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Abstract 

Parking difficulties have become a social issue that people have to solve. Automated parking system is practicable 
for quick par operations without a driver which can also greatly reduces the probability of parking accidents. The 
paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which 
is generated by the modified rear-wheel feedback method (RF-LNMPC) in order to improve the overall path tracking 
accuracy in parking conditions. Firstly, A discrete-time RF-LNMPC considering the position and attitude of the parking 
vehicle is proposed to increase the success rate of automated parking effectively. Secondly, the RF-LNMPC problem 
with a multi-objective cost function is solved by the Interior-Point Optimization, of which the iterative initial values are 
described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the perfor-
mance of local optimal solution. Thirdly, the details on the computation of the terminal constraint and terminal cost 
for the linear time-varying case is presented. The closed-loop stability is verified via Lyapunov techniques by consider-
ing the terminal constraint and terminal cost theoretically. Finally, the proposed RF-LNMPC is implemented on a self-
driving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical 
parking conditions. The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed 
method which can be applied in practical use in the near future.
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1  Introduction
Parking is becoming a difficult task for people who are 
not good at driving as the number of vehicle is increas-
ing and the parking space is crowded. With the rapid 
development of the autonomous vehicle technology, 
automated parking systems (APS), which is attracting 
a great deal of attention from the research organization 
and automobile industry, can help drivers park efficiently 

and accurately. Many autonomous vehicle companies, 
such as Bosch, Tesla, Momenta, have launched their new 
generation vehicles equipped with APS. According to the 
process of parking, the research of APS can be divided 
into three key components, namely parking slots detec-
tion [1], path planning [2, 3], and path tracking control 
[4]. As the parking space becomes narrower, it is crucial 
that the vehicle can accurately track the reference path to 
successfully park. However, it can be difficult to establish 
a precise mathematical model of APS because the vehi-
cle has the characteristics of nonlinearity, time-varying, 
and multiple variables, which can cause the path track-
ing error inevitably. If the attitude and position of the 
reference path cannot be tracked accurately, especially 
for the parallel parking condition, it is easy to cause park-
ing failure or vehicle collision. Therefore, a parking path 

*Correspondence:
Manjiang Hu
manjiang_h@hnu.edu.cn
1 State Key Laboratory of Advanced Design and Manufacturing 
Technology for Vehicle, College of Mechanical and Vehicle Engineering, 
Hunan University, Changsha 410082, China
2 Wuxi Intelligent Control Research Institute of Hunan University, 
Wuxi 214115, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10033-024-01042-4&domain=pdf
http://orcid.org/0000-0003-2251-4478


Page 2 of 15Chen et al. Chinese Journal of Mechanical Engineering           (2024) 37:65 

tracking controller is discussed in the paper in order to 
obtain improved path tracking performance and increase 
the success rate of automated parking.

The path tracking problems of autonomous vehicles 
have been studied abundantly in recent years. Control 
methods in most research usually focus on vehicle stabil-
ity and path tracking lateral distance error [5–9]. None-
theless, it is more difficult for autonomous vehicles to 
park at a specified location and attitude compared with 
the general path tracking conditions. To overcome the 
aforementioned issues of the general path tracking con-
troller, many studies have been carried out on the park-
ing path tracking control algorithms which usually 
involve fuzzy logic control, feedback control with single-
point preview, model-free control, and model predic-
tive control (MPC) method. For instance, the fuzzy logic 
control algorithms can simulate the nonlinear control of 
the human driver and improve robustness against uncer-
tainties [10]. Nevertheless, if the initial position of the 
vehicle is uncertain, the use of the fuzzy logic control-
ler may cause parking failure. Philip et al. [11] combined 
the fuzzy control with the neural network algorithm 
to realize automated parking, while the fuzzy control 
needs to establish a fuzzy rule base by the expertise. An 
image-based fuzzy controller for an APS was developed 
in Ref.  [12], where the parameters of membership func-
tions were optimized by using a genetic algorithm against 
the complicated tuning of the controller. Although fuzzy 
logic control can solve the uncertainty effectively in envi-
ronmental mapping, the performance of controller may 
be limited to the knowledge of human experts, or may 
require a relatively long parking space to the vehicle.

The feedback control with single-point preview algo-
rithm usually is subject to the accurate system model 
and has specific control laws. Jeong et al. [13] presented 
a feedforward and feedback linear quadratic regulator 
(LQR) optimal lateral control parking algorithm combin-
ing the road curvature to avoid peak steering angle during 
the parking process. To compensate for the uncertainty 
caused by various vehicle parameters, Song [14] pro-
posed a dynamic surface control to improve the robust-
ness while tracking the desired path in different parking 
maneuvers Gao et  al. [15] combined the switching con-
trol algorithm with backstepping theory to guarantee the 
global exponential convergence rate for automated park-
ing lateral control in real road experiments. Du et al. [16] 
proposed the modified sliding mode controller to ensure 
that the vehicle can park along the slot center line accu-
rately without intrusion into adjacent slots. Although the 
feedback control with single-point preview can achieve 
stable parking path tracking, the single-point preview 
algorithm cannot contain enough future road informa-
tion, which may cause large tracking errors.

The model-free control method is divided into propor-
tional integral (PI) control and intelligent control gener-
ally. Ballina et  al. [17] designed a fuzzy PD+I controller 
to achieve the path tracking of parallel parking condi-
tion, while the control parameters and fuzzy rules need 
to be determined by the expertise. In addition, intelligent 
control algorithms are also applied to APS increasingly. 
For example, Lin et al. and Moon et al. designed the path 
tracking controller based on artificial neural network 
(ANN) to overcome the restriction in traditional control 
algorithms and operate the vehicle like a human driver 
in a manner that is characterized without path planning 
[18, 19]. Song et  al. [20] presented a data-efficient rein-
forcement learning (RL) method which is constructed to 
learn from data using a model-based method. The algo-
rithm integrates planning and tracking control using RL 
to maximize the overall performance potentially. Zhang 
et al. [21] proposed a RL-based end-to-end parking algo-
rithm to achieve automated parking, which can achieve a 
better parking performance than using the path planning 
and path tracking-based method. However, the intel-
ligent control algorithm will be greatly affected as long 
as the vehicle or the operating condition changes since 
the system dynamics are considered as a black-box. Fur-
thermore, RL and ANN require a large number of inter-
actions and data sets to achieve acceptable performance 
respectively, which is not conducive to the commercial 
application of APS.

The MPC method, which has the ability to forecast 
future road shape and minimize the gap between the ref-
erence path and the trajectory anticipated by the vehicle 
model in a receding horizon, is a proven method applied 
to linear and nonlinear system for decades. Qiu et  al. 
[22] applied the linear error model to design the MPC in 
parking trajectory tracking control layer. The control sig-
nals including velocity and steering angle are obtained by 
the quadratic programming (QP) optimization. Ye et  al. 
[23] proposed a linear MPC with softening constraints 
to improve the accuracy of parking path tracking and 
the control increment of each cycle is also calculated by 
the QP. Meng et al. [24] established the vehicle kinemat-
ics model and designed a parking path tracking control-
ler based on MPC algorithm which can make the lateral 
error of simulation in centimeter scale. Ghaffari et al. [25] 
presented a parallel exit parking method based on MPC 
using vehicle dynamic model, while it is difficult to esti-
mate the dynamic parameters of the vehicle accurately 
under low speed condition. Overall, MPC is widely used 
in parking path tracking control issues for the ability to 
take control actions accordingly through forecasting the 
information of future road shape and generate the opti-
mal steering angle by online optimization. However, to 
reduce the computational burden, most research choose 
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the linearized kinematic model, which can result in inac-
curate prediction model due to the linearization error. 
Besides, the closed-loop stability of MPC is generally not 
taken into account in parking path tracking control sys-
tem. Last but not the least, few existing MPC algorithms 
applied in path tracking control system can be verified by 
vehicle test, which cannot reflect the practicability and 
effectiveness of the algorithm. To overcome the afore-
mentioned issues, an instructable solution-based non-
linear model predictive controller (NMPC) embedding 
the modified rear-wheel feedback method (RF-LNMPC) 
is proposed. The main contributions of the paper are as 
follows.

(1)	 In the control design aspect, a discrete-time RF- 
LNMPC considering the position and attitude of 
the parking vehicle is proposed for automated park-
ing system, which is verified by the self-driving 
Lincoln MKZ platform. Compared with Ref.  [26], 
a scaling factor that punishes more on yaw angle 
error costs is also introduced to help get rid of 
short-sighted optimization for better parking.

(2)	 The RF-LNMPC problem with a multi-objective 
cost function is solved by the Interior-Point Opti-
mization whose instructable solution are appro-
priately calculated by combining the modified 
rear-wheel feedback method to improve the perfor-
mance of local optimal solution.

(3)	 The details on the computation of the terminal con-
straint and terminal cost for the linear time-varying 
case is presented, and the closed-loop stability and 
recursive feasibility of RF-LNMPC controller is 
proved via Lyapunov techniques.

The remainder of the paper is organized as follow: the 
vehicle kinematics model and path tracking model are 
presented in Section 2. Section 3 designs the RF-LNMPC 
controller. In Section 4 the closed-loop stability and feasi-
bility of RF-LNMPC scheme are analyzed. The proposed 
controller is implemented and tested on the self-driving 
Lincoln MKZ platform in Section 5. Finally, conclusions 
are drawn in Section 6.

2 � Model of Path Tracking System
2.1 � Vehicle Kinematics Model
The single-track kinematics bicycle model merges the left 
and right wheels into a pair of single wheels at the center 
of the front and rear axles. Figure 1 shows the schematic 
diagram of the vehicle kinematics model. Since the lon-
gitudinal speed is low in APS, the slip angles of the front 
and rear wheel are supposed to be zero in the paper.

The position and attitude of vehicle can be defined 
as (xr , yr , ϕr) on XOY inertial coordinates. (xf , yf ) and 

(xr , yr) are the coordinates of the center point of front 
axle and rear axle respectively, ϕ is the yaw angle of the 
vehicle. δ is the steering angle of the front wheel, vr is 
the speed of the center point of rear axle, and L repre-
sents the wheelbase, r is the turning radius of vehicle. It 
is important to note that the rear axis coordinates are 
applied in the kinematic model in order to control the 
vehicle attitude better.

When the vehicle is moving, the speed of rear axle 
center point can be expressed as:

Restricting the model movement in the plane, the non-
holonomic constraint equations for the front and rear 
wheels are:

Using Eqs. (1)–(3), we can get:

According to the geometry of the front and rear wheels:

Substituting Eqs. (4) and  (5) into Eqs. (2) and  (1), the 
yaw rate of vehicle can be derived:

(1)vr = ẋrcosϕ + ẏrsinϕ.

(2)ẋf sin(ϕ + δ)− ẏf cos(ϕ + δ),

(3)ẋrsinϕ + ẏrcosϕ = 0.

(4)
{
ẋr = vrcosϕ,
ẏr = vrsinϕ.

(5)
{
xf = xr + Lcosϕ,
yf = yr + Lsinϕ.

(6)ω =
vrtanδ

L
,

rv

fv

L

( , )f fx y

( , )r rx y

O
r

X

Y

r

Figure 1  The single-track kinematics bicycle model
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where ω is the yaw rate of the vehicle. Meanwhile, the 
rear wheel steering radius and the front wheel steering 
angle are computed using ω and vr:

Referring to Eqs. (4) and (6), the kinematic bicycle 
model with respect to the axle center of the rear wheels 
can be described:

The model is discretized using forward differencing 
method with sample time �t . The discrete state-space 
equation can be written as [27]:

2.2 � Path Tracking Model
As shown in Figure  2, the nearest path point from the 
center of the rear axle to the path is a datum point in ref-
erence. Previewed path points are obtained by selecting 
an interval of S which starts from the nearest path point. 
sk are previewed path points in the prediction horizon 
and N is the prediction step. The length S between neigh-
boring previewed points is equal to vr ·�t . It is worth 
noting that if the remaining previewed path points are 
not enough for the current prediction step, the predic-
tion step will be redefined to ensure that the last segment 
of the reference path can be tracked accurately.

If the vehicle deviates from the desired path, the vertical 
distance between vehicle position and the tangent of pre-
viewed point is defined as lateral error which is denoted 
as in Eq. (10). When the difference of the heading angles 

(7)
{
r = vr

ω
,

δ = arctan(Lr ).

(8)



ẋr
ẏr
ϕ̇


 =



cosϕ

sinϕ
tanδ
L


vr .

(9)



xr(k + 1)

yr(k + 1)

ϕ(k + 1)


 =



xr(k)+ vr�tcosϕ(k)
yr(k)+ vr�tsinϕ(k)

ϕ(k)+ vr�ttanδ(k)
L


.

between the previewed point and the nearest point is 
taken into account, the method can evaluate the tracking 
error more accurately.

where (xc, yc) represents one of the way points in the ref-
erence path which is nearest to the center point of the 
rear axle. ϕdes is the desired yaw angle that is determined 
by the reference path. The yaw angle error eϕ is defined as 
in Eq. (11) which is the difference between current yaw 
angle of the vehicle and the desired yaw angle of the ref-
erence path:

where v < 0 represents that the vehicle is moving back-
ward. Otherwise, the vehicle is moving forward. mod(·) is 
a remainder operator.

3 � RF‑LNMPC Controller Design
3.1 � Problem Formulations and Preliminaries
Before establishing the RF-LNMPC controller using 
the single-track kinematics bicycle model, the NMPC 
scheme is briefly introduced. For a nonlinear system, the 
general form of the discrete model is usually considered. 
Furthermore, ξ(k) and u(k) are employed to denote the 
state and the control input at time k:

where f (·, ·) is the state transition function, ξ and u are 
the state and the control input of the system, respectively, 
which are subject to the constraints:

where X ⊂ R
n is a convex polytope as the constraint of 

state, Ŵ ⊂ R
m is a convex polytope as the constraint of 

the sequence of inputs.
In the control process, the controller combines the cur-

rent state with the desired state over a finite prediction 
horizon in the future. A series of control sequences are 
obtained by solving the optimization problem satisfying 
the objective function and several constraints in the hori-
zon [k , k + Np].

The typical cost function JNp ,Nc (·, ·) is considered as 
follows:

(10)ey = (xr − xc)sinϕdes −
(
yr − yc

)
cosϕdes,

(11)

{
eϕ = mod((ϕ − ϕdes)− 2π)− π , v < 0,

eϕ = mod(3π(ϕ − ϕdes)− 2π)− π , v > 0,

(12)ξ(k + 1) = f (ξ(k),u(k)),

(13)ξ(k) ∈ X,u(k) ∈ Ŵ,

(14)

JNp ,Nc (ξ(k),u(k)) =
∑Np−1

i=0
ξT(k + i)Qξ(k + i)

+
∑Nc−1

i=0
uT(k + i)Ru(k + i),

Figure 2  Previewed path points
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where Np is the prediction horizon, Nc is the control hori-
zon, constrained by Nc ≤ Np . Q and R are the weighting 
matrix. At each sampling time, the NMPC controller 
solves the optimization problem:

Subject to:

The optimal solution denoted by u∗(·) of Eqs. (14)–(20) 
is generated, and the control input is, therefore, defined 
by:

Hence, u(k) is applied to the system at time k . At the 
next sampling time, the optimization problem in Eqs. 
(14)–(20) is resolved over the shifted predictive horizon, 
and the process is thus iterated at each sampling time.

3.2 � Parking Path Tracking Controller Design
The process of automated parking control is tracking a 
series of waypoints on the reference path. In addition, the 

(15)min
ξ , u

JNp ,Nc (ξ(k), u(k)).

(16)
ξ(k + i + 1) = f (ξ(k + i),u(k + i)),

i = 0, . . . ,Np − 1,

(17)ξ(k + i) ∈ X, i = 0, . . . , Np − 1,

(18)u(k + i) ∈ Ŵ, i = 0, . . . , Nc − 1.

(19)
u∗(·) =

{
u∗(k), u∗(k + 1), . . . ,u∗(k + Nc − 1)

}
,

(20)u(k) = u∗(k).

paper assumes that the reference path has been planned 
in advance. Automated parking control strategy is shown 
as in Figure 3.

Firstly, the controller obtains the real-time state of 
vehicle via various sensors. After obtaining the reference 
path information, the discrete previewed points are gen-
erated and can be applied to construct the path tracking 
model. Furthermore, the terminal constraint and termi-
nal cost are calculated to ensure closed-loop stability and 
feasibility of the RF-LNMPC. The control input can be 
calculated by the optimization of the function with Inte-
rior Point Optimizer (IPOPT) which is an open source 
software package for large-scale nonlinear optimization 
problems [28]. In order to improve the performance of 
the local optimal solution, the an instructable value of 
the optimization model are selected by the modified rear-
wheel feedback method with single-point preview during 
the prediction horizon. Finally, the first element of the 
control sequence is selected as the control input for the 
next moment. The method of solving the optimization 
problem in finite prediction horizon is used to calculate 
the latest control variable for path tracking until the end 
of parking.

Considering a given lateral error and yaw angle error, 
the nonlinear time-discrete system in state space formu-
lation is represented by:

(21)ξ(k + 1) = f (ξ(γ (k)),�δ(k)),

(22)γ (k + 1) = ξ(γ (k), δ(k)),

Figure 3  Automated parking RF-LNMPC strategy
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where ξ is the state vector of Eq. (21), γ is the vehicle state 
vector, �δ is the control input of system.

In the paper, the main focus is that the proposed con-
troller should not only lead to a small tracking error 
including lateral distance error and yaw angle error but 
also guarantee the closed-loop stability and recursive fea-
sibility of system in order to increase the success rate of 
automated parking effectively. Thus, the cost function is 
defined as follows:

where P is the terminal penalty matrix. The cost 
penalizes �δ to improve the smoothness of steering. 
ξT(γ (k + Np))Pξ(γ (k + Np)) is the quadratic terminal 
cost which penalizes the states at the end of the finite 
horizon.

The automated parking control problem for the RF-
LNMPC issue can be formulated as:

Subject to:

(23)ξ =
[
ey eϕ

]T
,

(24)γ =
[
xr yr ϕ

]T
,

(25)
�δ = δ(k + i + 1)− δ(k + i), i = 0, . . . , Nc − 1.

(26)

JNp ,Nc (ξ(γ (k)),�δ(k))

=

Np−1∑

i=0

ξT(γ (k + i))Qξ(γ (k + i))

+

Nc−1∑

i=0

�δT(k + i)R�δ(k + i)

+ ξT(γ (k + Np))Pξ(γ (k + Np)),

(27)min
ξ ,�δ

JNp ,Nc (ξ(γ (k)),�δ(k)).

(28)

ξ(k + 1+ i) = f (ξ(γ (k + i)),�δ(k + i)) =

[
ey(k + i)

eϕ(k + i)

]

=

[
(xr (k + i)− xc(i)) sin ϕdes −

(
yr (k + i)− yc(i)

)
cosϕdes(i)

mod((ϕ(k + i)− ϕdes(i))− 2π)− π

]
,

i = 0, . . . , Np − 1 ,

(29)

γ (k + 1+ i) = ξ(γ (k + i), δ(k + i))

=




xr (k + i)+ vr ×�t × cosϕ(k + i)

yr (k + i)+ vr ×�t × sin ϕ(k + i)

ϕ(k + i)+ vr ×�t × tan δ(k + i)
�
L


, i = 0, . . . , Np − 1 ,

(30)δmin ≤ δ(k + i) ≤ δmax , i = 0, . . . , Nc − 1,

where δmin and δmax are the minimum and maximum 
allowed steering wheel angles, �δmin and �δmax are 
the minimum and maximum allowed increment steer-
ing angle in each sample time, Xf  is the terminal region 
which can be chosen such that it is invariant for the non-
linear system controlled by a local linear state feedback.

3.3 � Computation of Terminal Cost and Terminal Constraint
In the NMPC tracking control, it is well known that the 
closed-loop stability cannot be automatically guaran-
teed by the optimality of the solution since the optimiza-
tion problem may be solved and an infeasible solution is 
obtained. In other words, there does not exist a sequence 
of control inputs for which the constraints are satisfied. 
Even if the optimization problem is always feasible, the 
computed optimal solution may not lead to an asymptot-
ically stable closed-loop system. In general, feasibility and 
closed-loop stability are not ensured in Eqs. (27)–(33). In 
the paper, the terminal penalty matrix and the terminal 
constraint are chosen to ensure the closed-loop stability 
and feasibility. The region of attraction and performance 
bound of the nonlinear system are controlled by a local 
linear state feedback.

The first-order Taylor approximation of the system in 
Eq. (21) is taken into account at the origin point:

where A and B are defined as (∂f /∂ξ(γ ))(0,0) and 
(∂f /∂�δ)(0,0) respectively. Thus, the parts of Eq. (34) can 
be expressed as:

where δ0 is the current steering angle.
If Eq. (34) is stabilizable, then a linear state feedback, 

�δ̃ = Klqr ξ̃  , can be determined by Ak = A+ BKlqr  
which is asymptotically stable. Klqr is the feedback gain 
vector of the linear quadratic regulator (LQR) problem:

(31)
�δmin ≤ �δ(k + i) ≤ �δmax , i = 0, . . . , Nc − 1,

(32)ξ(k + i) ∈ X, i = 0, . . . , Np − 1,

(33)ξ
(
γ
(
k + Np

))
=

[
ey
(
k + Np

)

eϕ
(
k + Np

)
]
∈ Xf ,

(34)ξ̃ (γ (k + 1)) = Aξ̃ (γ (k))+ B�δ̃(k),

ξ̃ =

[
ey
eϕ

]
, �δ̃ = �δ, A =

[
1 vr�tcosϕe
0 1

]
,

B =

[
0

vr�t/Lcos2δ0

]
,
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where Plqr can be obtained by solving the Riccati 
equation.

Then, we can have the following results. Suppose that 
the first-order Taylor approximation of the system (21) at 
the origin point is stable, if Q∗ = Q + KT

lqrRKlqr is the 
symmetric and positive definite, the Lyapunov equation 
which is shown in Eq. (36) will have an exclusive symmet-
ric and positive-definite solution P [29]:

where ε ∈ [0,∞) satisfies ε < −�max(AK ).
Therefore, the terminal penalty matrix P can be calcu-

lated online by solve Eqs. (38) and (36), which make the 
terminal cost contain the time-varying variable such as 
the yaw angle error, vehicle speed. The formula for solv-
ing the Lyapunov equation is given in Ref. [30].

Similarly, assume that the first-order Taylor approxima-
tion of the system (21) at the origin point is stable, one 
neighborhood Xf  of the origin point is as follows:

where α ∈ (0,∞) is the constant. Xf  which is defined as a 
terminal region must satisfy three conditions.

(1) Xf ⊂ X,

(2) Klqrξ ∈ Ŵ , for all ξ ∈ Xf  , Ŵ = [�δmin,�δmax],

(3) Xf  is invariant for the nonlinear system (21) con-
trolled by the local linear feedback �δ = Klqrξ.

In order to determine the terminal region, the largest 
possible α need to be found by solving an iterative opti-
mization problem [29]:

where φ(ξ) equals to f (ξ(γ ),Klqrξ(γ ))− AK ξ(γ ) . The 
max{·} is a function that returns the largest element 
within the brace.

According to the selected value of ε and initial value of 
α1 , the offline iteration starts from α1 until the iterative 
optimization solution become non-positive. By follow-
ing the method to find a suitable α , the terminal region 
and the terminal penalty matrix can give a set of values 
shown in Eq. (37).

3.4 � The Instructable Solution of Optimization Model
The IPOPT which is an open source software package for 
large-scale nonlinear optimization problems is applied 
to efficiently solve the addressed LNMPC problem in 
the paper. The IPOPT implements an interior point line 
search filter method that aims to find a local optimal 

(35)Klqr = (R+ BTPlqrB)
−1BTPlqrA,

(36)Q∗ = −(Ak + εI)TP − P(Ak + εI),

(37)Xf =

{
ξ ∈ Rn|ξ TPξ ≤ α

}
,

(38)max
ξ

{
ξTPφ(ξ)− εξTPξ |ξTPξ ≤ α

}
,

solution. The mathematical details of the algorithm can 
be found in several publications [26].

In the IPOPT, the types of variables are divided into 
state variables (xr , yr ,ϕ) and control variables δ . The num-
ber of all variables and constraints are 4Np and 4Np + 1 . 
The number of nonzero entries in the Jacobian matrix 
and Hessian matrix are 11Np − 4 and 6Np + 1 . The itera-
tive initial values of state variables can be determined 
by the current vehicle state. In order to improve the 
performance of local optimal solution, the iterative ini-
tial values of the control variables are described as the 
instructable solutions which are calculated by the modi-
fied rear-wheel feedback method with single-point pre-
view during the prediction horizon, which can make the 
local optimal solution more feasible under the current 
parking condition.

After the nearest path point and previewed path points 
are determined, the previewed single-point can be 
selected by the current speed feedback dynamically:

where dp is the preview distance determined according to 
the speed feedback, kp is the proportional coefficient.

According to the kinematic model based on rear wheel 
position, the yaw rate of vehicle can be described as 
follows:

where cr is the road curvature which should be distin-
guished to be positive or negative in the parking control 
process.

The yaw angle error rate ϕ̇e provides local asymptotic 
convergence to twice continuously differentiable paths 
[31]:

where g1(er ,ϕe) and ke are positive constants.
According to Ackermann’s steering and small angle 

approximation theorem, the final control law applied in 
the calculation of instructable solution can be described 
as follows:

The procedure for determining the control gains has 
been derived in Ref. [32]. The two gains can be described:

(39)dp = kpvr�t,

(40)ω =
crvrcos(ϕe)

1− crer
− ϕ̇e,

(41)

ω =
crvrcos(ϕe)

1− crer
− g1(er ,ϕe)ϕe − kevr

sin(ϕe)

ϕe
er ,

(42)

δinitial = arctan

{
L

(
crcos(ϕe)

1− crer
− kϕϕe − keer

)}
.

(43)kϕ = 2ζa,
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where ζ is the damping factor which can suppress over-
shoot, a is the positive constant which can make the error 
converge.

4 � Feasibility and Closed‑loop Stability Analysis
After the terminal cost and terminal constraint are deter-
mined, the closed-loop stability of the proposed RF-
LNMPC scheme can be proved by using the Lyapunov 
techniques.

For simplicity, the following assumptions are made.
(1) There is no model mismatch between the prediction 

model and the actual model.
(2) The sets X , Xf  , and Ŵ are closed and contain the ori-

gin point in their interior.
(3) Xf  is invariant for the nonlinear system controlled 

by a local linear state feedback �δ = Klqrξ.
(4) Q , R and P are symmetric positive definite.

4.1 � Feasibility of RF‑LNMPC Scheme
To prove the closed-loop stability of RF-LNMPC control-
ler under the terminal cost and terminal constraint, it is 
necessary to ensure recursive feasibility of the controller. 
In other words, the calculated control sequence �δ∗k+1

 is 
feasible at time k + 1  whenever the local optimal solu-
tion at time k is feasible.

In order to distinguish the variable of system clearly, a 
bar in 

(
ξ ,u

)
 represents the prediction value and an aster-

isk in (ξ∗,u∗) indicates the optimal value. So, the feasible 
local optimal solution at time k is described as:

Eq. (45) satisfies the constraint (31) and its cor-
responding sequence of states in prediction horizon 
[k + 1, k + Np] can be obtained by:

Then, Eq. (46) satisfies the state constraint (28) and 
terminal constraint (33). According to the principle of 
NMPC, the first element obtained by the open-loop 
control is applied to the system (21), whose state can be 
acquired ξ(k + 1) at time k + 1 . Without considering 

(44)ke = a2,

(45)�δ∗ =




�δ
∗
(k|k)

�δ
∗
(k + 1|k)
...

�δ
∗
(k + Np − 1|k)


.

(46)ξ∗(k) =




ξ
∗
(k + 1|k)

ξ
∗
(k + 2|k)

...

ξ
∗
(k + Np − 1|k)

ξ
∗
(k + Np|k)



.

disturbance and model mismatch, the state ξ(k + 1) can 
be described:

Setting ξ(k + 1) as the initial state, the local optimal 
candidate solution can be chosen:

Due to Klqrξ ∈ Ŵ, ∀ξ ∈ Xf  and ξ∗(k + Np|k) ∈ Xf  , Eq. 
(48) satisfies the constraint (31). The state prediction 
sequence corresponding to local optimal candidate solu-
tion (48) can be obtained by:

It can be noticed from Eq. (49) that the first Np − 1 
steps satisfy the state constraint (32) shown as Eq. (50). 
Meanwhile, Xf  is invariant for the nonlinear system 
ξ(k + 1) = f

(
ξ(k),Klqrξ(k)

)
, which indicates the state 

prediction sequence (49) satisfies the terminal constraint 
simultaneously shown in Eq. (51):

To sum up, �δ(k + 1) is the feasible solution of the pro-
posed LNMPC controller at time k + 1.

4.2 � Closed‑loop Stability of RF‑LNMPC Scheme
The following theorem discusses the closed-loop stabil-
ity of the RF-LNMPC scheme. The cost function is non-
increasing, which is crucial for the asymptotical stability 
proof.

The optimal value of cost function can be calculated by 
Eqs. (45) and (46) at time k:

where J∗k  is defined to be continuous and equal to 0 at 
ξ = 0.

(47)ξ(k + 1) = ξ∗(k + 1|k).

(48)�δ(k + 1) =




�δ
∗
(k + 1|k)
...

�δ
∗
(k + Np − 1|k)

Klqrξ
∗
(k + Np|k)


.

(49)





ξ(k + i|k + 1) = ξ
∗
(k + i|k), i ∈ [1,Np],

ξ(k + Np + 1|k + 1) = f (ξ
∗
(k + Np|k),

Klqrξ
∗
(k + Np|k)), i = Np + 1.

(50)ξ(k + i|k + 1) ∈ X, i =
[
1,Np

]
,

(51)ξ
(
k + Np + 1|k + 1

)
∈ Xf .

(52)

J∗k =

Np−1∑

i=0

ξ *T(k + i|k)Qξ∗(k + i|k)

+

Nc−1∑

i=0

�δ∗
T
(k + i|k)R�δ∗(k + i|k)

+ ξ∗
T
(
k + Np|k

)
Pξ∗

(
k + Np|k

)
,
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By using the feasible solution (48) and state prediction 
sequence (49), the optimal value of cost function at time 
k + 1 can be described as:

Through further calculations, Eq. (53) can be written 
as:

Considering Eq. (52), the optimal value of cost function 
(54) is formulated as:

If Xf  is the terminal region for the nonlinear system, 
the positive definite function E(ξ) must satisfy the Ham-
ilton-Jacobi-Bellman inequality for all ξ ∈ Xf  , which can 
be described as [29]:

(53)

Jk+1 =

Np−1∑

i=0

ξ
T
(k + i + 1|k + 1)Qξ(k + i + 1|k + 1)

+

Nc−1∑

i=0

�δ
T
(k + i + 1|k + 1)R�δ(k + i + 1|k + 1)

+ ξ
T
(k + Np + 1|k + 1)Pξ(k + Np + 1|k + 1)

=

Np−2∑

i=0

ξ
* T

(k + i + 1|k)Qξ
∗
(k + i + 1|k)

+

Nc−2∑

i=0

�δ
* T

(k + i + 1|k)R�δ
∗
(k + i + 1|k)

+ ξ
T
(k + Np|k + 1)Qξ(k + Np|k + 1)

+�δ
T
(k + Nc|k + 1)R�δ(k + Nc|k + 1)

+ ξ
T
(k + Np + 1|k + 1)Pξ(k + Np + 1|k + 1) .

(54)

Jk+1 =

Np−1∑

i=0

ξ
* T

k + i|k)Qξ
∗
(k + i|k)

+

Nc−1∑

i=0

�δ
* T

(k + i|k)R�δ
∗
(k + i|k)

+ ξ
* T

(k + Np|k)Pξ
∗
(k + Np|k)

− ξ
* T

(k|k)Qξ
∗
(k|k)−�δ

∗T
(k|k)R�δ

∗
(k|k)

+ ξ
T
(k + Np|k + 1)Qξ(k + Np|k + 1)

+�δ
T
(k + Nc|k + 1)R�δ(k + Nc|k + 1)

+ ξ
T
(k + Np + 1|k + 1)Pξ(k + Np + 1|k + 1)

− ξ
* T

(k + Np|k)Pξ
∗
(k + Np|k).

(55)

Jk+1 =J∗k − ξ
* T

(k|k)Qξ
∗
(k|k)−�δ

* T
(k|k)R�δ

∗
(k|k)

+ ξ
T
(k + Np|k + 1)Qξ(k + Np|k + 1)

+�δ
T
(k + Nc|k + 1)R�δ(k + Nc|k + 1)

+ ξ
T
(k + Np + 1|k + 1)Pξ(k + Np + 1|k + 1)

− ξ
* T

(k + Np|k)Pξ
∗
(k + Np|k).

where F(·, ·) is the cost function for the nonlinear system.
Combining Eq. (52) with Eq. (56), an inequality can be 

formulated as:

Then Eq. (55) is transformed into the following 
inequality:

Since the optimal solution is not worse than the feasi-
ble solution, Eq. (58) becomes:

Therefore, the cost function is non-increasing due to 
J∗ ≥ 0 . The right-hand side is clearly negative definite 
due to the positive definiteness of Q and R . The Lyapu-
nov techniques are used to show that the closed-loop 
system (21) is asymptotically stable. Eq. (59) is sufficient 
to ensure that the state of RF-LNMPC converges to the 
origin point as k → ∞ if the initial state lies in X.

5 � Experiment Validation
A self-driving Lincoln MKZ platform shown in Figure 4, 
is used to implement and test the proposed RF-LNMPC 
controller. The platform is equipped with an integrated 
Differential Global Position System (DGPS) and an Iner-
tial Measurement Unit (IMU). These sensors can meas-
ure the vehicle position and yaw angle which are used to 
calculate the lateral distance error and yaw angle error. 
The vehicle can also realize the by-wire control of the 
throttle, brake, steering angle and gear shifting system. 
The LNMPC parking controller is implemented in C++ 
under ROS system. Generally, the self-driving platform 
should contain two modules: trajectory planning [3] and 
trajectory tracking [33]. But trajectory planning is not the 
focus of the paper. In this paper, the pre-collected way-
points are regarded as desired trajectory.

(56)

E(ξ(s))− E
(
ξ
(
j
))

≤

−

s∑

i=j
F(ξ(i),u(i)), Np ≥ s ≥ j ≥ 0,

(57)

ξ
T
(k + Np|k + 1)Qξ(k + Np|k + 1)

+�δ
T
(k + Nc|k + 1)R�δ(k + Nc|k + 1)

+ ξ
T(

k + Np + 1|k + 1
)
Pξ

(
k + Np + 1|k + 1

)

− ξ
*T
(k + Np|k)Pξ

∗
(k + Np|k) ≤ 0.

(58)
Jk+1 ≤J∗k − ξ

*T
(k|k)Qξ

∗
(k|k)

−�δ
*T
(k|k)R�δ

∗
(k|k).

(59)
J∗k+1 − J∗k ≤− ξ

*T
(k|k)Qξ

∗
(k|k)

−�δ
*T
(k|k)R�δ

∗
(k|k).
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To verify the superiority of the presented RF-LNMPC 
controller, the experiment results among the RF-LNMPC, 
LNMPC (The iterative initial values of steering in IPOPT 
is zero.) and the NMPC are given in the section using the 
typical parallel and vertical parking scenarios. For a fair 
comparison, the parameters of three parking control-
lers are set to be the same. The parameters of vehicle and 
parking controller are shown in Table 1. The vehicle lon-
gitudinal speed is controlled by the PID controller.
Remark: our goal is to make the vehicle track the ref-

erence path as accurately as possible, which can avoid 
collision or parking failure caused by excessive lateral dis-
tance error or yaw angle error. In this sense, the experi-
ment results mainly illustrate the performance of lateral 
distance error and yaw angle error.

The proposed RF-LNMPC controller can finish the 
parallel parking condition with a small yaw angle error 
and lateral distance error shown in enlarged pictures of 
Figure  5. The boxes in Figure  5 represent the outline of 

the vehicle. It can be seen that the tracking effect of RF-
LNMPC is the best and the corresponding trajectory of 
the vehicle is more consistent with the reference path at 
the parking termination state. The curvature of reference 
path and the vehicle speed are shown in Figure 11. The 
maximum curvature is 0.2 m−1 which is already close to 
the maximum turning radius of the vehicle. The maxi-
mum speed in turning is 3.6 km/h. As the vehicle enters 
the second curve, the speed drops to 0.54 km/h.

Figure 4  The Lincoln MKZ platform used in the experiment

Table 1  Parameters of vehicle and controller for experiment

Parameters Nominal values

Vehicle mass m (kg) 1820

Wheelbase L (m) 2.85

Maximum steering angle δmax  (°) 33.5

Maximum increments steering
angle in each sample time �δmax  (°)

6.0

Maximum turning radius rmax  (m) 4.56

Prediction horizon Np 18

Control horizon Nc 18

Weighting matrix Q
[
75 0

0 100

]

Weighting coefficients R 1

Sample time �t (s) 0.1

Damping factor ζ 1.7

Proportional factor a 0.1
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The lateral distance error and yaw angle error are 
shown in Figures 7 and 8, respectively. The yellow dotted 
lines in Figures 7 and 8 represent the boundary of lateral 
distance error and yaw angle error. The two boundaries 
are set to 0.05 m and 2°. Due to the influence of the ini-
tial error and acceleration, all three controllers have the 
lateral error which is not more than 0.08 m after the vehi-
cle enters the first curve. The lateral distance error of RF-
LNMPC reduces to less than 0.05 m at 6 s and remains 
at 0.03 m as the speed decreases. It is also worth noting 
that the yaw angle error of RF-LNMPC is no more than 
2° during the parking process. On the contrary, the lateral 
distance error of LNMPC and NMPC keep increasing as 
the vehicle enters the second curve. When the vehicle is 
parked to the destination, the errors of the LNMPC and 
NMPC are 0.08  m and 0.18  m, respectively. According 
to Figure 8, even though the yaw angle error of LNMPC 
converges to 0 at 22 s, there is still an increased yaw angle 
error due to the tradeoff of factors in the cost function 
of LNMPC. However, the final experiment results of 
LNMPC including position and attitude of the vehicle 
are within the acceptable ranges. The terminal constraint 
and terminal cost are not considered in NMPC, of which 
the lateral error and the angle error does not converge 
to the acceptable ranges. The yaw angle error of NMPC 
has reached 3.8° in the destination, which may cause the 
parking failure. To sum up, the proposed RF-LNMPC 
parking controller performs much better in the parallel 
parking condition.

Figure  9 shows the actual steering-by-wire feedback 
values and the instructable solutions calculated by RF-
LNMPC. It can be seen that the steering angle of RF-
LNMPC is relatively smooth, with a maximum of 33°. 
The iterative initial value of LNMPC in IPOPT is always 
zero, so the local optimal value of steering angle at curve 
is worse than that of RF-LNMPC in the performance of 
parking path tracking. For the NMPC, even though the 
steering angle of the vehicle have reached the limit value, 
there is still a large lateral distance error and yaw angle 
error in the parking process, which may cause the vehicle 
collision.

It can be seen from Figure  10 that the tracking effect 
of the RF-LNMPC and LNMPC controller is better than 
that of the NMPC controller which does not consider the 
terminal constraint and terminal cost in vertical parking 
condition. Since the curvature of reference path remains 
basically unchanged, it can be seen that the effects of the 
BFLNMPC and LNMPC are similar at the parking ter-
mination state. The curvature of reference path and the 
vehicle speed are shown in Figure 11. The maximum cur-
vature is 0.195  m−1 which is already close to the maxi-
mum turning radius of the vehicle. The maximum speed 
in turning is 3.2 km/h. As the vehicle enters the parking 
spot, the speed drops to 1.3 km/h.
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The lateral distance error and yaw angle error are 
shown in Figures 12 and 13, respectively. The boundary 
of lateral distance error and yaw angle error are set to 
0.05 m and 1° shown as the yellow dotted line. Similar to 
the experiment results under the parallel parking condi-
tion, the proposed RF-LNMPC controller can maintain 
a small yaw angle error and lateral distance error in the 
parking process. The peak value of the yaw angle error 
is about 0.84° and the peak value of the distance error is 
0.04 m as shown in the red line. Although the lateral dis-
tance error and yaw angle error of the LNMPC controller 
converges to about 0.01  m and 0.2° at the end of park-
ing, the maximum lateral distance error and yaw angle 
error are 0.05  m and 1.5° which are much larger than 
that of RF-LNMPC in the parking process. The lateral 
distance error and yaw angle error between LNMPC and 

RF-LNMPC are only 0.01 m and 0.3° which are negligible 
error. In practice, the performance of the two controllers 
is almost the same in the final position of vertical park-
ing condition. However, accurate path following around 
turns is tricky for vertical parking. It can also be found 
that the maximum error occurs in the place where the 
path curvature is the largest. Therefore, the maximum 
error is described as the advantage of RF-LNMPC in the 
vertical parking experiment. On the other hand, it can 
also be shown that the error of RF-LNMPC is smaller 
than that of LNMPC when the curvature is larger. In 
addition, the performance of NMPC is even worse com-
pared to LNMPC, which can be demonstrated that the 
maximum yaw angle error and lateral distance error of 
NMPC has reached 2.14° and 0.12  m. According to the 
aforementioned results, the proposed RF-LNMPC park-
ing controller performs much better in the vertical park-
ing condition.

Figure  14 shows the actual steering-by-wire feedback 
values in the vertical parking condition and the instructa-
ble solutions calculated by RF-LNMPC. it is observed 
that the vehicle controlled by the proposed RF-LNMPC 
controller can turn earlier when the curvature of the 
reference path is increasing. Similar to the experiment 
results under the parallel parking condition, the local 
optimal value of LNMPC at curve is worse than that of 
RF-LNMPC in the performance of parking path tracking.

In order to present the parking effect of three control-
lers more intuitional, three groups of experiment photos 
under parallel parking condition are selected for compar-
ison as shown in Figure 15. The path tracking experiment 
in Figure  15 corresponds to the parallel parking results 
in Figure 5. More detailed tracking performance can be 
observed from the Figures  7 and 8. By taking the white 
line as the reference, we can clearly observe that the pro-
posed RF-LNMPC controller enables the vehicle to park 
into the parking space and maintain a good attitude in 
the final position compared with the LNMPC and NMPC 
controller.
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Due to the disturbance in the experimental condition, 
the proposed RF-LNMPC algorithm may be caused to 
be random, which implies that the results obtained by 
a single experiment cannot fully reflect the comprehen-
sive characteristics of the algorithm. To solve the afore-
mentioned problem and make our experiment more 
convincing, the Monte Carlo method is applied to prove 
the effectiveness of the proposed controller by analyzing 
ten groups of the experimental data. The lateral distance 
error and yaw angle error of each experimental group are 
used to calculate the mean and standard deviation. Fur-
thermore, in order to further illustrate the stability of the 
proposed controller, the standard deviation is also calcu-
lation as follows:

where N  is the number of data for each experiment, fi is 
the lateral distance error or yaw angle error of data for 
each experiment, µ is the mean value of data for each 
experiment.

Ten groups of experimental data in two parking sce-
narios are analyzed by the standard deviation and mean 
value as shown in Tables 2 and 3. The mean value of the 
yaw angle errors and lateral distance errors caused by 
proposed RF-LNMPC under different parking conditions 
is lower than those of the LNMPC and NMPC. More 
importantly, the experimental data of the proposed RF-
LNMPC controller has smaller standard deviation value, 
which indicates that the proposed RF-LNMPC control-
ler has better stability and repeatability in practical use. 
Therefore, through the analysis of experimental data 
using the Monte Carlo analysis, the effect of initial lateral 

(60)σ =

√
1

N

∑N

i=1
(fi − µ)2,

distance error can be excluded. The results obtained by 
the Monte Carlo method prove the effectiveness and 
practicability of the proposed RF-LNMPC algorithm in 
another aspect.

6 � Conclusions
The paper presents an implementable RF-LNMPC con-
troller for APS in order to improve the overall path 
tracking accuracy in parking condition. A discrete-time 
RF-LNMPC considering the position and attitude of 
vehicle is proposed to increase the success rate of auto-
mated parking effectively. Furthermore, the modified 
rear-wheel feedback method is applied to calculate the 
instructable solution for the IPOPT, which can improve 

(a) The experiment photos of RF-LNMPC

(b) The experiment photos of LNMPC

(c) The experiment photos of NMPC

Figure 15  The experiment photos under the parallel parking condition

Table 2  The data analysis of lateral distance error (m)

RF-LNMPC LNMPC NMPC

Mean (parallel) 0.032  0.066  0.091

Standard deviation 0.012  0.024  0.025

Mean (vertical) 0.038  0.061  0.072

Standard deviation 0.015  0.015  0.033

Table 3  The data analysis of yaw angle error (°)

RF-LNMPC LNMPC NMPC

Mean (parallel) 1.321 1.720 2.883

Standard deviation 0.379 0.557 0.615

Mean (vertical) 0.561 1.200 1.446

Standard deviation 0.123 0.380 0.522
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the performance of local optimal solution. The paper 
details how to compute the terminal constraint and ter-
minal cost for the linear time-varying case. Then, the 
closed-loop stability and recursive feasibility of the pro-
posed RF- LNMPC controller are verified via Lyapunov 
techniques by adding a terminal state constraint and a 
terminal cost theoretically. Finally, the proposed LNMPC 
is implemented on the self-driving Lincoln MKZ plat-
form and the experiment results have shown improved 
performance in the parallel and vertical parking con-
ditions. The Monte Carlo analysis also demonstrates 
good stability and repeatability of LNMPC which can be 
applied in practical use in the near future.
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