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Abstract 

Intelligent fault diagnosis is an important method in rotating machinery fault diagnosis and equipment health 
management. To deal with co-frequency vibration faults, a type of typical fault in rotating machinery, this paper 
proposes a fault diagnosis method based on the stacked autoencoder (SAE) and ensembled ResNet-SVM. Further-
more, the time- and frequency-domain features of several co-frequency vibration faults are summarized based 
on the mechanism analysis and calculated using actual vibration data. To realize and validate the high-precision diag-
nosis method of rotating equipment with co-frequency faults proposed in this study, the following three criteria are 
required: First, to improve the effectiveness and robustness of the ensembled model and the sliding window using 
data augmentation, adding noise, autoencoder (AE) and SAE methods are analyzed in terms of principle and practi-
cal effects. Second, ResNet is used as the feature extractor for the ensembled ResNet-SVM model. Feature extraction 
is carried out twice, and the extracted co-frequency fault features are more comprehensive. Finally, the data augmen-
tation method and ensemble ResNet-SVM are combined for fault diagnosis and compared with other methods. The 
experimental results show that the accuracy of the proposed method can exceed 99.9%.
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1  Introduction
The co-frequency fault is the most common type of fault 
in rotating machinery, and its reliable diagnosis has 
practical engineering significance. Owing to the simi-
larity of the co-frequency fault, misdiagnosis frequently 

occurs, which leads to serious consequences. Therefore, 
the highly accurate diagnosis of co-frequency faults is 
a critical problem that needs to be solved [1–3]. Mean-
while, with the development and gradual improvement 
of deep learning frameworks, intelligent fault diagnosis 
based on deep learning methods has become a research 
hotspot in recent years. At the same time, the application 
of deep learning in rotating machinery is also increas-
ing [4–7]. The co-frequency faults of rotating machinery 
mainly include imbalance, misalignment, and looseness 
faults [8–10]. Ma et  al. [11] employed ensemble learn-
ing to identify various faults in a rotor-bearing system, 
which included three methods: a convolutional residual 
network, deep confidence network, and deep autoen-
coder (AE) [12]. On the other hand, Guo et al. applied a 
combination model of continuous wavelet transform and 
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convolutional neural networks (CNN) to co-frequency 
fault diagnosis [13].

Deep learning and machine learning frameworks have 
influenced various fields attributed to high performance 
and low expertise. Based on the Internet of Things (IoT), 
data-driven fault diagnosis and health status monitoring 
of machinery have adopted machine learning and deep 
learning for more than a decade [14], especially with par-
ticular success in gearbox and bearing fault diagnosis [15, 
16]. The traditional fault diagnosis method uses only a 
support vector machine (SVM) for single-domain analy-
sis. In contrast, to analyze the inner features of the fault 
signal, Yan et  al. [17] combined time-domain statistical 
features, frequency-domain features, and signal modal 
decomposition features. For the adverse operating condi-
tions of bearings, batch-normalized CNNs eliminate the 
differences in feature distribution owing to data imbal-
ance and are used to improve diagnostic accuracy [18]. 
Transferring methods from the image recognition field to 
the fault diagnosis field can be performed in two ways. 
First, the model is trained on a non-faulty dataset but 
evaluated on a faulty dataset. For example, the ResNet-50 
model is trained in ImageNet and then transferred the 
trained model to the time-domain vibration signal test 
dataset of the signal converted into RGB images [19]. 
Second, the model training and testing processes are 
applied to faulty datasets. Similarly, based on the ResNet 
model, He et al. [20] converted the vibration signals into 
gray images using ResNet-50 and ResNet-101 in multiple 
concurrent fault diagnoses of parallel shaft gearboxes. 
To the authors’ knowledge, the use of ResNet for fault 
feature extraction is mainly based on layers 50 and 101 
instead of ResNet-18, due to higher recognition accuracy 
of the ResNet network as the number of layers increases 
[21].

In practical engineering, the normal operation equip-
ment data account for most of the data, and the fault data 
only account for a small portion or even less. Hence, it 
is necessary to perform data augmentation using vibra-
tion data [22–24]. In image recognition, speech rec-
ognition, machine translation, etc., data augmentation 
is extensively used to improve the diagnostic accuracy 
of algorithms and model generalization. Gong et  al. 
[25] transformed a vibration signal into pictures and 
enhanced the images through geometric transformation, 
random cropping, and average blurring. In recent years, 
generative neural network (GAN)-based data augmen-
tation methods have become a hot research topic. Shao 
et  al. [26] designed auxiliary classifier GAN structures 
based on one-dimensional convolutional layers and used 
this architecture to generate sufficient real samples on the 
induction motor dataset. Azamfar et  al. [27] proposed 
the MoGAN oversampling technique for learning the 

joint distribution of the minority and majority samples 
in adversarial learning. The discriminator in adversarial 
learning not only discriminates between the truth and 
falsity of the generated samples but also acts as a multi-
classifier for faults. In addition to the GAN method, AE-
based technology has been used in data augmentation to 
diagnose faults. Liu et  al. [28] combined variational AE 
and GAN to learn the high-level features of rolling bear-
ings and improved the effectiveness and robustness of the 
model via a joint analysis of the discriminator and depth 
repentance. Tang et al. [29] extended the AE method to 
various operating conditions by adding an adaptive mod-
ule and establishing an adaptive transmission AE struc-
ture. The AE-based method has a more straightforward 
structure and is easier to train than the GAN method. 
There are three points to consider when using the GAN 
and AE. First, the generated samples can be similar but 
not identical to the input samples. Second, the same sam-
ples will be generated differently after applying the gen-
erator framework. Finally, this method can reduce the 
effect of data imbalance on the input data.

This paper is organized as follows: Section 2 introduces 
the mechanism and features of co-frequency vibration 
faults. Section 3 describes the work related to intelligent 
diagnosis and data augmentation, and the ResNet-SVM 
algorithm is introduced in detail. Section  4 verifies the 
performance of the ensemble classifier using actual co-
frequency fault data, and conclusions are presented in 
Section 5.

2 � Co‑frequency Fault Mechanism and Features
2.1 � Mechanism Analysis of Co‑frequency Vibration Faults
The dynamics model for the rotor-bearing system is illus-
trated in Figure 1, and the rotor dynamics equation can 
be expressed by the following equation:

where M, C and K  are the mass, damping, and stiffness 
of the rotor system, X is the displacement response of 
the rotor system; F (t) is the excitation force of the rotor. 
For a rotor-bearing system with n degrees of freedom, 
X ∈ R

n . The simplified 2-dimensional rotor dynamic 
model shows that the displacement response and 

(1)MẌ + CẊ + KX = F (t),

Figure 1  Typical rotor dynamics model



Page 3 of 16Zhang et al. Chinese Journal of Mechanical Engineering           (2024) 37:64 	

excitation force can be decomposed into the horizontal 
and vertical directions.

Rotor imbalance faults are the most common and 
major vibration faults among rotor faults. The rotor 
system, including the rotor accessories, has a certain 
imbalance during processing and manufacturing, which 
develops into a fault state under both sudden and grad-
ual circumstances. In general, unbalanced mass m’ and 
eccentricity e are the main consequences of vibration 
exceeding the limits. Therefore, the resulting excitation 
force is given by the following equation:

where ω is the rotor speed. From Eq. (2), it can be con-
cluded that the spectrum of the rotor unbalance fault is 
dominated by the rotational frequency.

In the case of well-aligned rotors, the coupling trans-
mits only circumferential forces such that multiple rotors 
rotate steadily together between or between the rotor 
and the prime mover. The axial and radial alternating 
forces caused by misalignment failures lead to excessive 
vibrations of the system in both directions. Therefore, the 
additional axial and radial forces can damage the bearing 
prematurely. The misalignment forms include angular 
misalignment, parallel misalignment, and comprehensive 
misalignment.

where � is the product of the misalignment and speed. 
Eq. (3) shows that the characteristic frequency of the 
misalignment fault  is dominated by  twice its  rotational 
frequency.

Most of the looseness faults occur in the bearing con-
nection, bolts, or other connections at the base or foot of 
the equipment. Looseness causes large gaps in the joint 
surface and simultaneously leads to low damping and 
insufficient joint stiffness, resulting in excessive machin-
ery vibration. Consequently, a very small degree of imbal-
ance and misalignment that already exists in the rotor 
is amplified at this stage. Therefore, the spectrogram of 
the loosening fault is still theoretically dominated by the 
rotation frequency combined with other harmonics.

where, �′ is the amount in the gap, and the stiffness 
of the rotor system varies with the change of the gap. 
In addition, the rotational frequency is dominant in the 
spectrogram and is accompanied by other multipliers.

(2)F1 = m
′eω2

,

(3)
{

F2x = 2m�sin
(

2ω − ϕ′
)

,

F2y = 2m� cos
(

2ω − ϕ′
)

,

(4)k =

{

k1 |x| ≤ �′,

k2 |x| > �′.

2.2 � Analytical Methods Based on Mechanistic Features
The collected raw signals are discrete in the time domain. 
The statistical features of time-domain signals include the 
root mean square (RMS), peak-to-peak, variance, kurto-
sis, skewness, and form factor. However, the time-domain 
features of vibration signals often do not entirely meet the 
fault diagnosis requirements, so the barycenter frequency 
and RMS frequency in the frequency domain features are 
introduced. In addition, parameters such as kurtosis, skew-
ness, and form factor should not differ between the co-
frequency faults based on this principle. However, these 
parameters are still considered in Figure 2.

The data collected in Section  4 and the equations in 
Table 1 are used to select different fault data with the same 
length (16384) for feature statistics. After each parameter is 
calculated 10 times, the mean value is obtained, as shown 
in Figure 2. The statistical figure shows that, although the 
parameters differ in terms of co-frequency faults, the fea-
ture values they contain can’t be characterized. Therefore, 
the vibration signal analysis method is unsuitable for co-
frequency fault diagnosis.

3 � Data Augmentation and Intelligent Diagnostic 
Algorithms

3.1 � Data Augmentation
During the equipment operation, the fault state is insig-
nificant. Even for some sudden faults such as shaft break-
age, the vibration data are small. Hence, it is necessary to 
perform data augmentation on the fault data. The dataset 
after data augmentation not only enhances the model gen-
eralization, but also alleviates the data imbalance caused by 
the large difference in data sizes between different types of 
faults. Typical data augmentation methods used in rotat-
ing machinery fault diagnosis include adding noise, sliding 
windows, AE, and SAE methods.

3.1.1 � Sliding Window
The sliding window method is a frequently used data aug-
mentation method for fault diagnosis. The principle here is 
to select different starting points from the raw vibration data 
and intercept the same length of data consecutively or inter-
cept from the exact location but with different sampling. The 
repetition of the original dataset using the fixed window and 
continuous sliding interception, enhances the order of mag-
nitude enough to satisfy the training model requirements. 
The sliding window process is expressed by Eq. (5)

(5)

X ∗ win =[ x1 x2 · · · xn ] ∗ win

=











xi+1 xi+2 · · · xi+L

· · · · · · · · · · · ·

xj+1 xj+2 · · · xj+L

· · · · · · · · · · · ·

xN+1 xN+2 · · · xN+L











,
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where the window size of the sliding signal X(t) , L , ∗win, 
refers to the sliding window operation, i is the starting 
point of the sliding window, and N  groups of length L 
samples are obtained. The number of groups N  can be 
calculated using Eq. (6), where ⌊a⌋ denotes a rounded-
down value of a.

3.1.2 � Adding Noise
The vibration signal is affected by the current, environ-
ment and other factors [30]. To increase the diversity of 
the samples, a straightforward method is to add noise to 
the collected signal, such as Gaussian white noise. Given 
that the input signal X(t) = [x1(t), x2(t), . . . , xn(t)] is 
divided into n small segments, where the intercepted sig-
nal is xi , after adding noise it is x1i (t) , and the noise signal 
is ni(t) , as shown in Eq. (7).

However, for the co-frequency fault, adding noise is 
unsuitable because the characteristic frequency of the 
fault is already clear in Section  2, so the spectrum is 
relatively single, while adding noise disrupts the original 
clear spectrum.

3.1.3 � AE and SAE
An AE is an efficient neural network structure for learn-
ing input data features using unsupervised learning 
methods, which are commonly applied in the pre-train-
ing process of neural networks[31]. Furthermore, it is 

(6)N =

⌊

n− i

L

⌋

,

(7)x1i (t) = xi(t)+ ni(t).

Figure 2  Statistical chart of fault signal characteristics of different 
faults

Table 1  Common vibration signal characteristics

Domain Parameter name Expression

Time-domain Peak-to-peak xp−p = max (x)−min (x)

RMS
xrms =

√

1

n

n
∑

i=1

x2i

Variance
xvar =

1

n

n
∑

i=1

(xi − x)2

Skewness xskew = E
[

(

x−µ
σ

)3
]

Kurtosis xkurt = E
[

(

x−µ
σ

)4
]

Form factor xw−f =
xrms
|x|

Frequency-domain RMS frequency
Frms =

√

1

k−1

k
∑

k=1

[

A(k)− A
]

Barycenter frequency

Fb−f =

K
∑

k=1

f (k)A(k)

K
∑

k=1

A(k)
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also used as a generator for its encoder-decoder struc-
ture; its typical structure is shown in Figure 3.

The crucial information is extracted in the encoder 
part, and the input data dimensionality is reduced simul-
taneously. Subsequently, the decoder part receives the 
reduced-dimensionality data and achieves the data gen-
eration function by reducing the loss of the input layer 
data. Notably, excessive hidden layers lead to overfit-
ting. In this case, the AE turns into a numerical mapping 
rather than discovering the underlying features. There-
fore, only four hidden layers were present in the encoder 
structure in the data augmentation process described in 
Section 4.2.

The vibration signal from the coding layer to the decod-
ing layer is expressed using Eq. (8).

where f (x) and g(x) denote the decoding and encod-
ing functions, respectively, both of which result from 

(8)x = f
(

g(x)
)

,

layer-by-layer network superposition. Taking the decod-
ing function as an example, it can be expressed by Eq. (9).

where Wl and bl are the weight and bias of the l-th layer.
To further improve the similarity between the gener-

ated and input data as well as the robustness and stabil-
ity of the model, each layer of the network can be trained 
greedily layer by layer to achieve model pre-training. 
Each layer is trained, and then the entire structure, 
that is, from the input layer to the output layer, is back-
propagated to train and is fine-tuned. The pre-training 
process is the initialization of the model because a bet-
ter initialization places the parameters to be learned in 
a more “suitable” position. The SAE method can learn 
higher-level features of the input data than AE and a 
higher number of features from the original data, and 
the features are more similar. I and II in Figure  4 show 
the training process for each layer and the overall model, 
respectively.

3.2 � SVM and ResNet
The SVM method is one of the most popular classifica-
tion methods in machine learning. The main idea of the 
SVM classifier is to find the hyperplane in the categories 
using different methods. The location of the hyperplane 
is determined by the nearest sample, that is, support 
vectors. Two approaches can be considered for the lin-
early indistinguishable categories. First, samples can exist 
between the support vector and hyperplane, that is, a 
soft margin. The margin size and classification accuracy 
are balanced by the penalty factor C. The appropriate C 

(9)f (x + 1) = Wlf (x)+ bl ,

Figure 3  Typical AE network structure

Figure 4  Typical SAE network structure
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value is usually obtained by cross-validation, and, the 
smaller the C, the softer the margin and the more noise 
in the data. Second, the feature vector is the inner prod-
uct, and then the low-dimensional feature data space is 
elevated to a high-dimensional space by kernel function 
transformation. Theoretically, increasing the low-dimen-
sional indistinguishable data to a sufficiently high dimen-
sion can achieve absolute linear differentiation. Common 
kernel functions include the Gaussian kernel function, 
polynomial kernel function, radial basis function (RBF) 
kernel function, and linear kernel function. In the prac-
tical training of SVM, the optimal hyperplane is deter-
mined by combining the two methods and calculating the 
square of the classification error.

ResNet is a residual structure proposed to degrade the 
accuracy of multilayer CNN models, as shown in Fig-
ure  5. The right side of the figure is the "shortcut," and 
the left side is the standard CNN structure, that is, con-
volution-pooling-activation. The CNN structure focuses 
on the convolutional layer, and the convolutional compu-
tation process of the input data is shown in Figure 6. The 
convolution kernel Q slides over the entire area to obtain 
convolution values from left to right and from top to bot-
tom. Subsequently, the values in the sliding direction are 
arranged to obtain the convolution result for the entire 
input. The sliding step and size of the convolution kernel 
are hyperparameters, where the convolution kernel size 
is generally 3 × 3 or 5 × 5. The smaller the convolution 
kernel, the more localized the features, that is, the smaller 
the receptive field. Thus, convolution kernel Q, continu-
ously updated with Q by backward gradient propaga-
tion, can also be regarded as the weight of data P. After 
the pooling layer receives the convolution result, further 
downsampling is performed. In the pooling layer, differ-
ent kernels are used, but the kernel only finds the aver-
age or the maximum convolution result within the kernel 
range, that is, average pooling and maximum pooling. In 
this process, the kernel size of the pooling layer is hyper-
parametric and parameter-free, and the data dimension-
ality is reduced, further improving the global feature 
extraction. The activation function further improves the 
ability to fit the nonlinear features of the model.

The shortcut structure on the right side uses a convo-
lution kernel size of 1×1, maintaining the same chan-
nels between the input and output data, and utilizes 
number multiplication on the input data, which can 
improve the nonlinear representation of the model. For 
dataset x fed into the residual block, the result F(x) is 
output via the left side and the result x is output via 
the right side. Because the multiplication operation 
does not change the data structure, both the results 
are superimposed to activate the output. Therefore, the 
residual block learned is F(x)− x . Because of this net-
work structure design, a shortcut structure can increase 
the gradient of the deep network, thus greatly reducing 
the gradient explosion and dispersion.

Figure 5  Residual block schematic

Figure 6  Convolution calculation process
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Therefore, the gradient descent direction of the 
model is more obvious, and the model is more expres-
sive. After superimposing multiple layers of residual 
blocks, global average pooling layer is applied. For the 
j-th category, the output is normalized using Eq. (10) 
Softmax function as follows.

3.3 � The Proposed Ensembled ResNet‑SVM Algorithm
This study proposes a novel ensembled network archi-
tecture for rotating machinery co-frequency vibration 
faults, known as the ensembled ResNet-SVM archi-
tecture. This architecture can be divided into three 
parts. The first is the data fusion. A variety of fault 
signals are collected through the data collector and 
sensors. To prevent gradient dispersion or explosion 
in the network caused by excessive data fluctuation, 
the raw data should be fused into a multidimensional 
dataset after normalization processing. The second 
is the feature extractor. Multidimensional data infor-
mation is fed into the ResNet structure. It outputs 
the initial features, that is, the first feature extrac-
tion step, and then starts the SVM training with the 
second feature extraction step. The input data size 
is 1 ×  32 ×  32 (channel ×  height ×  width), first trans-
formed into 64 × 32 × 32 through a convolutional layer; 
next, the transformed data each time flow through the 
residual block, doubling the data channel, and chang-
ing the width and height by half; finally, the size of the 
output feature is 512 ×  1 ×  1. In the training ResNet 
stage, the residual block is followed by connecting the 
global average pooling and fully connected layer to out-
put the classification probability. After calculating the 
loss using Softmax and cross-entropy, the parameters 
are propagated for further iterative optimization. The 
third is the SVM classification. The trained ResNet is 
loaded and the fully connected layer in the network is 
removed. ResNet reduces the input data dimension to 
512. The data after feature extraction are then entered 
the SVM multi-classifier. The appropriate parameters 
are adjusted in the SVM to determine the fitting sup-
port vectors. While testing the SVM, the support vec-
tors and parameters are directly loaded. This part 
comprises the second feature extraction and the clas-
sification result output. The structures of Parts 2 and 3 
are shown in Figure 7.

According to the above analysis, the proposed 
ResNet-SVM algorithm has the following advantages.

(10)σ(z)j =
ezj

∑K
k=1 e

zk
, j = 1, 2, · · · , k .

(1)	  The features obtained after two feature extractions 
are more comprehensive, and this method is helpful 
for exploring the features of co-frequency faults.

(2)	  When the model parameters need to be updated, 
the proposed integrated model, which can be 
retrained only for the classifier part, that is, by 
increasing the support vectors of the SVM, saves 
time and computing resources compared with the 
iterative training of neural networks.

(3)	  This method can be applied to the fault diagnosis 
of a small number of fault samples based on the 
SAE.

4 � Experimental Validation
The data augmentation model and ensemble ResNet-
SVM model were validated on the experimental rig. All 
network architectures were based on Python 3.8, using 
the open-source learning library Pytorch 1.8 as the 
back-end learning and deep learning engine to build the 
network. All training and testing of the networks were 
performed on workstations using an Intel(R) Xeon(R) 
W-2255 CPU, 64 GB RAM, and NVIDIA GTX Geforce 
2080 Ti GPU with Windows 10 as the operating system. 
The experimental flow is illustrated in Figure 8.

4.1 � Experiment Preparation and Data Collection
The test rig validated the experiments in the following 
figures. Figure  9 shows the schematic illustration, and 
Figure  10 shows the actual experimental pictures. The 
first-order natural frequency of the rotor test rig was 
approximately 45 Hz, and the fixed speed frequency 
was 30 Hz. In the experiment, an eddy current sensor 
was used as the phase signal, and four acceleration sen-
sors were placed in the horizontal and vertical directions 
of the bearing position. Different faults were alternately 
experimented on the test rig, and the design of different 
faults is as follows. An unbalanced fault was simulated by 
adding small studs on the disk in the middle of the rotor; 
a misalignment fault was set at the coupling by twisting 
the knob to adjust the misalignment level, and the loose 
fault was simulated by changing the tightening degree 
of the bolts at the bearing position away from the motor 
end. The BH7000 data collector was used, the sampling 
frequency was set to 25600 Hz, the sampling point was 
16384, and a sliding window processed the collected data 
to perform the first data augmentation process. The spe-
cific magnitudes of the faults, raw vibration data size, and 
divided dataset size are listed in Table 2.
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4.2 � Experimental Comparison between Different Data 
Augmentation Methods

As described in Section 3.1, both AE and SAE methods 
were applied for data augmentation in the experiments. 
The two methods used the same encoder-decoder struc-
ture, with the number of neurons varying from 1024-512-
256-128-64-128-256-512-1024. In addition, both data 
augmentation models have model loss as the detection 
object in each model, and use the learning rate reduc-
tion strategy to overcome the model falling into a local 
minimum. The dataset divided in Section  4.1 was used 
to train the model for each fault separately with the data 
augmentation method. The training process is shown 
in Figure  11, and the training results are shown in Fig-
ures 12 and 13.

In the model training process, the network layers, acti-
vation functions, optimizer, and optimizer parameters 
were maintained the same for both encoders, as listed in 
Table  3. The loss of the AE and SAE models decreased 
with increasing iteration time and gradually stabilized in 
the later stage. Only the first 20 epochs are shown in Fig-
ure 11 to facilitate observation of the downward trend.

In terms of the performance of the two encoders from 
the perspective of loss reduction, Eq. (11) is used to 
calculate the average loss reduction amplitude on the 
dataset, where l_in represents the initial loss, and l_s rep-
resents the loss after stabilization.

The loss reduction for each fault was first calculated 
for each encoder, followed by the average loss reduc-
tion for all encoders of the same type. For the SAE, 
because the greedy algorithm is used to train each layer 
first, the average loss reduction is only trained for the 
whole model at the end when calculating the average 
loss reduction. The average reduction in the AE train-
ing set loss was 65.8%, the validation set average reduc-
tion loss was 47%, while the training set loss average 
reduction and validation set loss of SAE were 93.6% and 
85.2%, respectively. Meanwhile, the average number of 
iterations of the AE model during the model training 

(11)











li =
lin−ls
lin

,

lm =

n
�

i=1

li

n .

Figure 7  ResNet-SVM actual training flow chart
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process was approximately 10 epochs to reach stabil-
ity, whereas the SAE model only required 5 epochs. In 
contrast to the data augmentation results, the output of 
the SAE model can simulate not only the overall pat-
tern in the fault feature image but also the details of 
the grain in the image, as shown in Figure 13. From the 
above perspectives, the SAE model can generate more 
detailed and full-scale fault features, and the results 
for the same fault type are more similar after data aug-
mentation. However, the training process of the SAE 
model is more complicated, the training time is longer, 
the model is sensitive to parameter adjustment, and it 
requires more effort to tune parameters; therefore, the 
AE model is still retained in the following experiments.

4.3 � Fault Diagnosis Methods Validation
After AE and SAE, each fault data point was expanded 
to 1.5 × the original, and 80% of the overall dataset was 
divided as the training set, leaving 20% as the validation 
set. The batch size of the validation set was 128. After 
model training, the entire validation dataset was used as 
the test set to test model performance.

To verify and evaluate the accuracy of the proposed 
ensemble ResNet-SVM for co-frequency fault diagno-
sis, the algorithm is viewed from the perspective of 
the precision ratio and recall ratio for different faults 
in this study. The F1 score was obtained from the har-
monic average of precision and recall. For the binary 
classification results the fault precision ratio, recall 
ratio, and F1 score were calculated using Eq. (12) as 
follows:

where TP represents the number of true positives, FP rep-
resents the number of false positives, and FN represents 
the number of false positives. For the multi-classification 

(12)











P = TP
TP+FP ,

R = TP
TP+FN ,

F1score = 2
P∗R
P+R ,

Figure 8  Experimental flow chart

Figure 9  Schematic illustration of the rotor-bearing system 
with the co-frequency fault simulation test rig

Figure 10  Actual images of the rotor-bearing system 
with the co-frequency failure simulation test rig
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results, the F1 score of each class calculated and the aver-
age were calculated.

4.3.1 � SVM and ResNet Fault Diagnosis Validation
For contrast tests, the fault diagnosis performance of 
the SVM and ResNet models must be evaluated. With 
scikit-learn1.0.1, the size of the penalty coefficient C 

and the selection of the kernel function greatly influ-
ence the performance and training time of the model. 
The RBF was chosen as the kernel function to provide a 
better fit for nonlinear vibration coupling.

The penalty coefficients were set to series values, and 
the F1 score was used to evaluate the classification abil-
ity of the model. The evaluation process is illustrated in 
Figure 14. As illustrated, the diagnostic performance of 
the model gradually increased as the penalty coefficient 
increased for both datasets, and the inflection points of 
the two lines had the same position and trend. When 
the penalty coefficient C reached 0.04, the perfor-
mance of the SVM on both datasets gradually became 
the same and stabilized using this value as the thresh-
old. The penalty factor for the SAE dataset was larger 
than that for the AE dataset at the same F1 score, indi-
cating that the SAE data have less noise. The average 

Table 2  Basic parameters for different faults and fault dataset

Fault Magnitude Raw data size Data size 
after sliding 
window

Unbalance 2 g/∠0° 4*47*16384 3008*1024

Misalignment 0.75 mm 4*64*16384 4096*1024

Looseness 1 turn 4*43*16384 2752*1024

Normal \ 4*25*16384 1600*1024

Figure 11  Training process for different faults using AE and SAE data argumentation methods (a. unbalanced, b misaligned, c. looseness, d. 
normal)
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diagnostic accuracy of the SVM for different faults was 
98.65% for the AE dataset and 98.80% for the SAE data-
set when the penalty coefficient was set as the threshold 
(Figure 15).

It is necessary to fine-tune the ResNet-18 input chan-
nel to 1. The optimizer used was stochastic gradient 
descent (SGD) with an initial learning rate of 0.01. To 
avoid the gradient dispersion phenomenon, the momen-
tum parameter was set to 0.9. To reduce the current gra-
dient at each gradient update, a weight decay factor was 

introduced to prevent the model from overfitting, which 
was set to 1e-3 in this experiment, and the batch size was 
128. The obtained loss drop and accuracy increase curves 
during the training process are shown in Figure  16. In 
the model training process, the training curve of the AE 
dataset had jitters; in contrast, the SAE training curve 
was smooth. The test results obtained using both datasets 
are shown in Figure 17. ResNet demonstrated an average 
diagnostic accuracy of 99.82% for different faults on the 

Figure 12  AE data augmentation results

Figure 13  SAE data augmentation results
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AE datasets and 99.90% on the SAE datasets, which was 
0.1% higher.

4.3.2 � The Validation of Ensembled ResNet‑SVM Fault 
Diagnosis

The ResNet part adopts the previously trained part of the 
ensemble ResNet-SVM model. After extracting features 
from the ResNet part, the SVM part must reconsider the 
choice of the penalty coefficient. The selection process for 
the SVM parameters, as previously described, is shown 

in Figure 18. As can be seen, when the penalty coefficient 
of the SAE dataset is small, the F1 score reaches 0.999.

Although there is a slight increase in the later period, 
the F1 score of the AE dataset still starts below 0.2, indi-
cating that the features extracted from the SAE dataset 
are more full-scale after ResNet feature extraction. After 
reaching the stabilization point, the penalty coefficients 

Table 3  Model training parameters

Parameter name AE SAE

Batch size 32

Optimizer Adam

initial learning rate 0.001

Momentum 0.9

Weight decay 1e-5

Epoch 50

Number of epochs per layer training \ 50

Batch size per training layer \ 32

Learning rate per training layer \ 0.001

Optimizer per training layer \ Adam

Figure 14  SVM performance of different data enhancement 
methods with different penalty factor C

Figure 15  Confusion matrix of SVM in different data sets (a. AE, b. SAE)
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were adopted as 0.01 for the AE dataset and 0.03 for the 
SAE dataset. The tested confusion matrix of the ResNet-
SVM model after thresholding the corresponding data-
sets separately is shown in Figure  19. The diagnostic 
accuracy of the ensemble model was 100% for different 
faults on the SAE dataset, whereas that of the AE dataset 
was 99.8%.

4.4 � Experimental Conclusions
Compared with the cross-validation process of the 
SVM penalty coefficient, when the ensembled model 
adopts the SAE dataset, the F1 score is over 99.9%, and 
the remaining method starts at approximately 0.1. SAE 
and AE were used as the data-augmented datasets in 

the experiments, and three models, SVM, ResNet, and 
ResNet-SVM, were used for the experimental com-
parison. The before-and-after images obtained from the 
experiments show that both the methods are effective. 
However, the model training process was smoother and 
the dataset had less noise when using the SAE dataset. To 
validate the diagnostic effectiveness of the three models 
adequately, the average results after five tests using the 
two datasets are shown in Figure 20. In terms of the over-
all diagnostic results, the diagnostic accuracy of the SVM, 
ResNet, and ensembled ResNet-SVM models increased 
sequentially. The diagnostic accuracy was 0.1%–0.01% 
higher using the SAE dataset for the same diagnostic 

Figure 16  ResNet loss and accuracy plots using different datasets (a. Loss curve for AE dataset, b. Accuracy curve for AE dataset, c. Loss curve 
for SAE dataset, d. Accuracy curve for SAE dataset)
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method, particularly using the method based on SAE and 
ResNet-SVM, with an accuracy of up to 99.9%.

5 � Conclusions
For practical purposes, it is important to diagnose co-
frequency faults with high accuracy. In this study, we 
propose an ensembled ResNet-SVM model and regard 
ResNet as a feature extractor, while SVM performs fur-
ther feature extraction and final classification. Moreover, 
to improve the generalization ability of the model, AE 
and SAE were used as fault data generators in the experi-
ments and the two data augmentation methods were 

Figure 17  Confusion matrix for ResNet using different test sets (a. 
AE, b. SAE)

Figure 18  Penalty coefficient selection in ensembled model SVM part

Figure 19  Confusion matrix for ensembled models in different test 
sets (a. AE, b. SAE)
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compared in the experiment. The following conclusions 
can be drawn from the experimental results.

(1)	 The analysis of the experimental vibration data 
reveals that the time- and frequency-domain 
parameters of the co-frequency faults contain each 
other. If the traditional characteristic parameters 
are used to identify faults, the feasibility is low; 
therefore, an intelligent algorithm is necessary.

(2)	 Comparing the performance of AE and SAE with 
three types of fault diagnosis methods, these two 
data augmentation methods are effective. However, 
with SAE data augmentation, the loss of intelligent 
diagnosis methods falls more smoothly and with 
less jitter, and the diagnostic accuracy obtained for 
the same diagnosis method is 0.1%–0.01% higher on 
an average.

(3)	 A high-precision co-frequency fault diagnosis can 
be achieved using the SAE and ensembled ResNet-
SVM fault diagnosis model. The average diagnostic 
accuracy can reach 99.9%.

Although the method proposed in this study combin-
ing the advantages of ResNet and SVM parts obtains 
promising results, the loss of the two parts in ensem-
bled model can’t be completely fused owing to the dif-
ferent loss functions. Further research will be needed to 
backpropagate the fused loss.
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