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Abstract 

Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjust-
ment. Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper. The mecha-
nism with two out-of-plane rotational and one lifting degrees of freedom (DoFs) plays an important role in posture 
adjustment. Based on elastic beam theory, the stiffness matrix and mass matrix of the beam element are estab-
lished where the moment of inertia is considered. To improve solving efficiency, a dynamic model with low orders 
of the mechanism is established based on a modified modal synthesis method. Firstly, each branch of the RPR type 
mechanism is divided into a substructure. Subsequently, a set of hypothetical modes of each substructure is obtained 
based on the C-B method. Finally, dynamic equation of the whole mechanism is established by the substructure 
assembly. A dynamic experiment is conducted to verify the dynamic characteristics of the compliant mechanism.

Keywords  Compliant parallel mechanism, Dynamic model, Modal synthesis method, Dynamic experiment

1  Introduction
In recent decades, the flexure-hinge-based compliant 
mechanism has attracted widespread attention from 
a variety of applications in miniature and nanometer 
technology. Due to its no friction, no backlash, easy to 
miniaturization and other advantages, the flexure-
hinge-based compliant mechanism with out-of-plane 
rotation DoFs has important value in applications for 

posture-adjustment, such as cell operation [1, 2], micro- 
or nano-machining [3–5] and wafer alignment in micro-
lithography [6].

To date, a variety of compliant mechanisms with out-
of-plane rotation DoFs have been proposed and studied 
for diverse applications. He et  al. [7] presented a novel 
compact single-mirror laser scanner based on a 3-PRS 
compliant mechanism actuated by the permanent mag-
netic suspension. Kim et al. [8] designed and modeled a 
precision micro-stage based on the well-known tripod 
parallel configuration for active micro-vibration control. 
Park and Lee [9] proposed a piezoelectric-driven tilt mir-
ror for a fast laser scanner. Kim et  al. [10] developed a 
nano-precision 2R1T vertical positioning stage which 
can compensate for the deformation caused by gravity. 
Hao et al. [11] also proposed a 2R1T compliant mecha-
nism based on the constraint-based design method. Yu 
et  al. [12] proposed a 2R1T compliant parallel mecha-
nism for optical fiber alignment. In our previous work, 
an RPR type 2R1T compliant parallel mechanism was 
proposed [13]. The RPR type mechanism has two vertical 
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continuous rotation axes relative to the fixed coordi-
nate, which are known. One of them is fixed to the fixed 
platform; the other one is close to the moving platform, 
and its position and direction change in motion. Due to 
its kinematic characteristics, the RPR type mechanism 
has the advantages of easy control and high orientation 
accuracy.

More compliant mechanism applications have been 
extended to address high speed and high frequency. Thus, 
dynamic modeling has become an urgent research task. 
This can be crucial for evaluating or optimizing dynamic 
performance and for designing controllers. The pseudo 
rigid body model method (PRBMM) [14–16] is a versa-
tile tool that can be used for static and dynamic mode-
ling and analysis of compliant mechanisms. The dynamic 
model can be established by calculating the kinematics 
with characteristic parameters based on the Lagrange 
dynamic modeling approach. Similar to the PRBMM, 
kinematic DOFs of compliant mechanisms are usu-
ally taken as variables in a lumped-parameter dynamic 
model [17, 18]. However, this method is mostly used for 
small deformation mechanisms with low accuracy. In the 
distributed-parameter model [19, 20], elastic deforma-
tions of each flexure member or rigid-body member are 
taken as the variables. The dynamic model is established 
by formulating the total elastic and kinetic energies and 
combining them with Lagrange’s equation. Because more 
degrees of freedom are considered, accuracy of the dis-
tributed parameter method is usually higher than that of 
the lumped-parameter dynamic model, yet the order of 
the dynamic model is larger. The transfer matrix method 
[21] has the advantages of low equation order and easy 
programming. However, the method is rarely applied for 
spatial compliance mechanisms due to complex struc-
tures. Recently, Ling et  al. [22–26] proposed a dynamic 
stiffness modeling method based on D’Alembert’s prin-
ciple for simultaneous kinetostatics and dynamic model 
of compliant mechanisms with small deflection in a 
static manner. However, the element dynamic stiffness 
matrix needs to be obtained in advance. In linear elas-
ticity theory, the dynamics of spring-mass systems have 
been extensively studied. A variety of dynamic methods 
have been proposed and applied to complex structures, 
such as the reverberation ray matrix method [27, 28] and 
spectral element method [29]. These methods can be 
effectively used in the dynamic modeling and analysis of 
complex structures (such as trusses). However, they are 
not currently used in compliant mechanisms.

The dynamic control of compliant mechanisms requires 
the establishment of a dynamic model with high accuracy 
in solving dynamic responses and high computational 
efficiency. Therefore, based on the distributed-parameter 

model method, a dynamic model with low orders of an 
RPR type mechanism is established for future application 
in the paper. The modal synthesis method is modified 
for dynamic modeling of compliant mechanisms for the 
first time. The remainder of this paper is organized as fol-
lows. A brief introduction of the modal synthesis method 
is given in Section  2. The elastic element modeling is 
established in Section  3. In Section  4, a dynamic mod-
eling with low orders of the whole RPR type mechanism 
is established. Simulations and experiments are carried 
out to verify the analytical modeling in Sections 5 and 6, 
respectively. Finally, a conclusion is given in Section 7.

2 � Application of the Modal Synthesis Method 
in Compliant Parallel Mechanisms

For a complex spring-mass system, a dynamic solution 
meeting the accuracy requirements over a short time is of 
great significance for real-time control. Due to complex 
structure, the dynamic model of the spatial parallel com-
pliant mechanism is considerably cumbersome. Improv-
ing the efficiency of the dynamic calculation is one of the 
keys to practical application of this kind of mechanism.

The modal synthesis method is an efficient way to 
reduce the order of dynamic model and improve the effi-
ciency of dynamic calculation. The basic concept of the 
method is that the order of the overall dynamic equation 
of the mechanism is reduced by discarding higher-order 
modes of substructures in a complex spring-mass system. 
The core of the modal synthesis method is to obtain a set 
of high-quality hypothetical modals. The hypothetical 
modes, as the modal space expanded by the Ritz basis, 
can well cover the actual low-order modal space of the 
system. Therefore, the modal synthesis method can not 
only simplify the calculation of the dynamic characteris-
tics of complex mechanisms, but also simplify the calcu-
lation of the dynamic response.

The steps of the modal synthesis method of the compli-
ant parallel mechanism can be summarized as follows:

1. According to the structural characteristics, branches 
of the compliant parallel mechanism are split as 
substructures.

2. Based on the mechanical analysis, a set of hypotheti-
cal modes with a higher quality of each substructure is 
constructed.

3. The physical coordinates of each substructure are 
transformed into modal coordinates according to the set 
of hypothetical modes.

4. Through the interface connection conditions, the 
dependent modal coordinates are eliminated. Then, the 
dynamic equation represented by the independent modal 
coordinates of the whole system is derived.
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5. According to the obtained modal matrix, the modal 
coordinates are transformed into physical coordinates to 
reproduce the physical state of the system.

Craig and Bampton [30] improved the fixed interface 
modal synthesis method proposed by Hurty [31], which 
is called the C-B method. In the C-B method, the hypo-
thetical mode is constructed based on the kinematics of 
the substructure. The hypothetical modal set obtained 
by the C-B method has two subsets, i.e., the reserved 
main modal set with all interfaces fixed and the con-
strained modal set containing all interface coordinates. 
The displacement of any point in the substructure can be 
described by these two modal sets. Because of intuitive-
ness and practicability, the C-B method is modified and 
used here for the RPR type compliant mechanism.

The hypothetical modal set can be expressed as

where 
[

ψk

]� is the reserved main modal set. 
[

ψc

]� is the 
constrained modal set.

After the interfaces are fixed, the main modal set can 
be obtained by solving the dynamic characteristic equa-
tion of the substructure.

Let 
[

ψ ik

]

 be a part of the low-order modal set after 
truncating the high-order modes of 

{

ψ ik

}

 . The order of 
the reserved low-order main modal set 

[

ψ ik

]

 is smaller 
than that of the other set in 

{

ψ ik

}

 . The reserved main 
modal set of the substructure can be expressed as

where 0ic represents the mode of the fixed interface.
The function of the compliant parallel mechanism 

is to realize the transmission and conversion of force 
and motion. The main mode of the substructure can 
not reflect the actual motion of the compliant paral-
lel mechanism, because the mode of its interface is 0. 
Therefore, the main modes of the substructure are all 
removed in the paper. In addition, the displacement of 
any point in the substructure can be expressed as the 
superposition of the elastic deformation of the sub-
structure and the traction motion from the driving 
source. The motion in the compliant mechanism can be 
completely expressed by the constrained mode of the 
substructure.

(1)[ψ]
� =

[

[

ψk

]� [

ψc

]�
]

,

(2)
(

[

K̂
]�

− ω
2
[

M̂
]�
)

{

ψ ik

}

= {0}.

(3)
[

ψk

]�
=

[
[

ψ ik

]

0ic

]

,

For the constrained mode of the substructure, addi-
tional constraints are imposed on all the interface 
degrees of freedom. Then, the constrained interfaces 
are allowed to produce unit displacement along each 
degree of freedom in turn, while other constraints 
remain unchanged (The displacement of the con-
strained interface coordinate is forced to be 0). The 
resulting displacement of static deformation is called 
the constrained mode of the substructure. The num-
ber of constrained modes is equal to that of interface 
degrees of freedom. Hence, the constrained modal of 
the substructure can be expressed as

where I jc is an identity matrix. ψ ic can be obtained by

where 
[

k ii k ij
k ji k jj

]�

 is the stiffness matrix of the substruc-

ture. The meaning of Rjc is a constraint that makes 
boundary to produce unit displacements.

From Eq. (5), 
[

ψc

]� can be obtained by

Thus, the first coordinate transformation of the sub-
structure can be expressed as

where {u} is the physical coordinate of the substructure 
representing the actual displacement of nodes in the sub-
structure. {p} is the modal coordinate of the substructure.

3 � Introduction of the RPR Type Mechanism 
and Stiffness Model of the Substructure

As shown in Figure  1, the RPR type compliant mecha-
nism is driven by 4 piezoelectric actuators. And the 
branches are placed vertically and symmetrically. The 
topological structure of the mechanism is 2-UPR-2-RPU, 
which U represents the universal joint, R represents the 
revolute joint, and P represents the translational joint. 
The structures of the U pair and the R pair are shown in 
Figure  2, respectively. Their dimension parameters are 
given in Table  1. Distance from U pair to R pair in the 
same branch is equal to 40 mm. The distances from the 

(4)
[

ψc

]�
=

[

ψ ic
I jc

]�

,

(5)
[

k ii k ij
k ji k jj

]�[

ψ ic
I jc

]�

=

[

0ic

Rjc

]

,

(6)
[

ψc

]�
=

[

ψ ic
I jc

]�

=

[

−[k ii]
−1

[

k ij
]

I jc

]�

.

(7){u} =
[

ψc

]�
{p},
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center point of the platform to the midpoint of the two 
branches are 40 mm and 48 mm, respectively. The trans-
lational joint is realized by bridge-type displacement 

amplifier, of which a quarter of the structure is shown in 
Figure 3. The displacement amplifier is installed close to 
the fixed platform.   

3.1 � Mass Matrix and Stiffness Matrix of the Beam Element
In the paper, the flexure hinge and the connecting link-
age of the RPR type compliant mechanism are regarded 
as elastic beam elements. For a beam element K, there are 
i and j nodes at its ends. The displacements of these two 
nodes can be expressed as

As shown in Figure  4, the displacement of node j 
includes the rigid motion of the bar with node i and the 
elastic deformation of the bar. The deformation of a point 
in the element can be expressed by the shape function

where N (x) is the shape function matrix. The shape func-
tions of the axial deformation and torsion deformation 
are determined as first-order polynomials, and those of 
the bending deformation are determined as third-order 
polynomials.

For the boundary conditions, the deformation at node i 
is 0, and the deformation at node j is

where Dk

(

j
)

=

[

E r̂k(lk)
0 I

]

 , rk
(

j
)

=
(

0 0 lk
)T , and 

r̂k(lk) is the skew-symmetric matrix defined by the trans-
lational vector rk(lk).

The shape function of the beam element can be 
obtained from the boundary condition.

(8)ui =
(

tix tiy tiz αix αiy αiz

)T
,

(9)uj =
(

tjx tjy tjz αjx αjy αjz

)T
.

(10)�k(x) = N (x)

[

ui

uj

]

,

(11)�k

(

j
)

=
[

−Dk

(

j
)

I
]

,

Figure 1  The RPR type compliant mechanism

Figure 2  U complaint joint and R complaint joint

Table 1  Size parameters of flexible hinges

R pair (mm) R = 4 h = 10 b = 10 t  
=0.03

U pair (mm) r = 1.5 h = 10 t = 0.03

Figure 3  A quarter of the displacement amplifier

Figure 4  Schematic diagram of deformation of an elastic beam 
element
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The displacement of a point in the beam element is 
the sum of the motion caused by node i and the elastic 
deformation of the element, and can be expressed as

where N k =

[

N k1

N k2

]

=
[(

Dk(x) 0
)

+ N (x)
]

.

The kinetic energy of the element can be divided 
into translational kinetic energy and rotational kinetic 
energy. The translational kinetic energy is

where u̇i and u̇j denote the velocities of nodes i and j, 
respectively.

The rotational kinetic energy is

where dI =





dIx
dIy

dIz



 is the matrix composed of 

moments of inertia of the micro-segment dx.

In summary, the kinetic energy of the element is

where Mk =
∫ lk
0

ρN
T

k1Ak(x)N k1dx +
∫ lk
0

NT
k2dIN k2 is 

the mass matrix of the element.
The elastic potential energy of the element can be 

expressed as

(12)N (x) =





























−
x
lk

0 0 0 0 0 x
lk

0 0 0 0 0

0 2x3
l3k

−
3x2
l2k

0 0 0 x3
l2k

−
2x2
lk

0 3x2
l2k

−
2x3
l3k

0 0 0 x3
l2k

−
x2
lk

0 0 2x3
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−
3x2
l2k

0 −
x3
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+
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lk

0 0 0 3x2
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−
2x3
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+
x2
lk

0

0 0 0 −
x
lk

0 0 0 0 0 x
lk

0 0

0 0 −
6x2
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+
6x
l2k

0 3x2
l2k

−
4x
lk

0 0 0 −
6x
l2k

+
6x2
l3k

0 3x2
l2k

−
2x
lk

0

0 6x2
l3k

−
6x
l2k

0 0 0 3x2
l2k

−
4x
lk

0 6x
l2k

−
6x2
l3k

0 0 0 3x2
l2k

−
2x
lk





























.

(13)uk(x) = N k

[

ui

uj

]

,

(14)Tkt =
1

2

[

u̇T
i u̇T

j

]

∫ lk

0

ρN
T

k1Ak(x)N k1dx

[

u̇i

u̇j

]

,

(15)Tkr =
1

2

[

u̇T
i u̇T

j

]

∫ lk

0

NT
k2dIN k2

[

u̇i

u̇j

]

,

(16)







































dIx =
ρAk(x)

�

l2y + l2z

�

12
dx,

dIy =
ρlyl

3
z

12
dx,

dIz =
ρl3y lz

12
dx.

(17)Tk =
1

2

[

uT
i uT

j

]

Mk

[

ui

uj

]

,

where K k =

[

−DT
k

(

j
)

E

]

kk
[

−Dk

(

j
)

E
]

 is the stiffness 

matrix of the element.
Using the assembly method in the finite element 

method, the mass matrix and stiffness matrix of the 
substructure can be obtained.

where Rck is the transformation matrix from global coor-
dinate to local coordinate. Pck is a matrix composed of 0 
and 1, which represents the position of the element in the 
global frame.

3.2 � Mass Matrix and Stiffness Matrix of Each Substructure
According to the structural characteristics of the RPR 
type compliant parallel mechanism, its branches are 
divided into several sub-structures. In view of the simi-
larity of the two types of branches, only one of them is 
analyzed in the paper.

Taking the RPU branch as an example, the branch is 
split into three sub-structures, namely a flexible R pair, 
a U pair and a displacement amplifier. They are denoted 
as A, B, and C respectively, as shown in Figure 5. In sub-
structure C, the flexible leaf spring is a single beam ele-
ment, and the other connecting beams are divided into 
three beam elements with the same length. Consequently, 
substructure C is split into 26 beam elements (including 
26 nodes). The nodes c1 and c14 are connected to the R 
pair and the U pair, respectively.

In substructure C, each element is not connected end 
to end, but offset. The connection of elements c4c5, c5c6 
and c6c7 is shown in Figure 6. The actual nodes of the leaf 
spring element are c5* and c6*. c5* and c5 are not directly 
connected, but there is a deviation de. Assume that there 
is a rigid and massless linkage c5c5* connecting two 

(18)V e
k =

1

2

[

uT
i uT

j

]

K k

[

ui

uj

]

,

(19)Mc =
∑

PT
ckR

T
ckMckRckPck ,

(20)K c =
∑

PT
ckR

T
ckK ckRckPck ,
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adjacent elements, thus the displacement and force rela-
tionship of nodes c5* and c5 can be expressed as

where

(21)uc5∗ = D1
euc5 ,

(22)f c4∗ = D2
e f c4 ,

(23)D1
e =

[

r5 r5d̂e

0 r5

]

,

(24)D2
e = −

[

r5 0

r5d̂e r5

]

,

uc5∗ and uc5 are displacements of c5* and c5, respec-
tively. f c4∗ and f c4 are node forces of c5* and c5, respec-
tively. r5 is coordinate transformation matrix from 
coordinate of c4c5 to this of c5c6. d̂e is the skew-symmetric 
matrix defined by the translational vector de.

There are three sizes of beam elements, and their size 
parameters are shown in Table 2. The mass matrix and 
stiffness matrix of the C substructure can be obtained 
by substituting the parameters in Table  2 into Eqs. 
(19)–(22).

Since the structure of the flexible U pair is relatively 
complicated, it is simplified here as a notched U pair. 
The xy view is shown in Figure 7, and its parameters l 
and t are consistent with the structural parameters of 
the original U pair. The contour line of the simplified U 
pair is part of an ellipse, and its equation f(z) is shown 
in Table 3.

Figure 5  Schematic diagram of compliant mechanism and its discretization

Figure 6  Sketch of the element deviation in the displacement 
amplifier

Table 2  Size parameters of beam elements in Substructure C

Length (mm) Width (mm) Height (mm)

c1c2 element 1 10 0.4

c2c3 element 5 10 2

c6c7 element 8 10 6

Figure 7  Sketch of the simplified U pair and its discretization
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Substructures A and B are beams with variable cross-
sections. When calculating their compliance matrices 
and mass matrices, they are approximately discretized 
into 10 uniform beam elements with the same length, as 
shown in Figure 7. The mass matrix and stiffness matrix 
of the beam element in substructures A and B can be 
obtained by substituting the parameters in Table 3 into 
Eqs. (19) and (20).

4 � Dynamic Modeling of the RPR Type Mechanism 
with Low Orders

After obtaining the stiffness matrix and mass matrix of all 
substructures, the dynamic modeling with low orders of 
the whole mechanism is built based on the C-B method.

4.1 � Truncated Modes of Each Substructure
Substructures A and B are composed of 10 beam elements 
with different sections in series. One end of substructure A 
is fixed, and the other end is the boundary. Both ends of 
B are boundaries. The degree of freedom of each bound-
ary node is equal to 6. Therefore, the constrained modes of 
substructures A and B can be expressed as

where I6×6 is an identity matrix. ψA
c ,ψB

c  and ψB
c  can be 

obtained by Eq. (6).
The nodes c1 and c14 are boundaries of substructure C, 

and their constraint modes can be recorded as

The solution of 
[

ψC

]� is as follows: Firstly, a new matrix 
is formed by removing the 85th–90th rows and the 85th–
90th columns of the stiffness matrix of C after fixing c14. 
The first 6 columns in Eq. (27) can be obtained by substi-
tuting the new matrix into Eq. (6). Secondly, a new matrix 

(25)[ψA]
� =

[

ψA
c

I6×6

]

,

(26)[ψB]
� =





I6×6 0

ψB
c ψ

B
c

0 I6×6



,

(27)
�

ψC

��
=









I6×6 06×6

7:84ψ
C
c1 7:84ψ

C
c1

06×6 I6×6

91:162ψ
C
c2 91:162ψ

C
c2









.

is formed by removing the first six rows and columns of the 
stiffness matrix C after fixing c1. The last six columns in Eq. 
(27) can be obtained by substituting the new matrix into 
Eq. (6).

4.2 � The First Coordinate Transformation
The first coordinate transformation in the modal synthesis 
method is to transform the physical coordinates into modal 
coordinates, to obtain the principal mass matrix and prin-
cipal stiffness matrix of each substructure. Notably, the 
orders of the principal mass matrix and the principal stiff-
ness matrix are equal to the coordination number of the 
truncated mode.

Let M =





MA

MC

MB



 and K =





KA

KC

K B



 be 

the principal mass matrix and the principal stiffness matrix 
of the branch, respectively.

4.3 � Second Coordinate Transformation
The second coordinate transformation in the modal syn-
thesis method is to remove the non-independent coor-
dinates and retain the independent coordinates in each 
substructure. It is not difficult to find that the coordinates 
of the nodes connecting the two substructures are non-
independent. Let Limp =

[

pTC pTB2

]T be a set of inde-
pendent modal coordinates. pC is the modal coordinate of 
substructure C. pB2 is the last 6 elements of pB , and pB is 
the modal coordinate of substructure B. The following rela-
tionship can be obtained

(28)



























M�
A =

�

[ψA]
�

�T

MA[ψA]
�,

M�
B =

�

[ψB]
�

�T

MB[ψB]
�,

M�
C =

�

�

ψC

��
�T

MC

�

ψC

��
,

(29)



























K �
A =

�

[ψA]
�

�T

KA[ψA]
�,

K �
B =

�

[ψB]
�

�T

K B[ψB]
�,

K �
C =

�

�

ψC

��
�T

KC

�

ψC

��
.

Table 3  The contour line of the simplified U pair

The simplified U pair
f (z) = −b

√

1− (x−a−t)2

a2
+ b (x > 0) a = 10−t

2
mm b = 5mm

f (z) = b

√

1− (z+a+t)2

a2
− b (x < 0)
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where TLim =





T 1

T 2

T 3



 , T 1 =
[

I6×6 06×12

]

 , T 2 = [I12×12

06×6] , T 3 =
[

06×6 I12×12

]

.

4.4 � Dynamic Equation of the Whole Mechanism
The moving platform is regarded as an ideal rigid body. The 
relationship between the physical coordinate and modal 
coordinate of the node connected to the moving platform 
in substructure B is

The relationship between the coordinates of the center of 
the moving platform and uB2 is

where us is the coordinate of the center of the moving 

platform. Dmp =

[

rmp rd̂mp

0 rmp

]

 is the adjoint transforma-

tion matrix.
The independent coordinates of the whole mechanism 

can be expressed as p =
[

Lim1pT Lim2pT Lim3pT Lim4pT us

]T , 
where Limip(i = 1, 2, 3, 4 ) is a new modal coordinate 
formed by removing pB2 in Limip . The relationship 
between the generalized coordinate of the whole mecha-
nism and that of each branch is

where Lim1T =

[

Rs1 0 0 0 0

0 0 0 0 D1

]

,

Rsi (i = 1, 2, 3, 4) is the coordinate transformation 
matrix from the global frame to the branch frame.

The overall mass matrix and stiffness matrix of the 
mechanism are

(30)





pA
pC
pB



 = TLimp,

(31)uB2 = pB2.

(32)uB2 = Dmpus,

(33)









Lim1p
Lim2p
Lim3p
Lim4p









=









Lim1T
Lim2T
Lim3T
Lim4T









p,

Lim2T =

[

0 Rs2 0 0 0

0 0 0 0 D2

]

,

Lim3T =

[

0 0 Rs3 0 0

0 0 0 0 D3

]

,

Lim4T =

[

0 0 0 Rs4 0

0 0 0 0 D4

]

.

where T s =
[

0 0 0 0 I
]

.
The free vibration model of the RPR type mechanism 

without damping can be expressed as

The natural frequency of the RPR type mechanism 
can be obtained by

According to the retained modes, we can know the 
order of the mass matrix and the stiffness matrix in Eq. 
(36) is only 54, which is much smaller than the original 
order of the system.

5 � Dynamic Simulation of RPR Type Compliant 
Parallel Mechanism

In this section, Ansys Workbench is used to conduct 
modal simulations to verify the established dynamic 
model of the RPR type mechanism. In addition, the mate-
rial selection is Al-7075.

The first 6-order modes obtained by simulation are 
shown in Figure  8. Due to the out-of-plan deformation 
of the displacement amplifier, undesired motions of the 
moving platform are expressed in the first 3 modes. The 
last three modes are the working modes of the RPR type 
mechanism, namely 2R1T. When the actuator is installed 
in the motion amplifier, the out-of-plane deformation 
would be suppressed. Subsequently, the defective move-
ment of the moving platform will be eliminated.

The modal synthesis method is an approximate dynamic 
modeling method. In addition, the simplified processing of 
the flexible hinge also introduces unavoidable errors. It can 
be seen in Table 4 that the maximum error is not more than 
15% between the theoretical analysis and the simulation 
results. As the cost of improving solution efficiency, a larger 
error is totally acceptable. Especially, when the modeling of 
the flexible hinge is more accurate, the overall dynamics of 
the mechanism will be more accurate.

6 � Experiment and Analysis
A dynamic experiment is conducted to obtain the 
dynamic characteristics of the RPR type compliant mech-
anism. The amplifier and flexible hinges in each branch 
are fabricated by wire electrical discharge machining, and 
the whole body is assembled by screws (Figure 9).

(34)M =
∑

LimjTTT
T
MTTLimj + TT

s MsT s,

(35)K =
∑

LimjTTT
T
K TTLimj ,

(36)Mp̈ + Kp = 0.

(37)
∣

∣

∣
K − ω

2M

∣

∣

∣
= 0.
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A modal hammer is utilized to provide impulse force 
on the output stage to excite vibration. Two acceleration 
sensors (LW369802 from PCB PIEZOTRONICS, Inc.) 
are used to measure the vibration response of the moving 
platform. A vibration and noise analyzer (SCM2E05 from 
Siemens, Inc.) is utilized to analyze the vibration signal 
from the acceleration sensors.

The sensors are mounted on the moving platform 
in four ways to measure the dynamic response of the 
moving platform in 6 DoFs, as shown in Figure 10. The 
dynamic experiment is divided into four steps according 
to the placement of the sensor. In each step, the impact 
points are hit successively by the modal hammer. The 
vibration signal from sensors is collected and processed 
by the vibration and noise analyzer. To avoid random-
ness, each step of the experiment is carried out five times. 
The result takes the average of the values obtained from 
the five experiments.

The curves of the frequency response functions (FRFs) 
obtained by the vibration and noise analyzer are given in 
Figure 11. And the resonance frequencies of the first-six 
orders obtained from the experiment are listed in Table 5. 
The resonance frequencies obtained by analytical model, 
simulation and experiment are relatively close. In addi-
tion, the natural frequencies obtained by the experiment 
are slightly smaller than those obtained by simulation. 

Figure 8  The modal simulation results of the mechanism, (a)–(f) are the first 6 mode shapes

Table 4  The first 6 natural frequencies of the RPR type mechanism obtained by theoretical analysis and simulation analysis (rad/s)

1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode

Simulation 51.297 59.227 85.449 127.24 135.36 144.15

Theoretical analysis 46.23 54.86 75.65 141.56 153.73 165.27

Relative errors 9.88% 7.37% 11.47% 11.25% 13.57% 14.65%

Figure 9  Two kinds of branches
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Figure 10  Placements of sensors and corresponding knocking points

Figure 11  The frequency response functions obtained by the vibration and noise analyzer
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The lower frequency is due to the increase in mass of the 
moving platform caused by the contact sensors.

7 � Conclusions
A dynamic model with low orders of an RPR type compli-
ant parallel mechanism is established based on the distrib-
uted parameter method and a modified modal synthesis 
method. The RPR type compliant parallel mechanism has 
two vertical continuous rotation axes relative to the fixed 
coordinate, which are known. Based on the elastic beam 
model, the stiffness matrix and mass matrix of connecting 
beams and flexible hinges are established considering the 
moment of inertia. The modified modal synthesis method 
is used to reduce the order of the dynamic equation of the 
mechanism. The order of the whole dynamic equation is 
only 54, which greatly reduces time consumption of the 
space spring mass system with 173 nodes. The dynamic 
modeling method used in the paper belongs to substruc-
ture technology. The obtained dynamic model not only 
simplifies the calculation of dynamic characteristics of the 
complex mechanism, but also simplifies the calculation of 
the dynamic response. Furthermore, the dynamic model 
is verified by finite element simulation. The relative errors 
of the natural frequencies obtained by theoretical analysis 
and simulation are less than 15%. The simplification of the 
flexure hinge results in lower accuracy. Finally, a dynamic 
experiment is conducted to obtain the dynamic character-
istics of the mechanism. The experimental result shows 
that the resonance frequencies obtained by the developed 
dynamic model are correct. And the resonance frequen-
cies of the developed mechanism are slightly smaller than 
those obtained by finite element simulation, which veri-
fies the effectiveness of the established dynamic equation. 
The dynamic model with low orders established in the 
paper has higher computational efficiency and also meets 
the accuracy requirements. This model will provide effec-
tive assistance for practical application of the mechanism. 
And the dynamic response and control of the RPR type 
mechanism will be studied in the future based on the 
dynamic model.
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