
1
1
...
1























can be derived by multiplying the bid vector with the k × k lower triangular
matrix Lk, that is b′

i = Lkbi where

Lℓ =













1 0 · · · 0
...

. . .
. . .

...
...

. . . 0
1 · · · · · · 1













and ℓ ∈ {k, n}. Further ℓ × ℓ matrices that we will use in the following sec-
tions are the upper triangular matrix Uℓ, the identity matrix Iℓ, and random
multiplication matrices R

∗

ℓ :

Uℓ =













1 · · · · · · 1

0
. . .

...
...

. . .
. . .

...
0 · · · 0 1













, Iℓ =













1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1













, R
∗

ℓ =













∗ 0 · · · 0

0 ∗
. . .

...
...

. . .
. . . 0

0 · · · 0 ∗













.

The components on the diagonal of R
∗
i are random numbers unknown to the

agents. They are jointly created using a special sub-protocol to be proposed
in Section 5.1. Multiplication with R

∗

ℓ turns all vector components that are
not zero into meaningless random numbers. For this reason, it is usually the
final key step in our protocols. Please note that matrices are only used to
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facilitate the presentation. The special structure of all used matrices allows
us to compute matrix-vector multiplications in O(k) steps.

The price we pay for round-efficiency enabled by this unary representation
is communication and computation complexity that is linear in the number
of different prices k. On the other hand, the unary representation allows
us to easily adapt the given protocols to emulate iterative (e.g., ascending-
price or descending-price) auctions in which bidders gradually express their
willingness to pay for sequences of prices. In fact, there are common iterative
correspondences for both auction types considered in this paper: The first-
price auction is strategically equivalent to the Dutch (or descending-price)
auction, and the second-price auction corresponds to the well-known English
(or ascending-price) auction as used at eBay or Sotheby’s. Iterative auctions
are sometimes preferred over sealed-bid auctions because bidders are not
required to exhaustively determine their valuations and because they can
lead to higher revenue if valuations are interdependent (see e.g., [34,33]).

4.1 First-Price Auctions

In this section, we propose a multiparty computation scheme for first-price
auctions. With respect to the framework presented in Section 2, we specify
function f1

a (b) to yield the selling price, i.e., the highest bid, if and only if
bidder a is the winner of the auction.

We can obtain a vector in which all components referring to prices that
are greater or equal than the maximum bid are zero by summing up all
integrated bid vectors and shifting the result down by one position:

(Lk − Ik)
n
∑

i=1

bi.

By adding vector (Uk − Ik)ba, a single component remains zero if and only if
bidder a bid at least as much as the maximum bid, and thus qualifies as an
auction winner. This component indicates the selling price. After attaching
the secret random multiplication matrix, vector

(

(Lk − Ik)

n
∑

i=1

bi + (Uk − Ik)ba

)

R
∗

k

only consists of random values if bidder a did not submit the highest bid.
Otherwise, the position of the sole zero indicates the selling price (to the
seller, since bidder a already knows his bid). Again, all remaining components
are random values.

Example: Consider just two bidders and let the vector of possible prices
be p = (10, 20, 30, 40, 50, 60). The first bid is 20 (b1 = 2) and the second
one is 50 (b2 = 5). Asterisks denote arbitrary random numbers that have no
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meaning to bidders. 
(L6 − I6)

2X
i=1

bi + (U6 − I6)b1

!
R
∗

6 =

=

0BBBBB�0BBBBB�0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0

1CCCCCA0BBBBB�0BBBBB� 0
0
0
0
1
0

1CCCCCA+

0BBBBB� 0
1
0
0
0
0

1CCCCCA1CCCCCA+

0BBBBB�0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0

1CCCCCA0BBBBB� 0
0
0
0
1
0

1CCCCCA1CCCCCAR
∗

6 =

=

0BBBBB�0BBBBB� 0
0
1
1
1
2

1CCCCCA+

0BBBBB� 1
1
1
1
0
0

1CCCCCA1CCCCCAR
∗

6 =

0BBBBB� 1
1
2
2
1
2

1CCCCCAR
∗

6 =

0BBBBB� ∗

∗

∗

∗

∗

∗

1CCCCCA 
(L6 − I6)

2X
i=1

bi + (U6 − I6)b2

!
R
∗

6 =

=

0BBBBB�0BBBBB�0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0

1CCCCCA0BBBBB�0BBBBB� 0
0
0
0
1
0

1CCCCCA+

0BBBBB� 0
1
0
0
0
0

1CCCCCA1CCCCCA+

0BBBBB�0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0

1CCCCCA0BBBBB� 0
1
0
0
0
0

1CCCCCA1CCCCCAR
∗

=

=

0BBBBB�0BBBBB� 0
0
1
1
1
2

1CCCCCA+

0BBBBB� 1
0
0
0
0
0

1CCCCCA1CCCCCAR
∗

=

0BBBBB� 1
0
1
1
1
2

1CCCCCAR
∗

=

0BBBBB� ∗

0
∗

∗

∗

∗

1CCCCCA
Bidder 1 gains no information at all and bidder 2 only learns that he won.
The seller receives both resulting vectors and thus learns the winner’s identity
(2) and the selling price (50). N

4.1.1 Tie-Breaking

So far, if there is more than one winning bid, the protocol reveals all winner
identities (leaving it to the seller how to proceed in the case of ties). However,
it is possible to modify the protocol to just yield the winner with the lowest
index. This can be used in conjunction with a setup phase in which bidders
that sign up for the auction are assigned consecutive numbers as indices,
creating an incentive to sign up early. On the other hand, the indices of
bidders could be permuted randomly (by letting each bidder commit to a
permutation of indices) before the auction begins in order to obtain fairness.
In either case, an additional vector, that hides zeros to all agents except the
winning bidder with the lowest index, is added. Let

uj =









b1j

b2j

...
bnj









and X = (x1,x2, . . . ,xn) =











((Ln − In)uk)
T

((Ln − In)uk−1)
T

...

((Ln − In)u1)
T











.
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X is a k×n matrix consisting of n vectors xi. Finally, the complete first-price
auction outcome function is defined as

f1
a (b) =

(

(Lk − Ik)
n
∑

i=1

bi + (Uk − Ik)ba + xa

)

R
∗

k. (1)

Example: Consider three bidders and let the vector of possible prices be
p = (10, 20, 30, 40, 50, 60) as above. The first bid is 20 (b1 = 2), the second
and the third are 50 (b2 = b3 = 5).

X =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�
0�(L3 − I3)

0� 0
0
0

1A1AT0�(L3 − I3)

0� 0
1
1

1A1AT0�(L3 − I3)

0� 0
0
0

1A1AT0�(L3 − I3)

0� 0
0
0

1A1AT0�(L3 − I3)

0� 1
0
0

1A1AT0�(L3 − I3)

0� 0
0
0

1A1AT

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
=

0BBBBB�0 0 0
0 0 1
0 0 0
0 0 0
0 1 1
0 0 0

1CCCCCA
Only bidder 2 learns that he won the auction.

f
1

1 (b) =

0BBBBB�0BBBBB�0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0

1CCCCCA0BBBBB� 0
2
0
0
1
0

1CCCCCA+

0BBBBB�0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0

1CCCCCA0BBBBB� 0
0
0
0
1
0

1CCCCCA+

0BBBBB� 0
0
0
0
0
0

1CCCCCA1CCCCCAR
∗

6 =

0BBBBB� ∗

∗

∗

∗

∗

∗

1CCCCCA
f
1

2 (b) =

0BBBBB�0BBBBB�0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0

1CCCCCA0BBBBB� 0
2
0
0
1
0

1CCCCCA+

0BBBBB�0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0

1CCCCCA0BBBBB� 0
1
0
0
0
0

1CCCCCA+

0BBBBB� 0
0
0
0
1
0

1CCCCCA1CCCCCAR
∗

6 =

0BBBBB� ∗

0
∗

∗

∗

∗

1CCCCCA
f
1

3 (b) =

0BBBBB�0BBBBB�0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0

1CCCCCA0BBBBB� 0
2
0
0
1
0

1CCCCCA+

0BBBBB�0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0

1CCCCCA0BBBBB� 0
1
0
0
0
0

1CCCCCA+

0BBBBB� 0
1
0
0
1
0

1CCCCCA1CCCCCAR
∗

6 =

0BBBBB� ∗

∗

∗

∗

∗

∗

1CCCCCA
N

4.1.2 Public Outcome

For reasons of efficiency and transparency, it might be desirable to compute
the auction outcome so that all bidders learn the selling price. In this case,
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there are just two outcome functions (instead of n):

price1(b) =

(

(Lk − Ik)

n
∑

i=1

bi

)

R
∗

k

which denotes the selling price and

winner1(b) =

(

(Lk − Ik)

n
∑

i=1

bi

)

R
∗

k +

n
∑

i=1

2i−1bi

which contains the indices of the winning bidder(s). As before, a single com-
ponent of price1(b) is zero. Bidder i qualifies as a winner of the auction if
the (i−1)th bit of the corresponding component in winner1(b) is set. Please
note that our tie-breaking technique is not applicable in this setting because
the identities of all winning bidders are squeezed into the same component
which rules out the masking of identities as described in the previous section.
After all, bidders jointly compute outcome function

f1(b) = (price1(b), winner1(b)). (2)

4.2 (M + 1)st-Price Auctions

In this section, we will apply the techniques used so far to obtain the outcome
of (M + 1)st-price auctions. The construction of a vector (by using linear
combinations of bi) in which only the (M + 1)st-highest bid is marked by a
zero turns out to be more complicated than the marking of the highest bid
in the previous section. Let us for now assume that there is always a single
(M + 1)st-highest bid and let

e =







1
...
1







be the k-dimensional unit vector.

(2Lk − Ik)

n
∑

i=1

bi − (2M + 1)e

yields a vector in which all components except the one denoting the (M +
1)st-highest bid are not zero. Computing (2Lk − Ik)

∑n

i=1 bi is equivalent to
adding all integrated bid vectors and down-shifted integrated bid vectors.
This results in a strictly increasing sequence of components where 1 denotes
the highest bid, 3 denotes the second-highest bid, 5 the third-highest, and so
forth. Subtracting (2M+1)e yields a vector in which the component denoting
the (M + 1)st-highest bid is zero.
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When masking this information to losing bidders, like in the previous
section, each bidder’s personal outcome vector is

priceM+1
a (b) =

(

(2Lk − Ik)

n
∑

i=1

bi − (2M + 1)e + (2M + 2)Ukba

)

R
∗

k.

Factor (2M + 2) ensures that no additional zeros turn up “accidently”. If
vector priceM+1

a (b) contains a zero, then bidder a qualifies as a winner of
the auction. The position of the zero indicates the selling price. All other
components are random values.

Example: Consider a Vickrey auction (M = 1) with the same price vector
and bids as in the previous example (p = (10, 20, 30, 40, 50, 60), b1 = 2, and
b2 = 5). All computations take place in the finite field Z11.

price
2

1(b) =

0BBBBB�0BBBBB�1 0 0 0 0 0
2 1 0 0 0 0
2 2 1 0 0 0
2 2 2 1 0 0
2 2 2 2 1 0
2 2 2 2 2 1

1CCCCCA0BBBBB�0BBBBB� 0
0
0
0
1
0

1CCCCCA+

0BBBBB� 0
1
0
0
0
0

1CCCCCA1CCCCCA−

0BBBBB� 3
3
3
3
3
3

1CCCCCA+ 4

0BBBBB�1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

1CCCCCA0BBBBB� 0
0
0
0
1
0

1CCCCCA1CCCCCAR
∗

6 =

=

0BBBBB�0BBBBB� 0
1
2
2
3
4

1CCCCCA−

0BBBBB� 3
3
3
3
3
3

1CCCCCA+

0BBBBB� 4
4
4
4
4
0

1CCCCCA1CCCCCAR
∗

6 =

0BBBBB� 1
2
3
3
4
1

1CCCCCAR
∗

6 =

0BBBBB� ∗

∗

∗

∗

∗

∗

1CCCCCA
price

2

2(b) =

0BBBBB�0BBBBB�1 0 0 0 0 0
2 1 0 0 0 0
2 2 1 0 0 0
2 2 2 1 0 0
2 2 2 2 1 0
2 2 2 2 2 1

1CCCCCA0BBBBB�0BBBBB� 0
0
0
0
1
0

1CCCCCA+

0BBBBB� 0
1
0
0
0
0

1CCCCCA1CCCCCA−

0BBBBB� 3
3
3
3
3
3

1CCCCCA+ 4

0BBBBB�1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

1CCCCCA0BBBBB� 0
1
0
0
0
0

1CCCCCA1CCCCCAR
∗

6 =

=

0BBBBB�0BBBBB� 0
1
2
2
3
4

1CCCCCA−

0BBBBB� 3
3
3
3
3
3

1CCCCCA+

0BBBBB� 4
4
0
0
0
0

1CCCCCA1CCCCCAR
∗

6 =

0BBBBB� 1
2

10
10
0
1

1CCCCCAR
∗

6 =

0BBBBB� ∗

∗

∗

∗

0
∗

1CCCCCA
Bidder 1’s outcome vector, price2

1(b), contains random numbers, whereas
price2

2(b) indicates the selling price: 20. N

When two or more bidders have the (M + 1)st-highest bid in common,
the technique described above does not work (no outcome vector contains
a zero). For this reason, agents compute additional vectors for each bidder
that yield the correct outcome in the case of these ties. The following method
marks the (M + 1)st-highest bid while not revealing any information about
other ties.

∑n

i=1 bi − te is a vector that contains zeros if there is a tie, i.e., t
bidders share the same bid at the corresponding position (1 < t ≤ n). We are
only interested in ties involving the (M +1)st-highest bid because only these
ties cause the techniques for computing priceM+1

a (b) to fail. Other ties are
masked by adding (n + 1) (Lk

∑n

i=1 bi − (t + u)e) where u ∈ {max(0,M +
1 − t), . . . ,min(M,n − t)} for each t. The resulting vector contains a zero
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when t bids are equal and there are u bids higher than the tie. The preceding
factor (n + 1) is large enough to ensure that both addends do not add up
to zero. Finally, the position of the tie (which is the selling price) has to
be made invisible to losing bidders like before. This can be done by adding
(n+1)2(Uk−Ik)ba. After all, agents need to compute the following additional
outcome vectors:

pricetieM+1
atu (b) =

( n
∑

i=1

bi − te + (n + 1)

(

Lk

n
∑

i=1

bi − (t + u)e

)

+

+(n + 1)2(Uk − Ik)ba

)

R
∗

k =

=

(

((n + 1)Lk + Ik)

n
∑

i=1

bi −

(

(n + 1)(t + u) + t

)

e +

+(n + 1)2(Uk − Ik)ba

)

R
∗

k.

Example: Suppose we have the following compilation of bids (M = 1, com-
putation takes place in Z11 and p = (10, 20, 30, 40, 50, 60)):

b1 =

0BBBBB� 0
1
0
0
0
0

1CCCCCA , b2 =

0BBBBB� 0
1
0
0
0
0

1CCCCCA , b3 =

0BBBBB� 0
0
0
1
0
0

1CCCCCA , b4 =

0BBBBB� 0
0
0
1
0
0

1CCCCCA
The “regular” outcome function priceM+1

a yields no outcome due to the tie
at price 50. The first two (t = 2, u ∈ {0, 1}) additional outcome vectors look
like this (before being masked for each bidder): 

4X
i=1

bi − 2e + 5

 
L6

4X
i=1

bi − (2 + 0)e

!!
R

∗

6 =

=

0BBBBB�0BBBBB� 0
2
0
2
0
0

1CCCCCA−

0BBBBB� 2
2
2
2
2
2

1CCCCCA+ 5

0BBBBB�0BBBBB� 0
2
2
4
4
4

1CCCCCA−

0BBBBB� 2
2
2
2
2
2

1CCCCCA1CCCCCA1CCCCCAR
∗

6 =

0BBBBB� 10
0
9

10
8
8

1CCCCCAR
∗

6 =

0BBBBB� ∗

0
∗

∗

∗

∗

1CCCCCA 
4X

i=1

bi − 2e + 5

 
L6

4X
i=1

bi − (2 + 1)e

!!
R

∗

6 =

=

0BBBBB�0BBBBB� 0
2
0
2
0
0

1CCCCCA−

0BBBBB� 2
2
2
2
2
2

1CCCCCA+ 5

0BBBBB�0BBBBB� 0
2
2
4
4
4

1CCCCCA−

0BBBBB� 3
3
3
3
3
3

1CCCCCA1CCCCCA1CCCCCAR
∗

6 =

0BBBBB� 5
6
4
5
3
3

1CCCCCAR
∗

6 =

0BBBBB� ∗

∗

∗

∗

∗

∗

1CCCCCA
For t > 2 the first difference contains no zeros, leading to random vectors.
Nevertheless, all of these vectors need to be computed at the same time in



Feb
ru

ary
 9,

 20
05

Prel
im

ina
ry

 D
raf

t

15

order to minimize round complexity. After masking the outcome to losing
bidders, only bidders 1 and 2 will be able to read the selling price (50).N

Concluding, in order to obtain the outcome of an (M +1)st-price auction,
agents jointly compute function

fM+1
a (b) = (priceM+1

a (b), (pricetieM+1
atu (b))∀t,u) (3)

where t = {2, 3, . . . , n} and u ∈ {max(0,M + 1 − t), . . . ,min(M,n − t)} for
each t. Thus, a total amount of (M + 1)(n− (M + 1)) vectors of size k needs
to be computed.

4.2.1 Tie-Breaking

Even though ties involving the (M +1)st-highest bid cannot prevent the com-
putation scheme from succeeding in determining the outcome, the scheme will
still yield several winners when there are ties involving the highest bid (and
thus also at the second-highest bid). The tie-breaking method introduced in
Section 4.1.1 can only be transferred to (M + 1)st-price auctions when there
is a single winner, i.e., M = 1 (the auction to be conducted is a Vickrey auc-
tion). Similar to the procedure in Section 4.1.1, additional outcome vector
h2

at0(b) can be modified to only yield the winner with the lowest index by
adding vector xa. Thus,

pricetie2
at0(b) =

(

((n + 1)Lk + Ik)

n
∑

i=1

bi −

(

(n + 2)t

)

e +

+(n + 1)2 ((Uk − Ik)ba + xa)

)

R
∗

k.

The remaining outcome vectors (price2
a(b) and pricetie2

at1(b)) do not need
to be masked.

4.2.2 Public Price

Similar to Section 4.1.2, the protocol’s efficiency can be improved by just
computing public outcome vectors so that all agents, including losing bid-
ders, learn the outcome. Like before, winning bidders can be identified by
computing just two outcome vectors (for each t and u) so that one denotes
the selling price and the other contains the winner’s identities (as a base-2
number). Please note that, as in the first-price auction scheme, tie-breaking
is not possible when using this technique. The public price outcome vectors
are

priceM+1(b) =

(

(2Lk − Ik)
n
∑

i=1

bi − (2M + 1)e

)

R
∗

k, and

pricetieM+1
tu (b) =

(

((n + 1)Lk + Ik)

n
∑

i=1

bi −

(

(n + 1)(t + u) + t

)

e

)

R
∗

k
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for the selling price, and

winnerM+1(b) =

(

(2Lk − Ik)
n
∑

i=1

bi − (2M + 1)e

)

R
∗

k + Lk

n
∑

i=1

2i−1bi

and

winnertieM+1
tu (b) =

(

((n + 1)Lk + Ik)

n
∑

i=1

bi −

(

(n + 1)(t + u) + t

)

e

)

R
∗

k +

+Lk

n
∑

i=1

2i−1bi.

for the winners’ identities. Thus, the jointly computed outcome function is

fM+1(b) =
(

priceM+1(b), winnerM+1(b), (4)

(pricetieM+1
tu (b), winnertieM+1

tu (b))∀t,u

)

. (5)

5 Implementation Using Homomorphic Encryption

Any homomorphic encryption scheme that besides the, say, additive homo-
morphic operation allows multiplication of encrypted values with a jointly
generated random number can be used to implement the schemes described
in the previous sections. It turns out that El Gamal encryption [18], even
though it is multiplicative, is quite suitable because

– agents can easily create distributed keys, and
– encrypted values can be exponentiated with a shared random number in

a single round.

As El Gamal cipher is a multiplicative homomorphic encryption scheme, the
entire computation as described in the previous sections will be executed in
the exponent of a generator. In other words, a random exponentiation imple-
ments the random multiplication of the additive notation. As a consequence,
the selling price is marked by ones instead of zeros in outcome vectors.

5.1 El Gamal Encryption

El Gamal cipher [18] is a probabilistic and homomorphic public-key cryp-
tosystem. Let p and q be large primes so that q divides p− 1 and Gq denote
Z
∗
p’s unique multiplicative subgroup of order q. We will focus on multiplica-

tive subgroups of finite fields here, although El Gamal can also be based on
other groups such as elliptic curve groups. All computations in the remainder
of this paper are modulo p unless otherwise noted. The private key is x ∈ Zq,
the public key y = gx (g ∈ Gq is an arbitrary, publicly known element). A
message m ∈ Gq is encrypted by computing the ciphertext tuple

(α, β) = (myr, gr)
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where r is an arbitrary random number in Zq, chosen by the encrypter. A
message is decrypted by computing

α

βx
=

myr

(gr)x
= m .

El Gamal is homomorphic as the component-wise product of two ciphertexts
(αα′, ββ′) = (mm′yr+r′

, gr+r′

) represents an encryption of the plaintexts’
product mm′. It has been shown that El Gamal is semantical secure, i.e., it
is computationally infeasible to distinguish between the encryptions of any
two given messages, if the decisional Diffie-Hellman problem is intractable
[48].

We will now describe how to apply the El Gamal cryptosystem as a fully
private multiparty computation scheme. Please note that this multiparty
scheme is limited in the sense that it does not allow the computation of
arbitrary functions. If a value represents an additive share, this is denoted
by a “+” in the index, whereas multiplicative shares are denoted by “×”.
Underlying zero-knowledge proofs will be presented in the next section.

Distributed key generation [38]: Each participant chooses x+i at random and
publishes y×i = gx+i along with a zero-knowledge proof of knowledge of
y×i’s discrete logarithm. The public key is y =

∏n

i=1 y×i, the private key
is x =

∑n

i=1 x+i. This requires n multiplications, but the computational
cost of multiplications is usually negligible in contrast to exponentiations.
Broadcast round complexity and exponentiation complexity of the key
generation are O(1).

Distributed decryption: Given an encrypted message (α, β), each participant
publishes β×i = βx+i and proves its correctness by showing the equality
of logarithms of y×i and β×i. The plaintext can be derived by computing

αQ
n
i=1

β×i
. Like key generation, decryption can be performed in a constant

number of rounds, requiring n multiplications and one exponentiation.
Random Exponentiation: A given encrypted value (α, β) can easily be raised

to the power of an unknown random number M =
∑n

i=1 m+i whose ad-
dends can be freely chosen by the participants if each bidder publishes
(αm+i , βm+i) and proves the equality of logarithms. The product of pub-
lished ciphertexts yields (αM , βM ) in a single step. The computational
cost is two exponentiations and 2n multiplications.

5.2 Zero-Knowledge Proofs

In order to obtain security against malicious or so-called active adversaries,
bidders are required to prove the correctness of each protocol step. One of
the objectives when designing the protocols presented in Section 4 was to
enable efficient proofs of correctness for protocol steps. In fact, the proposed
protocols can be proven correct by only using so-called Σ-protocols which
just need three rounds of interaction [16,14]. Σ-protocols are not known to
be zero-knowledge, but they satisfy the weaker property of honest-verifier
zero-knowledge. This suffices for our purposes as we can use the Fiat-Shamir
heuristic [19] to make these proofs non-interactive. As a consequence, the
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obtained proofs are indeed zero-knowledge in the random oracle model and
only consist of a single message. The additional assumption of a random
oracle is only made for reasons of efficiency. Alternatively, we could employ
non-interactive zero-knowledge proofs in the common random string model
(see [17] and references therein) to obtain non-interactiveness. However, it has
become common practice to use secure hash functions like MD5 or SHA-1 as
random oracles for practical applications. We will make use of the following
three Σ-protocols.

5.2.1 Proof of knowledge of a discrete logarithm

This is a classic Σ-protocol by Schnorr [45]. Alice and Bob know v and g,
but only Alice knows x, so that v = gx.

1. Alice chooses z at random and sends a = gz to Bob.
2. Bob chooses a challenge c at random and sends it to Alice.
3. Alice sends r = (z + cx) mod q to Bob
4. Bob checks that gr = avc.

Alice needs to send log p + log q bits.

5.2.2 Proof of equality of two discrete logarithms

When executing the previous protocol in parallel, the equality of two discrete
logarithms can be proven [12]. Alice and Bob know v, w, g1, and g2, but only
Alice knows x, so that v = gx

1 and w = gx
2 .

1. Alice chooses z at random and sends a = gz
1 and b = gz

2 to Bob.
2. Bob chooses a challenge c at random and sends it to Alice.
3. Alice sends r = (z + cx) mod q to Bob
4. Bob checks that gr

1 = avc and that gr
2 = bwc.

Alice needs to send 2 log p+log q bits. It is possible to show the equality of any
polynomial number of discrete logarithms in parallel. Thus, for showing that
the discrete logarithms of n values are equal, Alice only sends n log p + log q
bits.

5.2.3 Proof that an encrypted value is one out of two values

The following protocol was proposed by Cramer et al [15]. Alice proves that
an El Gamal encrypted value (α, β) = (myr, gr) either decrypts to 1 or to a
fixed value z ∈ Gq without revealing which is the case, in other words, it is
shown that m = {1, z}.

1. If m = 1, Alice chooses r1, d1, w at random and sends (α, β), a1 = gr1βd1 ,

b1 = yr1

(

α
z

)d1
and a2 = gw, b2 = yw to Bob.

If m = z, Alice chooses r2, d2, w at random and sends (α, β), a1 = gw,
b1 = yw, a2 = gr2βd2 , and b2 = yr2αd2 to Bob.

2. Bob chooses a challenge c at random and sends it to Alice.
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3. If m = 1, Alice sends d1, d2 = c−d1 mod q, r1, and r2 = w−rd2 mod q
to Bob.
If m = z, Alice sends d1 = c − d2 mod q, d2, r1 = w − rd1 mod q, and
r2 to Bob.

4. Bob checks that c = d1 + d2 mod q, a1 = gr1βd1 , b1 = yr1

(

α
z

)d1
, a2 =

gr2βd2 , and b2 = yr2αd2 .

The total amount of bits Alice sends to Bob is 4 log p + 4 log q.

5.3 Protocol Implementation

We are now ready to give a detailed protocol description. Let Y be an arbi-
trary value in Gq\{1} that is known to all bidders, e.g., g. The computation
schemes described in Section 4 can be executed in the exponent of Y . Please
note that generating “unbiased” parameters p, q, and g requires no extra
communication in the random oracle model.

Figure 1 shows the first-price auction protocol rules for an arbitrary bid-
der a. First, all bidders jointly generate a public El Gamal key as described
in Section 5.1. Then, each bidder publishes his encrypted bid vector (see
Section 4) and proves its correctness by showing that (i) each component is
either Y or 1, and (ii) the product of all components is Y . In the second round
of the protocol, bidders compute the first-price outcome function f1

a (b) as
defined in Equation 1 in Section 4.1.1. Each inner parentheses of γ×a

ij and

δ×a
ij in Figure 1 relates to each addend in Equation 1. Finally, the nk out-

come values (k for each bidder) are jointly decrypted so that bidder a only
learns whether he won the auction. Once the keys are generated, the protocol
only requires three rounds of bidder broadcasting.3 The implementation of
an (M + 1)st-price auction protocol works similarly (see [6]).

Figure 2 illustrates the modus operandi of the proposed protocols in a
more general sense. The seller broadcasts the type of good to be sold, the
number of units M , a deadline, and the price vector p. Interested bidders
then have the chance to publish their identities, accompanied by a randomly
generated share of the public key to be used for the auction, before the dead-
line expires. In the following, each bidder broadcasts two encrypted messages
and sends shares of the decrypted outcome to the seller who broadcasts these
messages after he received all of them. Steps 3, 4, and 5 correspond to the
rounds explained in Figure 1.

6 Analysis

In this section, we analyze security and efficiency of the auction protocols.
Throughout this analysis, we assume that there is a reliable broadcast chan-
nel, i.e., the adversary has no control of communication,

3 As explained in Section 2, we do not consider the additional overhead caused
by bidders aborting the protocol.
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Prologue: Generate public key

– Choose x+a ∈ Zq and m+a
ij , raj ∈ Zq for each i and j at random.

– Publish y×a = gx+a along with a zero-knowledge proof of knowledge of y×a’s
discrete logarithm (Section 5.2.1).

– Compute y =
Qn

i=1
y×i.

Round 1: Encrypt bid

– Set baj =

�
Y if j = ba

1 else
and publish αaj = bajy

raj and βaj = graj for each j.

– Prove that ∀j : logg(βaj) equals logy(αaj) or logy

�αaj

Y

�
(Section 5.2.3), and

logy

 Qk

j=1
αaj

Y

!
= logg

 
kY

j=1

βaj

!
(Section 5.2.2).

Round 2: Compute outcome

– Compute and publish for each i and j:

γ
×a
ij =

0�0� nY
h=1

kY
d=j+1

αhd

1A ·

 
j−1Y
d=1

αid

!
·

 
i−1Y
h=1

αhj

!1Am
+a
ij

and

δ
×a
ij =

0�0� nY
h=1

kY
d=j+1

βhd

1A ·

 
j−1Y
d=1

βid

!
·

 
i−1Y
h=1

βhj

!1Am
+a
ij

with a proof of correctness (Section 5.2.2).

Round 3: Decrypt outcome

– Send ϕ×a
ij =

�Qn

h=1
δ×h

ij

�x+a for each i and j with a proof of correctness (Sec-

tion 5.2.2) to the seller who publishes all ϕ×h
ij and the corresponding proofs of

correctness for each i, j, and h 6= i after having received all of them.

Epilogue: Outcome determination

– Compute vaj =

Qn

i=1
γ×i

ajQn

i=1
ϕ×i

aj

for each j.

– If vaw = 1 for any w, then bidder a is the winner of the auction. pw is the
selling price.

Note: i, h ∈ {1, 2, . . . , n}, j, ba ∈ {1, 2, . . . , k}, Y ∈ Gq\{1}

Fig. 1 Fully Private First-Price Auction Protocol

Proposition 1 The proposed protocols are

– correct with negligible error probability,
– fully private if the decisional Diffie-Hellman problem is intractable, and
– fair, i.e., either all bidders or no bidder learns the outcome, if the seller

does not quit or reveal information prematurely.

Proof (sketch)
Correctness: The protocols only fail when the random exponentiation for any
outcome vector “accidently” yields a one, i.e.,

∑n

h=1 m+h
ij = 0 mod q for any
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Fig. 2 High-Level Protocol Visualization

i and j. Due to the exponential size of Gq and the polynomial number of out-
come components, the probability of this event is negligible. The malleability
of El Gamal encryption does not pose a problem because bidders prove that
they know each plaintext using non-malleable zero-knowledge proofs.
Privacy : The security of El Gamal cipher as well as the applied zero-knowledge
proofs can be based on the intractability of the decisional Diffie-Hellman as-
sumption [48]. The security of distributed El Gamal cipher, in particular
Pedersen’s straightforward key generation [38] which might result in non-
uniformly distributed keys, follows from a recent argumentation by Gennaro
et al [22]. Since encryption keys are essentially distributed by using n-out-of-
n secret sharing, privacy can not be breached (unless all bidders collude). In
the absence of ties, only the auction outcome is revealed. Some protocols (see
Table 3) are able to automatically break ties whereas others reveal the iden-
tities of all tied winning bidders. The outcome function for (M + 1)st-price
auctions reveals the following information if bidders tie for the (M + 1)st-
highest bid: the number of tied bidders (t) and the number of bidders with
higher bids (u).
Fairness: The seller is the first party to learn the auction outcome. If he does
not quit or give away information (which would allow bidders to quit after
having learned the outcome), all bidders are simultaneously informed about
the outcome without any possibility to refuse further interaction. ⊓⊔

A simple game-theoretic observation shows why it is quite reasonable to as-
sume that the seller does not quit prematurely. Since the seller can set a
reserve price by also appearing as a pseudo-bidder, he can never face an out-
come that decreases his utility. In game-theoretic terms, the auction mecha-
nism is ex post individually-rational. If the seller learns that no bid exceeds
the reserve price, he might decide to quit the protocol prematurely because
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he wants to hide the reserve price in a public outcome protocol. However,
as this is the only case in which a rational seller quits, bidders could derive
the auction outcome (i.e., that the reserve price exceeds all bids) from the
fact that the seller leaves the protocol. Obviously, a game-theoretic analysis
always has to make assumptions on the players’ utility functions. A malicious
seller might still quit an auction early simply because he is just interested
in learning the auction outcome but not in selling anything. Nevertheless,
he is only able to learn the outcome, not particular bids. A higher degree of
robustness can be obtained by fining agents that abort the protocol prema-
turely or introducing a fairness-proving third party. Please note that such a
third party would not learn any private information about bids.

In the following we analyze the computation complexity (number of ex-
ponentiations and multiplications) and communication complexity (number
of bits to be broadcasted) of the protocol proposed in Figure 1. Typically, the
computational cost of performing multiplications is negligible. Exponentia-
tion and communication complexity are identical in all proposed protocols.
All applied zero-knowledge proofs are non-interactive and have low constant
overhead. The complexity of these proofs is given in Table 2. In the pro-
logue of the protocol, each bidder broadcasts his share of the public key
(one exponentiation). When all n key shares have been published, each bid-
der computes the public key by multiplying them. In Round 1, each bidder
broadcasts k El Gamal ciphertexts (2k exponentiations and one multipli-
cation). In the second round, the shares for each bidder’s private outcome
are computed. This results in 2nk exponentiations. The number of multi-
plications required to compute γ×a

ij and δ×a
ij is 8nk. Round 3 consists of

nk exponentiations and n2k multiplications. Finally, outcome determination
requires no exponentiations (and further communication) and 2nk multipli-
cations. The overall complexity of the protocol is 3nk+2k+1 exponentiations
and (3nk + 2k + 1)⌈log p⌉ bits each bidder needs to publish. Table 2 sum-
marizes the communication complexity of each protocol step and also gives
the complexity of the accompanying zero-knowledge proofs. As described in
Section 4.2, the protocols for (M + 1)st-price auctions require the computa-
tion of (M +1)(n− (M +1)) outcome vectors, either for each bidder (private
outcome) or just once (public outcome). As a consequence, in order to obtain
the complexity of the private outcome (M + 1)st-price auction protocol, the
numbers in the rows for Round 2 and 3 in Table 2 need to be multiplied with
the aforementioned factor.

The total number of bits each bidder needs to communicate in the private
outcome first-price protocol given in Figure 1 is (6k(n+1)+5)⌈log p⌉+(2k(n+
2) + 3)⌈log q⌉. To achieve an appropriate level of security today, 1024 bits
for p and 768 bits for q are reasonable settings. Then, in an auction with 10
bidders and 500 prices4, a bidder broadcasts about 5.1 MB. This is quite an
amount of data but certainly manageable in today’s networks. Complexity
can be significantly reduced by running the public outcome protocol in which
approximately 1.0 MB is communicated by each bidder.

4 Often, the number of possible bids k can be set to a much lower value than one
would expect, e.g., Lipmaa et al argue that k ≤ 500 is sufficient for most auctions
in practice [35].
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Body Zero-Knowledge Proofs

Prologue P P + Q

Round 1 2kP 4k(P + Q) + 2P + Q

Round 2 2nkP nk(2P + Q)

Round 3 nkP (nk + 1)P + Q

Σ (k(3n + 2) + 1)P (k(3n + 4) + 4)P + (2k(n + 2) + 3)Q

Σ Body+ZK (6k(n + 1) + 5)P + (2k(n + 2) + 3)Q

P = ⌈log p⌉, Q = ⌈log q⌉

Table 2 Communication Complexity (Number of Bits each Bidder broadcasts) of
the Protocol proposed in Figure 1

7 Conclusion

We presented cryptographic constant-round protocols for all common types
of sealed-bid auctions. The security of the proposed protocols is merely based
on computational intractability and does not rely on third parties. Table 3
summarizes the protocols’ properties. We considered the private outcome
setting, in which only the winning bidders and the seller learn the auction’s
result, and the public outcome setting, in which all agents learn the result.
Private outcome protocols for first-price and second-price auctions have the
ability to “automatically” break ties whereas the other protocols yield the
identities of all tied winning bidders. In this case, ties could be broken by a
subsequent distributed coin tossing protocol. The computational complexity
for (M + 1)st-price auction protocols (including M = 1) is n times as much
as for first-price auctions due to the possibility of ties involving the (M +
1)st-highest bid. In practice, these additional outcome vectors could just be
computed on demand when the “regular” protocol fails. This increases round
complexity and the risk of premature abort but reduces the computational
(and communication) burden on average.

Auction Type Outcome
Automatic
Tie-Breaking

Rounds Exponentiations/
Communication

1st-price private yes O(1) O(nk)

1st-price public no O(1) O(k)

2nd-price private yes O(1) O(n2k)

2nd-price public no O(1) O(nk)

(M + 1)st-price private no O(1) O(n(n − M)kM)

(M + 1)st-price public no O(1) O((n − M)kM)

n: bidders, k: prices/possible bids, M : units to be sold

Table 3 Protocol Complexity (Computation/Communication per Bidder)
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It would be desirable to construct protocols whose computational com-
plexity is only logarithmic in k. However, it seems that this will very likely
raise round complexity. Besides, experimental results indicate that the com-
putational amount and message sizes are manageable in many realistic set-
tings, despite its linearity in k [13]. Auctions that require such a high degree
of privacy typically involve few bidders, for instance when auctioning off ra-
dio spectrum licenses or former state-owned enterprises. Furthermore, the
unary representation allows us to easily adapt the given protocols to emulate
iterative (e.g., ascending-price or descending-price) auctions in which bidders
gradually express their willingness to pay for sequences of prices. Iterative
auctions are sometimes preferred over sealed-bid auctions because bidders
are not required to exhaustively determine their valuations and because they
can lead to higher revenue if valuations are interdependent.

We believe that techniques underlying the proposed protocols can be
useful to construct efficient multiparty protocols for other purposes such as
voting or different types of auctions.

Acknowledgements Thanks to Jens Groth for some valuable comments on an
earlier version of this. Further thanks to Alina Oprea, Ke Yang, and the anonymous
referees for helpful feedback.
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