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Abstract 

Physical assistive robotics are oriented to support and improve functional capacities of people. In physical rehabilita-
tion, robots are indeed useful for functional recovery of affected limb. However, there are still open questions related 
to technological aspects. This work presents a systematic review of upper limb rehabilitation robotics in order to ana-
lyze and establish technological challenges and future directions in this area. A bibliometric analysis was performed 
for the systematic literature review. Literature from the last six years, conducted between August 2020 and May 2021, 
was reviewed. The methodology for the literature search and a bibliometric analysis of the metadata are presented. 
After a preliminary search resulted in 820 articles, a total of 66 articles were included. A concurrency network and bib-
liographic analysis were provided. And an analysis of occurrences, taxonomy, and rehabilitation robotics reported 
in the literature is presented. This review aims to provide to the scientific community an overview of the state 
of the art in assistive robotics for upper limb physical rehabilitation. The literature analysis allows access to a gap 
of unexplored options to define the technological prospects applied to upper limb physical rehabilitation robotics.

Keywords Upper limb, Rehabilitation, Assistive robotics, Human-machine interaction, Robotic systems, Virtual reality, 
Rehabilitation monitoring

1 Introduction
Disabilities affect people’s quality of life and limit the 
development of physical activities related to their 
impairment [1]. According to statistics from the 
World Health Organization (WHO), more than one 
billion people over the world have a disability, of which 
16.5% suffer of motor impairments. These numbers 
may increase due to aging, chronic diseases, and 
musculoskeletal disorders [2]. Motor impairment is the 
partial or total loss of a body part function, usually the 
lower or upper limbs, due to diseases and pathologies 

that affect bones, muscles, or joints. Injuries can have 
different origins as neurological, vascular, or infectious, 
and can be degenerative diseases [2]. A high level of 
demand in the execution of repetitive or high-impact 
activities, or an accident at work, home, or traffic can 
also be the cause of motor impairments [1, 3, 4]. Thus, 
the most frequent alterations occur in the ligamentous 
or tendinous structures, such as carpal tunnel syndrome, 
tendinitis, soreness (e.g., bursitis), and traumas (e.g., 
fractures) [5, 6].

In all cases, a physical rehabilitation process is required 
to restore a person socially, physically, and occupationally, 
after suffering any musculoskeletal disorder [7–9]. Thus, 
physiotherapy focuses on improving the patient’s motor 
functions. To regain limb functionality, the patients 
undergo treatments that include exposing the muscular 
tissues to stress progressively and appropriately, 
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increasing the range of mobility and muscle strength, 
and preventing the appearance of chronic pain [10–16]. 
As part of the rehabilitation process, assistive robotics 
support physiotherapy, meeting the needs of the exercises 
and patients to provide an adequate intervention 
depending on the level of affection [17, 18]. The use of 
these technologies has increased in the last few years due 
to the use of instrumentation to quantify variables such 
as range of movement, velocities, muscle activity, and 
force [19–21].

Robotic technologies can be applied in health and 
medical areas. Several applications have emerged to 
support clinical processes such as surgery procedures 
and diagnostic studies [22], logistics and monitoring 
[23, 24], social robots in mental health [25], physical 
rehabilitation [26, 27], and assistive devices for the 
support of user´s daily activities or day-to-day tasks [28]. 
In the case of rehabilitation, robots are used to assist 
the physiotherapy processes or to replace or support 
the performance of the functions associated with a limb 
[29, 30]. Then, rehabilitation robotics include prostheses, 
orthoses, and rehabilitation systems that are divided into 
exoskeleton-type systems and end-effector-type systems 
[31–33]. The devices in this domain can also be classified 
by their expected role (i.e., the same robotic device can 
be used for different purposes in health care, depending 
on the patient’s prognosis and the device design and 
functionalities). Rehabilitation robots may be used for 
recovery or compensatory purposes, physical training 
or other applications whose purpose is improving the 
rehabilitation processes and the quality of life of a person 
in the shortest possible time [8]. However, it is important 
to determine how robotic systems provide help according 
to the principles of rehabilitation (A: Avoid aggravation, 
T: Timing, C: Compliance, I: Individualization, S: 
Specific sequencing, I: Intensity, T: Total patient) [7–
9]. Therefore, one of the most important challenges is 
related to the definition of physical interactions between 
humans and robots. Additionally, there is a need for a 
framework to characterize and systematize criteria for 
the design, evaluation, and quantification methods that 
robotic systems employ in rehabilitation.

Rehabilitation robots can work with different assistance 
levels. For example, according to the force applied to 
the patient’s level of progress, the assistance can be 
divided into: (1) Passive, which implies total robot 
intervention [34, 35], (2) active-assistive, which requires 
partial robot intervention, (3) isotonic, which means no 
robot intervention in motion [21, 35, 36], (4) isometric, 
in which there is robotic-supplied static muscle level 
contraction, and (5) resistive, where there is a robotic-
supplied dynamic muscle strengthening [21, 37]. The 
assistance modes allow the parameterization of the 

exercises according to the patients’ condition, being one 
of the design criteria together with the need for accurate 
measurements such as ranges of motion and force to 
evaluate the patients’ progress, as well as to acquire the 
necessary information for the robot control system and 
the definition of control strategies [21, 33]. The definition 
of qualitative variables associated with rehabilitation 
has been a great challenge [38, 39]. Even if the inclusion 
of rehabilitation robots in conventional processes has 
gradually increased [21], the quantification of variables 
increases the complexity of these types of systems due 
to the number of sensors required or the computational 
consumption of deep estimation algorithms [40].

In addition to variable quantification, control strategies 
have been extensively proposed for rehabilitation robotic 
systems, such as impedance controls or admittance 
controls. For example, EXO-UL8 use assistance modes 
and high transparency in the physical human-robot 
interaction through admittance controls [41]. Control 
strategies like impedance and admittance controls 
have diversified as new strategies that seek naturally 
moderate intensity of intervention when required. It 
also provides continuous monitoring of the patient’s 
condition [35, 42–44]. Moreover, the development of 
technologies for assistive robotics is sought to make a 
integral monitoring of processes to adapt the conditions 
of execution of a conventional routine with an added 
value. For example, [45] has developed an exoskeleton-
type system (ANYexo), where the range of movement 
(ROM) and the control strategies are optimized to mimic 
the interaction of therapists using impedance controls. 
Assistive systems have become an increasingly popular 
option over the last few years. There are assistive systems 
commercially available that have been widely used in 
physical rehabilitation. For instance, the rehabilitation 
kit for upper limbs developed by Hocoma [46] or the 
end-effector-based rehabilitation system InMotion 
[47]. Other commercial systems like ALEx kinetek, 
has incorporated virtual reality systems as part of the 
rehabilitation process [48]. Nevertheless, despite the 
commercial robotic systems, it still being a challenge the 
positioning of robotics as permanent support in all kinds 
of medical processes [49].

The human-robot interaction in the field of robotics 
applied to physical rehabilitation is progressively 
improving. However, despite the existence of 
substantial evidence in assistive robotic systems, to the 
best of our knowledge, there is no assistive system that 
can comprehensively provide all the necessary tools 
to the therapist to carry out a complete monitoring 
in the rehabilitation process, to improve therapy 
times and recovering the patient’s quality of life and 
functionality. This may be due to the fact that, during 
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rehabilitation, training is often based on the subjective 
perception and observation of the specialist. Along 
with the difference in fatigue perception, as patients 
find it difficult to correctly express the actual fatigue 
state. In addition, patients’ responses are diversified 
and more features should be extracted to reflect 
additional details of the patient’s compensation and 
condition. The greatest challenge is positioning 
robotics as permanent support in all kinds of medical 
processes [49]. In this work, we develop a systematic 
review for upper limb rehabilitation systems. The 
purpose of this manuscript is to review the state of the 
art related to physical assistive robotics through active 
human-machine interaction, analyze the technologies 
that have been recently developed, and identify gaps in 
the research and justifies future research in this area.

A systematic review of the scientific literature 
constitutes the first step for understanding the current 
scientific progress. The purpose of this manuscript 
is to review the state of the art related to physical 
assistive robotics through active human-machine 
interaction for upper limb rehabilitation and analyze 
technologies that have been recently developed. This 
study focuses on aspects related to physical robotic 
assistive systems for upper limb rehabilitation. We 
exclude works related to lower limb and devices 
without any active actuation. We analyze control 
strategies, quantification and instrumentation 
methods, integration of complementary technological 
methods, and integration of virtual reality systems.

A rigorous methodology allows the systematic 
review of the literature and the selection of 
publications for extracting the information. First, we 
describe the methodology used to carry out the search 
based on the keyword’s selection and the exclusion 
criteria. Afterward, we present the bibliometric 
results, including three aspects: (1) A bibliographic 
analysis of the metadata, which describes the evolution 
of the publication by years, journals, and countries; 
(2) an analysis of the occurrences with the metadata 
extracted from the selected articles; (3) the taxonomy 
used to sort the upper limb assistive robotics devices 
and technologies for physical rehabilitation. Then, we 
analyze the works reported in the literature in control 
strategies, quantification of monitoring variables, 
complementary instrumentation, and integration of 
virtual reality systems. Finally, we discuss the main 
topics in the extracted works, and we give some 
conclusions and prospects regarding the analysis 
carried out in this review.

2  Methodology
In this section, we present the bibliometric analysis 
conducted for the systematic review of the literature. 
We begin with the keywords selection and the query 
string construction from a hierarchical organization. 
Subsequently, we assign Boolean operators to the 
keywords according to their level of importance. 
Afterward, we collected the articles from the search in 
the databases, and we filtered them using inclusion and 
exclusion criteria related to the focus of this review. 
The literature review was conducted from August 2020 
to April 2021 and is carried out considering the last six 
years because we intend to report and analyze the latest 
advances in this field. The results from older works 
usually serve as a reference for the consolidation of the 
improvements in works presented in this article.

2.1  Keyword Selection
We proceed to perform the keyword selection. Figure 1 
shows the hierarchical keyword selection diagram, where 
three main levels were considered. In first level, a pre-
liminary selection of works related to the main area was 
carried out using the query “Assistive robotics for upper 
limb rehabilitation” in IEEE database. After this process, 
we select the most relevant keywords related to the find-
ings and according to terms of thesaurus defined by IEEE 
[50]. Therefore, the main keywords selected were: “reha-
bilitation”, “upper limb”, and “robotics”.

Another additional terminology was included on the 
second level, according to different areas of interest 
related to the human-machine interaction. As a result, 
other keywords were included in the research process: 
“rehabilitation robotics”, “technology”, “virtual reality”, 
“control”, and “diagnosis”. The third level includes 
synonyms and complementary words to the second level, 
including “assistive devices”, “assistive robotics”, “devices”, 

Figure 1 Hierarchical Keyword Selection Diagram
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“haptics”, “adaptive control”, “robust control”, and 
“diagnostic”. Synthesizing, the hierarchy allows to build 
the search query in a more organized way by distributing 
the most relevant keywords to the topic located in the first 
level, and from there, a set of complementary keywords 
located in the second level, and a set of synonyms are 
placed at the third level, that as well defines the Boolean 
relation between the keywords. The first level contains 
the main words that are mandatory to be included and 
therefore, the “AND” operator is assigned. The second 
level includes the complementary words of the main field 
of study and therefore the “OR” operator is assigned. 
The third level contains synonyms and complements of 
the higher levels and the “OR” operator is also assigned, 
but these words are concatenated in the words of the 
second level. The third level contains terms that can 
refine the search. We can choose not to include them if 
generalization is desired. The fourth level corresponds 
to the excluded words with the logical operator “NOT”, 
but in this case, it is not considered. Therefore, the final 
search query corresponds to: {“Rehabilitation” AND 
“Robotics” AND “Upper limb” AND (“Rehabilitation 
robotics” OR (“Assistive devices” OR “Assistive robotics”) 
OR “Technology” OR (“Devices”) OR “Virtual reality” 
OR (“Haptics”) OR “Control” OR (“Adaptive control” OR 
“Robust control”) OR “Diagnosis” OR (“Diagnostic”))}.

2.2  Search Strategy
An extensive search was carried out using constructed 
query string with keywords chosen from Figure  1. 
Only indexed journals in English were considered. 
The databases used for the search were IEEE Xplore®, 
Scopus (Elsevier), Science Direct, and Web of Science. 
The Medline/PubMed database handles more practical 
and medical aspects that focus on presenting clinical 
validations of systems already developed using clinical 
trials, randomized controlled trials, systematic reviews, 
and meta-analysis of the literature. We intend to analyze 
technological aspects of engineering for robotic systems 
applied to physical rehabilitation. For this reason, this 
database was not considered in this review.

Our search strategy aims to identify and analyze tech-
nological features regarding upper limb rehabilitation 
robotic systems. We intend to study the latest develop-
ments of control strategies, quantification methods, 
complementary instrumentation, and virtual reality 
integration. Our objective with this review is to identify 
issues still unexplored in the literature that will allow us 
to develop criteria to systematize evaluation methods, 
in order to make a comparison of studies that lead to 
the development of robotic systems that provide integral 
assistance as a permanent support to physical rehabili-
tation processes. Articles are included when: (1) Upper 

limb rehabilitation systems are used and based on end-
effector or exoskeletons devices; (2) proposed control 
strategies for improving the robot-patient experience; (3) 
virtual reality is included as a support to the rehabilita-
tion robotic systems; (4) complementary instrumentation 
and measurement methods are used for the quantifi-
cation of therapy assessment variables; (5) mechanical 
designs are developed and proposed to increase ROM 
(range of motion) and (6) systems with active actuation 
only. The formulation of the search strategy was based on 
the PRISMA statement for reporting systematic reviews 
as shown in Figure 2.

2.3  Exclusion Criteria
This study is limited to health care-type technologies that 
are focused on upper limb rehabilitation and strategies 
for recovering the functionality of the affected joint. We 
consider practical aspects of the technologies used for 
upper limb rehabilitation. The systematic review excludes 
articles related to rehabilitation technologies applied 
to lower limbs, and articles related to prostheses and 
orthosis without any contribution of active functionality. 
Only works in English were included in this systematic 
review.

3  Search Results
In this section, we describe the results of the data 
extraction phases and the analysis performed. We include 
a bibliographic analysis of the publications’ evolution by 
year, journal, and the two principal countries that publish 
works in this topic. Finally, we analyze the concurrences 
and the taxonomy of the literature.

Following the search strategy of the scheme defined 
in Figure 2, the preliminary search in the four databases 
resulted in 820 articles: 101 from IEEE Xplore, 314 from 
Scopus, 235 from ScienceDirect, and 170 from Web 
of Science. As mentioned previously, we consider the 
articles published from 2015 to 2021. After removing 
duplicate articles and subsequently reviewing titles and 
abstracts, a total of 203 articles were obtained. Then, 
after reading the full texts and applying the inclusion 
criteria, 137 articles were excluded, resulting in a total of 
66 articles for the review (see Figure 2). We analyzed the 
concurrency network based on the metadata obtained 
from the articles included in this review. The metadata 
were obtained, classified, and encoded through the 
bibliographic administrator Mendeley.

3.1  Bibliographic Analysis
In this section, we present a bibliographic analysis of the 
metadata. We describe the evolution of publications by 
year, journal, countries.
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1) Evolution of publications by year, journal and 
countries: The articles were selected and classified 
according to the number of publications in journals 
related to assistive robotics for upper limb rehabilitation. 
Based on the literature review, the highest number of 
articles on assistive robotics for upper limb rehabilitation 
was published in 2018 (13 articles) followed by 2019 
(11 articles). The journals with the highest number of 
publications in upper limb assistive robotic systems are 
Robotics and Autonomous Systems (7 articles), IEEE/
ASME Transactions on Mechatronics (6 articles) and 
IEEE Transactions on Neural Systems and Rehabilitation 
Engineering (6 articles). The countries with more 
articles in this field are China and Italy with 21 and 9 
articles respectively. In terms of content, 34 articles were 
reviewed to deal with rehabilitation methods, therapeutic 
exercise execution and trajectory generation, mechanical 
design, and kinematic-dynamic analysis, and 12 articles 
present control strategies for assistive robotics systems 
for rehabilitation. The remaining 20 articles address 
quantification and instrumentation techniques, and 
systems that use virtual reality.

3.2  Occurrence Network
From the extracted articles, we carried out an occurrence 
analysis to identify the most used keywords in the bib-
liography. We used the bibliographic manager Mendeley 
to compile and organize the extracted articles, since the 
list of keywords is usually very extensive. Using this soft-
ware, we extracted a .RIS file to generate a concurrence 

map using the VOSviewer tool, to find the relationship 
between the articles included. In this way, we obtained 
a relation of concurrence. The most relevant terms are: 
“rehabilitation robotics” (21 occurrences), “upper limb” 
(15 occurrences), “stroke” (11 occurrences), “exoskel-
eton” (9 occurrences), “rehabilitation” (9 occurrences), 
“human-robot interaction” (7 occurrences) and wearable 
robotics (6 occurrences). The concurrence network in 
Figure  3 shows the frequency of occurrence of the key-
words and their matching network. It is worth to men-
tion that only the terms with 3 or more connections are 
shown. The terms were divided into clusters considering 
the similarity measures and the distance between them. 
Thus, the keywords “rehabilitation robotics” (red), “upper 
limb”, “stroke” (blue), “exoskeleton” (yellow), “wearable 
robotics” (green), were the most frequent terms. This 
network also groups by coloring keywords with the high-
est number of associations between them, showing the 
keywords with more links. For example, “rehabilitation 
robotics” (red) is associated with terms “upper limb”, 
“stroke” and “exoskeleton”, but it is not directly associ-
ated with terms “bilateral” and “robot-assisted” (purple) 
because they are not widely used and are separate from 
the other terms in the concurrence network. With these 
correlations obtained from Figure 3, we can deduce that 
the literature mainly addresses aspects associated with 
exoskeletons, impedance control, force control, wearable 
robotics, kinematic analysis, iterative learning control, 
haptic interfaces, virtual reality, therapeutic exercises, 

Figure 2 Systematic review flow chart
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assessment, activities of daily living, elbow and bilateral 
rehabilitation.

4  Rehabilitation Robotics Reported 
in the Literature

We present a general overview of upper limb assistive 
robotic systems reported in the literature. We address 
issues related to therapeutic exercise execution and 
trajectory generation, mechanical design optimization 
and kinematic-dynamic analysis. Then, we discuss 
specific topics such as control techniques, quantification 
or estimation techniques and instrumentation, and 
virtual reality inclusion as part of rehabilitation processes.

The classification of keywords and occurrences in this 
study suggests different classes and sub-classes. For this 
reason, a taxonomy is built from keywords with the sup-
port of the resulting concurrence network from Figure 3. 
The taxonomy of the literature is presented in Figure  4. 
Notice that several subcategories of the main classes are 
identified, but the main ones are upper limb and rehabili-
tation robotics.

Based on the technologies associated with upper limb 
support and rehabilitation and supported by taxonomy 
from Figure  4, we propose the classification presented 
in Table  1. We extracted, organized and categorized 
some important aspects such as name of the device, aim 
joints for rehabilitation, physical movements performed, 
type of device (exoskeleton, end-effector or robot arm) 
and number of degrees of freedom (DoF), sensing or 
measurement variables, disease to be treated, control 
technique used, virtual reality systems, first author, and 
year of publication. Note that if more than one work by 

the same author is found, the information is crossed and 
collected in the same row as a whole.

Rehabilitation robots have been proposed in order to 
guide and support physical rehabilitation processes that 
can easily be adapted according to the level of interven-
tion that the patient requires in order to recover the 
functionality from mobility impairments or muscu-
loskeletal disorders [51]. Notable examples of robotic 
systems reported in the literature highlight various inno-
vative approaches and technologies used in rehabilitation 
robotics, including different control strategies, types of 
assistance, and levels of adaptability to patient needs (see 
Figure 5). We have evidenced some technologies used to 
implement assisted rehabilitation, such as remote reha-
bilitation or rehabilitation from a camera and bilateral 
systems, for example, the HX [52], or the CBM-Motus 
[53]. Devices that focus on telerehabilitation methods 
such as HX [52] have certain advantages such as avoiding 
traveling to rehabilitation centers, performing therapies 
from home, or having immediate access to rehabilitation. 
However, there are some drawbacks, such as the cost of 
the equipment and its maintenance. Moreover, the net-
work connection may provide poor interaction with the 
specialist, which is a disadvantage because the thera-
pist intervention is needed to monitoring the patient. 
Besides, the therapist can make decisions regarding the 
device use and the exercises that the patient should carry 
out, as well as the levels of assistance [52]. An uninter-
rupted telemonitoring strategy is needed between the 
patient and the specialist. Therefore, personal interaction 
can be more beneficial due to the continuous accompani-
ment of the specialist.

Figure 3 Concurrence network diagram
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On the other hand, the evaluation of the strength and 
ROM is usually carried out as a result of the execution 
of passive, active, and active-assistance therapeutic 
exercises. The evaluation is also based on kinematics, 
muscle stimulation, pain relief, massage, and relaxation. 
Desired rehabilitation trajectories and standard 
training protocols are generated according to the level 
of recovery for task execution in the workspace. In 
the case of end-effector type devices, rehabilitation is 
performed by combined Cartesian movements. Some 
devices reported in the literature where these methods 

of evaluation and trajectory standardization have been 
applied for rehabilitation are for example, the Modified 
Physiotherabot [44], RETRAINER-ARM [54], ETS-
MARSE [55], NURSE-2 [56, 57], HapticMaster (MOOG 
Inc. FCS) [58], BULReD [59], end-effector upper limb 
rehabilitation robot (EULRR) [60] and a commercial type 
such as UR5 and UR10 (Universal Robots A / S) [61, 62].

In literature, we find some methods to improve reha-
bilitation performance such as gravity compensation 
[63, 64], virtual impedance [65], interaction based on 
sEMG [66, 67], guided training and self-training [68] as 

Figure 4 Taxonomy of literature
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implemented by Softhand X (SHX) [63], Rehand [66], 
EMU [64], RECUPERA [68] and TTI-Exo devices (TTI is 
the Toyota Technological Institute) [65]. Similarly, there 
are limitations regarding the lack of force sensors as in 
RECUPERA [63]. This may be conditioned by constraints 
such as the number of sensors, costs or the need of more 
accurate measurements. Likewise, in the literature, dif-
ferent actuation systems are analyzed. For instance, bio-
inspired actuators based on shape memory alloys [69], 
cable transmission [70], adaptive and elastic mechanisms 
[71], variable stiffness actuation [45, 72–74], and alter-
natively, pneumatic actuation [75], used in devices like 
Auxilio [70], Soft-SixthFinger devices + SaeboMAS [72], 
parallel wrist rehabilitation robot (PWRR) [75], Neuro-
Exos Shoulder-Elbow Module (NESM) [74] and ANYexo 
[45].

Another important aspect in the performance of 
robotic systems is the mechanical design. Systems are 

designed according to the biomechanical characteristics 
of the required joint, but anatomically it is complex to 
design a system that shares perfect alignment with the 
joint while preserving the maximum range of motion. 
In the literature, there are some works that seek to 
improve the conditions of mechanical coupling, such as 
Ref. [76] where tensegrity is proposed to approximate 
real movements more accurately, or also in Ref. [77], 
where mechanical postural synergies are developed to 
reduce the complexity of transmission mechanisms. 
Moreover, in Ref. [45], an exoskeleton (ANYexo) has 
been developed, in which the range of motion (ROM) is 
optimized to mimic the interaction of therapists. Another 
example is the TTI-Exo [65], which has adjustable link 
lengths to partially align the human and exoskeletal joints 
to avoid uncontrolled forces caused by hyperstaticity. In 
this case the limitation remains in the loss of mobility 
ranges, usually to avoid the collision of the robotic 

Figure 5 Examples of upper limb rehabilitation robots reported in the literature: (a) The Modified Physiotherabot [35], (b) ETS- MARSE [55], 
(c) HapticMaster (MOOG Inc. FCS) [58], (d) End-effector upper limb rehabilitation robot (EULRR) [60], (e) NURSE-2 [56], (f) BRANDO [94], (g) UR5 
and UR10 (Universal Robots A / S) [61], (h) Armeo Power by Hocoma [46]
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system with the patient; for example, when performing 
a shoulder adduction-abduction exercise [45, 78], but 
preserving to a greater extent the mobility ranges.

On the other hand, the selection of materials for the 
design of lighter and more compact systems plays an 
important role. It implies considering features such 
as lightness, robustness, hardness and durability, and 
are based on biomechanical characteristics for the 
joint to be treated. However, in the field of medicine 
and rehabilitation, there are standards in the selection 
of materials for manufacturing medical devices and 
equipment such as IEC 60601 [79]. Metals such as 
stainless steel, titanium or aluminum, ceramics, polymers, 
composites and biomaterials are the most widely used 
in the medical and rehabilitation industry under these 
standards [80, 81]. One of the advantages of using 
plastics in medicine is their relatively low cost compared 
to metallic materials. Plastics can be molded into useful 
configurations that would be difficult or impossible 
to duplicate in metals, and can be fabricated using 
technologies such as 3D printing [82–85]. Also, some 
composites are strong and flexible. The most commonly 
used resins in medical plastics are polyvinyl chloride 
(PVC), polyethylene, polypropylene, and polystyrene. 
However, polycarbonates, ABS, polyurethanes, 
polyamides, thermoplastic elastomers, polysulfones and 
polyetheretherketone (PEEK) are finding specialized 
applications in medical devices, especially where high 
performance is required [82, 83, 86, 87]. Some works 
reported interesting variations such as the design of 
lightweight devices built in 3D printing technologies 
[88] and lightweight exoskeletons as proposed by Ref. 
[89]. Other examples, such as CRUX system (Compliant 
Robotic Upper-extremity eXosuit) [76] and Co-Exos [90] 
are highlighted. Carbon-based polymer composites are 
increasingly being used for the design of rehabilitation 
robotic systems because of their ease of fabrication 
compared to metals. For example, the CLEVERarm [91, 
92] has links made of 3D printed carbon fiber reinforced 
plastic for a lightweight and compact design. The use of 
carbon fiber reinforced links for upper limb exoskeletons 
has already been explored. Also, the use of carbon fiber 
reinforced polymer tubing is a low-cost alternative, this is 
used for example in ANYExo’s design [45]. The use of this 
material using 3D printing technologies is an advantage 
due to the possibility of manufacturing lightweight 
parts in a customized and simple way with a functional 
structural rigidity. Other emerging alternative materials 
such as NylonX, which consists of nylon reinforced 
with micro carbon fibers, are becoming more popular 
in manufacturing parts with high level of performance 
because it is considered as “engineering grade” material 
[93].

Additional to the therapy function, these technologies 
point to ease of prototyping parts and reduces 
manufacturing costs. The design of the system must 
guarantee perfect coupling between the robotic system 
and the human limbs. For instance, authors such as Ref. 
[65], have proposed design strategies in TTI- Exo system 
which has adjustable link lengths to partially align the 
human and exoskeletal joints in an attempt to prevent the 
uncontrolled forces caused by hyperstaticity.

In the following subsections, we will present specific 
topics to be analyzed such as control techniques 
employed, quantification or estimation techniques and 
instrumentation, and systems that include virtual reality 
as part of rehabilitation processes.

(1) Control techniques in assistive robotics: A critical 
issue of rehabilitation devices is related to the ranges of 
motion and the required constraints to avoid harming 
the user. Control strategies allow defining position and 
velocity constraints, as well as preventing undesired 
behavior due to disturbances. In this section, we include 
works regarding control strategies associated with 
assistive robotics. These works correspond to 20.75% of 
the reviewed literature.

The controllers’ implementation is oriented to imitate 
the movements carried out by a therapist and provide 
a certain level of support (passive, assistive, isotonic, 
isometric, and resistive) regarding both the joint position 
and the force applied. In several cases, impedance control 
is the most appropriated and used technique to simulate 
the assistance provided by the system under the concept 
of assist-as-needed (AAN) [43, 94–96], which consists 
of an assistance intensity control based on impedance 
controls. In AAN mode, the robot no longer needs 
to provide full support during the motion trajectory, 
whereas the robot can prompt patients to use their 
muscle forces while trying to stay with the predefined 
motion trajectory. Training intensity can be adjusted to 
meet patient needs according to the level of difficulty.

The AAN strategy is a widely rehabilitation mode 
assistance used in the literature. Works such as Refs. [34, 
35, 43, 53, 60, 64, 65, 71, 74, 89, 95–101] have proposed 
and developed control strategies for the management of 
rehabilitation systems based on ANN. The advantages 
of employing this type of strategies are due to the 
nature of the formulation (based on a damped spring-
mass system behavior). The implementation is geared 
to mimic the movements performed by a therapist 
and to provide a certain level of support in both joint 
position and applied force. However, research is needed 
to optimize the impedance parameters, integrating 
them with the clinical experience of physiotherapists, 
to improve the effectiveness of rehabilitation, as well as 
other evaluation parameters such as pain, which directly 
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or indirectly reflect the adaptability that the control 
can provide at all times. On the other hand, literature 
reports the implementation of adaptation strategies for 
impedance and admittance controls, and complementary 
strategies such as sEMG estimation as part of the control 
as proposed by Ref. [102] where control methods are 
used to minimize muscle energy for robotic systems 
that support the movements of a user under unknown 
external disturbances, using electromyographic signals 
(sEMG) or in the case of Ref. [103] where an adaptive 
impedance control is implemented using biological 
signals. Similarly, in the literature, adaptive controls 
based on backstepping are proposed using estimation 
strategies [104, 105], or alternatively with inclusion of 
neural systems, in Ref. [97], a backstepping adaptive 
fuzzy based impedance controller is proposed, or neuro-
fuzzy adaptive control (NFAC) strategies [97, 106, 107]. 
In addition, hybrid control models involving two or more 
strategies have been proposed, as in Refs. [108, 109], 
where a control based on a motion intensity perception 
model involving multimodal fusion between kinematic 
acceleration signals and heart rate signals is proposed to 
classify motion intensity with the support of deep neural 
networks.

(2) Quantification or estimation techniques in assistive 
robotics: Estimation is a process that physiotherapists 
often employ when assessing the patient for diagnosis 
or rehabilitation. The availability of measurement tools 
can decrease the need of estimation. However, the only 
variable that the physiotherapist can measure is angular 
position or range of motion in addition to functional 
tests. Other variables such as strength and pain are based 
on qualitative scales like Daniels or Oxford force scale 
[110] and Visual Analog Scale (EVA) [111] that give a 
numerical approach. The therapist requires information 
on the rehabilitation processes and improvement of 
the patient’s condition to make decisions based on 
quantitative pointers. Thus, monitoring the rehabilitation 
process is a key feature of assistive robotic systems.

In this context, quantifying evaluation variables 
associated with monitoring and tracing processes 
in rehabilitation is necessary. This section includes 
works directly related to quantification and estimation 
techniques incorporated into assistive robotics. These 
works correspond to 20.75% of the literature reviewed. 
The quantification strategies allow quantifying the 
variables associated with the evaluation of the patient’s 
condition. Some variables are obtained through the 
estimation using mathematical models or approximate 
measurement signals.

Estimation techniques have been proposed to a large 
extent to reduce the number of sensors used in an 
assistive system. The literature reports joint estimation 

techniques for human arm joints in rehabilitation 
tasks [112, 113], other works report rehabilitation by 
electrical stimulation estimation with sEMG to enhance 
joint movements [114–118], fatigue compensation 
and measurements from sEMG [119]. Additionally, 
continuous decoding methods based on multiple 
linear regression have been developed for myoelectric 
control, functional joint assessment for muscle force 
quantification, and definition of interaction force and 
level of involvement, [96, 118, 120–122], and other 
non-conventional methods such as the implementation 
of virtual sensors for force estimation and movement 
or through virtual reality game scenarios or even the 
influence on the emotional state of the user in virtual 
therapies [94, 98, 99].

A novel and interesting tool to measure pain is the one 
proposed by Ref. [107]. Pain estimation is used to control 
the robot through a decision support system based on 
fuzzy logic. The muscle contraction, resistance force, and 
mobility angles reached are used in this strategy. This 
idea can be used to explore other variables associated 
with pain, such as temperature or even heart rate.

Finally, some devices that include quantification 
techniques in the rehabilitation processes are PUParm 
[112], ReROBOT [119], Universal Haptic Pantograph 
(UHP) [34, 98], BRANDO [94], UR10 (Universal Robots 
A/S, Den- mark) [120], Armeo power (Hocoma) [46], 
powered variable-stiffness exoskeleton device (PVSED) 
[116] and SIMeRiON [113]. Robotic exoskeletons, 
such as Armeo Power [121], can provide repetitive and 
repeatable goal-directed rehabilitation movements more 
efficiently than manual therapy.

(3) Assistive robotics including virtual reality: Virtual 
reality applied to rehabilitation seeks training and 
improvement of the patient’s motor capacity, as well 
as monitoring the evolution throughout the therapy 
[21]. The use of virtual reality in rehabilitation supports 
therapies with long and repetitive sessions, making them 
fun and motivating without losing rigor and adherence 
to the therapy process [123–125]. Thus, virtual reality 
increases the degree of commitment of the patient to 
carrying out rehabilitation exercises. In the same way, 
it facilitates access to therapies for patients. Virtual 
reality can be used to distract patients from unpleasant 
sensations such as pain, although it is necessary 
to evaluate to what extent a system is considered 
immersive and whether it is sufficient to manage pain 
in rehabilitation routines. In this section, we include 
physical assistive robotics that use virtual reality for 
the rehabilitation process. These technologies provide 
activities through serious games with spaces, colors, and 
scores to create adherence of patients to the rehabilitation 
processes. These works correspond to 20.75% of the 
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literature reviewed. Some devices that use virtual reality 
for rehabilitation are HX [52], PUParm [112], Amadeo 
(Tyromotion GmbH) [95], Universal Haptic Pantograph 
(UHP) [34, 98], HapticMaster (MOOG Inc. FCS) [58], 
BRANDO [94], Physiobot [99], end-effector upper limb 
rehabilitation robot (EULRR) [60], Armeo power (by 
Hocoma) [46] and other devices as Refs. [67, 77, 97, 
118, 122]. Virtual reality can be used to instigate adverse 
situations to which the patient is exposed through virtual 
therapy, which can be psychologically adaptive and 
trigger a physiological effect that the body can reduce, 
mitigate or even eliminate pain sensations. In summary, 
virtual reality can be an important tool to improve the 
effectiveness and adherence to rehabilitation therapy, but 
further research is needed to investigate its use in this 
field of robotic rehabilitation.

5  Discussion
We have presented a review of assistive robotics 
associated with upper limb rehabilitation to understand 
the literature and the latest advances in this field of 
engineering applied to health care and rehabilitation. 
Studies present upper limb exoskeletons and end-
effector type devices from 1-DoF to 27-DoF. The decision 
of designing and building systems with n degrees of 
freedom depends on the type of injury or pathology to 
be treated. In Refs. [45, 55, 68, 76, 77, 100, 104, 106], the 
authors approach the design of exoskeleton-like systems 
coupled to the physiology of the body and try to mimic as 
many movements as possible. However, this increases the 
complexity of the mathematical models, but at the same 
time allows the systems to adapt more appropriately to 
biomechanical movements. The evidence suggests that 
the design of devices and application techniques for 
upper limb rehabilitation depends on the affected joint 
and the diagnosed disease. Some studies focus on the 
rehabilitation of a single joint [52, 66, 69, 71, 72, 75, 95, 
97, 115, 116, 119, 120, 126], while others are focused on 
the rehabilitation of the whole motor function of the 
upper limb’s main joints, i.e., shoulder, elbow and wrist 
[34, 53, 55, 61, 62, 67, 68, 76, 77, 88, 90, 98, 100, 104, 106, 
112, 121, 127]. The latter usually focus on monitoring 
the process by estimating and obtaining evaluation 
parameters such as joint positions, velocities, forces and 
torques, and muscle stimulation or activation with EMG 
signals.

We consider that studies focusing on all joints of 
the upper limb will be an approach to systems that can 
contribute to the generalization and personalization 
of conditions and their ease of treatment. However, 
quantification of rehabilitation processes has proven to 
be a challenge for rehabilitation robotics. This process 
depends on the interdisciplinarity between applied 

sciences and health sciences, implementation costs, and 
the accuracy of measurements and monitoring [128–
134]. Quantification methods provide the specialist 
with a tool for continuous monitoring and improvement 
of the rehabilitation process. Some strategies can be 
derived from the instrumentation of the device, and may 
also include more variables in addition to those usually 
considered (position, velocity, force and torque). For 
example, variables associated with the evaluation and 
monitoring of rehabilitation processes, such as muscle 
atrophy index, pain level based on sEMG, heart rate or 
even anthropometric measurements (height, weight, 
body mass index, etc.) can be considered.

There are great advances in assistive robotics for 
rehabilitation and quantification technologies [34, 55, 
67, 68, 76, 98, 100, 104, 106, 121]. However, more reliable 
methods are still required to quantify the endpoints 
and to assess the patient’s progress in the rehabilitation 
process. This implies real-time monitoring so that the 
system can adapt to the patient’s conditions, leading to 
the definition and implementation of control strategies.

Regarding control strategies, in Refs. [34, 35, 43–
45, 53, 64, 65, 71, 74, 89, 97, 99, 100, 103], the authors 
implemented impedance controls. The nature of these 
types of controls allows the adaptation of the system to 
the patient’s needs and the level of assistance required 
in the rehabilitation process. For example, in Refs. [104, 
105, 129], the authors worked extensively with the 
ETS-MARSE robot to provide a passive rehabilitation 
trajectory that mimics human movement. They also 
present a robust control with external force adaptation 
based on backward control in order to estimate the user’s 
force. Then, the integration of an optimization approach 
to select the control parameters and the combination of 
model-based switching functions with existing vibration 
reduction techniques can be proposed as future work, to 
reduce unwanted external forces during therapy. This has 
some affinity with AAN strategies for smooth trajectories 
with the possibility of resorting to assistive forces that 
will be available when the patient’s movement is delayed 
from the desired trajectory; an example of this is the 
commercial Armeo Power system from Hocoma [46]. 
From this mode, different strategies have been adopted, 
so this method promises to be the most suitable option 
for systems focused on physical assistance based on the 
level of intensity or intervention. However, the diversity 
of proposals that arise from this control strategy, gives 
rise to propose new strategies such as hybrid impedance 
controls with the option of adaptability through 
automatic learning systems, such as neural networks 
based on the evaluation of measurements obtained to 
adjust the difficulty and intensity of training based on 
medical expertise to meet the patients’ needs.
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Research is needed on the optimization of impedance 
parameters, integrating them with the clinical experience 
of physiotherapists, to improve the effectiveness of 
rehabilitation. On the other hand, interesting techniques 
have been proposed in the integration of several control 
methods implementing hybrid model integration 
analysis where perception models are complementarily 
used, together with models based on neural networks, 
these methods seek the optimization of trajectories and 
automatic learning of the rehabilitation schemes defined 
as the one proposed by Refs. [108, 109]. However, it is 
necessary to establish a margin of comparison of control 
methods to determine which one gives better results.

In summary, control strategies for rehabilitation 
systems should modulate human-robot interaction, and 
should encourage the active participation of the patient 
during training. This implies considering also a synergy 
with other assessment parameters, such as pain, that 
directly or indirectly reflect the adaptability that the 
control can provide at all times.

Regarding the mechanical design, in Ref. [45], the 
ANYexo robotic system compensates for the dynamics 
by precisely aligning the robot with the patient. The 
lightweight structure, the precise dynamic model, the 
optimized handling and the high performance of the 
torque control actuators are achieved by the lightweight 
and versatile design of the links. This device prompts 
research for a future generation of more autonomous 
and highly dynamic rehabilitation robots. On the other 
hand, the design of wearable exoskeletons that seek to 
ensure perfect connections between the exoskeleton 
and human limbs have been proposed. In Ref. [65], the 
exoskeleton links lengths are designed to be adjustable in 
order to partially align the human and exoskeleton joints 
in an attempt to prevent uncontrolled forces caused by 
hyperstaticity. Finally, decreasing unwanted interaction 
loads caused by exoskeleton incompatibility continues 
to be a huge challenge in ergonomic exoskeleton design, 
as we evidenced in Ref. [130]. To achieve hegemony 
in rehabilitation robots, a generalization towards all 
upper limb joints and their respective movements, it is 
necessary to design robotic systems capable of covering 
the anatomical ranges of mobility of the affected limb. 
The exercises that are usually performed for shoulder 
rehabilitation are internal/external rotation, adduction/
abduction, flexion-extension, for elbow rehabilitation 
are flexion/extension and for the wrist rehabilitation are 
ulnar/radial deviation, flexion/extension, and pronation/
supination. Commercial devices such as the UR5 and 
UR10 (Universal Robots A/S) and Armeo power (by 
Hocoma) [46, 61, 62, 121], include motions of these 
joints. A major limitation to the standardization and 
the development of exercise-specific metrics for the 

interpretation of kinematic data, especially in complex 
exercises, is the absence of strict instructions for making 
decisions on how to set up the system for each patient. 
The effectiveness of the training may depend on the 
experience of the therapist. Furthermore, it is preferred 
to establish training trajectories only from the selected 
plane as in Ref. [61], whereas common rehabilitation 
routines may prefer training trajectories in three-
dimensional space. It is also important to apply real-time 
adaptive trajectories to immediately modify the training 
routine when there is a potential risk to the patient in 
mobility, force and pain.

On the other hand, virtual reality in assistive devices 
is another feature that requires further study. Although 
some assistive devices described in the literature include 
virtual reality, it is often used in a non-immersive state 
through games or tasks that the patient has to perform 
with a low degree of immersion. This aspect is important 
to distract patients from unpleasant sensations such as 
pain, but it is necessary to assess to what extent a system 
is considered immersive and whether it is sufficient to 
manage pain in rehabilitation routines. Virtual reality 
provides distraction and adherence to the therapy, and in 
the literature has been implemented frequently. However, 
the systems analyzed in the literature have generally been 
limited to visual and auditory feedback using monitors or 
directly VR glasses.

Some methods that can be used in combination with 
virtual reality to achieve greater active participation of 
patients in their treatment are, for example, gamification, 
augmented reality (AR), music-based therapy, among 
others. However, it is important to remark that not 
all of these methods are suitable for all patients or all 
treatments. Therefore, health professionals are the ones 
who must evaluate the needs and preferences of each 
patient before using any complementary technological 
method of therapy.

One of the best-known systems that implements 
virtual reality is the Armeo power [46], however, it does 
not use immersive technologies. Other works where 
virtual reality has been applied are Refs. [34, 52, 58, 67, 
77, 94, 95, 97, 99, 112, 121]. These virtual reality systems 
are usually limited to tasks or games through haptic 
activity, and sometimes they require expensive elements 
to reach immersive environments. Nevertheless, 
new studies incorporate portable devices such as cell 
phones or computers. The challenge is to maintain 
adherence despite the loss of immersivity. Regarding 
immersive systems, future research could strengthen and 
characterize the extent to which an immersive system 
is able to block unpleasant sensations such as pain. 
And how the adverse situations to which the patient is 
subjected through virtual reality can be instigated and 
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even psychologically adaptive and subsequently trigger 
a physiological effect that the body is able to reduce, 
mitigate or even eliminate the sensations of pain. An 
important aspect rescued from Ref. [94] regarding 
experimentation with virtual reality as the perception 
of the sensation produced by the virtual representation 
towards the injured limbs. This would lead to the 
incorporation of new proprioceptive biofeedback 
exercises. Therefore, it is necessary to incorporate other 
technologies such as sensors for the accurate assessment 
of other kinesthetic aspects such as compensatory 
movements. In addition, the inclusion of games may 
involve cognitive skills, but not necessarily kinesthetic 
performance. Correlation is also needed to optimize 
the performance of routines or tasks with physical and 
cognitive requirements.

After this review, questions related to the evaluation 
variables associated with upper limb rehabilitation 
arise. Although most of the available devices fulfill 
extensive functions to rehabilitate and provide 
evaluation parameters, it is necessary to parameterize 
and consider other variables related to physical 
evaluation. Moreover, research on immersive virtual 
reality and its inclusion in rehabilitation processes 
to motivate the patient requires some effort. Some 
questions that give rise to future research are: What 
additional variables can be considered for rehabilitation 
monitoring? What control strategies are the most 
suitable for applying them in rehabilitation systems? 
What are the requirements for those control strategies? 

What is the effect of improving mechanical systems 
with more degrees of freedom to obtain a generalization 
for the treatment of more physical diseases? What 
advantages would immersive virtual reality have in 
the rehabilitation processes compared to conventional 
virtual reality systems?

It is important to define a global model or an 
architecture that allows complete and comprehensive 
monitoring of the rehabilitation processes. This 
feature provides support also for the diagnosis. The 
results generated from comprehensive monitoring 
and quantification could allow a breakthrough in this 
particular field of knowledge and provide a starting 
point for diagnostic and physical rehabilitation 
processes, as well as a more accurate picture related to 
clinical rehabilitation procedures and support diagnosis 
of upper limb pathologies.

In addition, we have compiled some of the most 
recent reviews on assistive robotics as Refs. [24, 135–
143]. We have addressed future directions and perspec-
tives to direct future research in this field of robotics 
applied to physical rehabilitation. A comparative graph 
is presented in Figure 6, where the left side summarizes 
trends and contributions identified in the analysis of 
the articles reviewed (blue), and the right side shows 
the trends and directions that we propose (green) to 
direct future research that can give a clearer vision of 
the implementation of assistive robotics to achieve the 
definitive acceptance of these technologies in clinical 
processes.

Figure 6 Latest trends and directions identified in upper limb assistive robotics
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6  Conclusions
This review allows understanding the state of the art 
related to physical assistance technologies through 
human-machine interaction. We have analyzed current 
technologies for physical rehabilitation. This study is 
focused on practical aspects related to robotic systems 
for physical rehabilitation. We classified the reviewed 
articles into main topics, i.e., control strategies, 
quantification and integral monitoring of rehabilitation 
processes, integration of complementary methods to 
conventional rehabilitation, and possible integration of 
virtual reality systems.

The analysis of the bibliography presented in 
this review includes several upper limb physical 
rehabilitation systems. Through this analysis, we have 
given an insight of the current systems. This review 
provides a tool to identify where and how to improve 
some associated features of upper limb rehabilitation 
systems regarding several aspects. Some of these 
features are mechanical optimization and performance, 
the degrees of freedom (DoF), lightness, the durability 
of materials, ergonomics, and portability. Another 
key feature is the inclusion of quantification variables 
for more comprehensive and complete monitoring 
of rehabilitation processes. It is possible to acquire 
variables that define various conditions in the patient, 
such as the level of muscle atrophy, the presence of pain, 
heart rate, temperature, and mood. There is also the 
definition of appropriate control strategies according 
to therapy needs and the possibility to propose control 
strategies based on the most common ones, such as 
adaptive controls, impedance controls, admittance 
controls, and combinations. Finally, it is also possible to 
include immersive virtual reality technologies as part of 
the therapy, such as visual, auditory, and tactile or force 
systems.

This review aims to provide an overview of the state 
of the art in this field of knowledge. We analyze the 
current technology to move forward in the theoretical 
strengthening of assistive robotics. Future work should 
be oriented to resolve issues related to quantifying 
subjective variables as pain, for example, monitoring of 
rehabilitation processes through assistive systems, and 
in a complementary manner, evaluate the incorporation 
of technologies such as virtual reality and its correlation 
in the improvement of rehabilitation processes. The 
consequence of using this type of technology would be 
reflected in reducing the therapy and recovery times in 
the short, medium, and long term. The interdisciplinary 
between professionals of health sciences and 
engineering will allow progress in this field of study.
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