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Abstract 

The establishment of an elastostatic stiffness model for over constrained parallel manipulators (PMs), particularly 
those with over constrained subclosed loops, poses a challenge while ensuring numerical stability. This study 
addresses this issue by proposing a systematic elastostatic stiffness model based on matrix structural analysis (MSA) 
and independent displacement coordinates (IDCs) extraction techniques. To begin, the closed-loop PM is trans-
formed into an open-loop PM by eliminating constraints. A subassembly element is then introduced, which considers 
the flexibility of both rods and joints. This approach helps circumvent the numerical instability typically encountered 
with traditional constraint equations. The IDCs and analytical constraint equations of nodes constrained by vari-
ous joints are summarized in the appendix, utilizing multipoint constraint theory and singularity analysis, all uni-
fied within a single coordinate frame. Subsequently, the open-loop mechanism is efficiently closed by referencing 
the constraint equations presented in the appendix, alongside its elastostatic model. The proposed method proves 
to be both modeling and computationally efficient due to the comprehensive summary of the constraint equations 
in the Appendix, eliminating the need for additional equations. An example utilizing an over constrained subclosed 
loops demonstrate the application of the proposed method. In conclusion, the model proposed in this study enriches 
the theory of elastostatic stiffness modeling of PMs and provides an effective solution for stiffness modeling chal-
lenges they present.

Keywords  Parallel manipulator, Elastostatic stiffness model, Matrix structural analysis, Subassembly element, 
Independent displacement coordinates

1  Introduction
Elastostatic analysis is an important engineering task. 
Through static analysis, the stiffness and strength of the 
parallel manipulators (PMs) can be evaluated, providing 
essential data to support the rationality of mechanism 
design. However, establishing the complex constraint 
equations for multi-joint and multi-object systems, par-
ticularly over constrained PMs with over constrained 
subclosed loops, remains a challenging task [1–4], estab-
lishing their complex constraint equations has always 
been a challenging task. Currently, the primary methods 
for elastostatic analysis of such methods include the vir-
tual joint method (VJM) [5], screw theory [6], and matrix 
structure analysis (MSA) [7].
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The VJM simulates the elastic beam element by rep-
resenting it as a rigid beam supported by a centralized 
springs [8] at both. This approach, however, overlooks 
the continuum nature of the beam element [9]. The VJM 
considers the elasticity of a joint by establishing a static 
equation based on the constraint reactions and deforma-
tion differences at the constrained nodes [10]. However, 
when the joint is assumed to be rigid, the static equa-
tion can become singular [11]. In addition, the VJMs 
do not establish a comprehensive method for address-
ing the complex constraint relationships inherent in the 
mechanism.

The screw theory method [12] addresses the constraint 
conditions of a mechanism by utilizing the principle 
that the reciprocal product of the twist and constraint 
wrenches is zero [13]. This method does not require 
additional constraint equations and is characterized by 
its clear physical significance. First, the screw theory 
method establishes the constrained wrench system of the 
mechanism based on the structural constraint relations. 
Subsequently, the limb stiffness matrix of the structure 
is established. Finally, the overall stiffness matrix of the 
structure is determined using the virtual work principle. 
Xu et al. [14] developed a compact stiffness matrix for a 
limb by integrating the basic deformation principle with 
two mappings in the direction of the constrained wrench 
system. Hu et al. [15] established an extended-limb stiff-
ness matrix based on the basic deformation principle. 
Yang et al. [16] developed a compact limb stiffness matrix 
using strain energy and Castigliano’s second theorem. 
However, the application of screw theory to over con-
strained PMs with over constrained closed loops has 
been scarcely reported. Moreover, screw theory poses 
challenges for coding, making it difficult to generalize in 
engineering applications.

MSA technology establishes an expanded static struc-
tural model through element coding [17, 18] and then 
combines constraint equations to establish an elasto-
static stiffness model. Notable examples include the work 
of Klimchik et  al. and Deblaise et  al. [19, 20]. Klimchik 
et al. [19] detailed the basic theory of MSA and linear dis-
placement boundary conditions but did not establish an 
angular displacement deformation coordination equation 
in the global coordinate system. Deblaise et al. [20] estab-
lished the boundary conditions of the mechanism based 
on the principle of minimum potential energy and then 
developed a static model of the delta mechanism. In these 
studies, the elastic joint was regarded as an independent 
element [21] to establish the deformation coordination 
equation. To avoid numerical instability, the stiffness of 
the joint in the direction of free motion was set to a value 
close to zero rather than zero, which deviates from the 
theoretical analysis. MSA assembles the elements of the 

free body through deformation coordination equations to 
establish the overall elastostatic stiffness model, making 
it ideal for coding and engineering applications. However, 
these studies did not extract the independent angular dis-
placement coordinates of the mechanism within a unified 
coordinate system, nor did they consider the actual stiff-
ness matrix of the elastic joint.

This study proposes a systematic elastostatic stiffness 
model for PMs based on MSA technology, with two 
main contributions. First, a subassembly element stiff-
ness matrix including beam and elastic joint elements is 
proposed. This matrix accounts for the actual stiffness 
of the elastic joints and avoids the numerical instabil-
ity typically associated with the constraint equations. 
Second, the independent linear/angular displacement 
coordinates of the constraint nodes connected by vari-
ous joints are extracted with a unified global coordinate 
system. This approach enables the rapid assembly of the 
elastostatic stiffness model of the PMs without the need 
for additional constraint equations. The proposed model 
is beneficial for coding and engineering applications. The 
principle of the stiffness model proposed in this study 
is to assemble the overall stiffness matrix of the mecha-
nism based on the constraint characteristics of the joints. 
Consequently, the proposed model is universal, making 
it applicable to both non-over constrained and complex 
over constrained PMs.

This paper is divided into four sections to describe the 
proposed method. Section  2 introduces the elastostatic 
stiffness model proposed in this study. This section cov-
ers the sub-assembly element stiffness matrix, independ-
ent displacement coordinates (IDCs) of boundary nodes 
connected by various joints, and the overall PM model. 
Section 3 demonstrates the superiority of the sub-assem-
bly element using a simple single-freedom structure as 
an example. Section  4 applies the proposed method to 
an over constrained PM with over constrained subclosed 
loops, displaying implementation of method. Finally, 
conclusions are presented in Section 5.

2 � Elastostatic Stiffness Model of PMs
A general PM is shown in Figure 1. The moving platform 
is connected to the fixed base by n limbs, and each limb 
consists of mi links. To better illustrate the modeling 
method proposed in this work, the following assump-
tions were made. The base, moving platform, and actua-
tors were assumed to be rigid; the friction and clearance 
of the joints were ignored [22, 23], and the flexibility of 
the rods and joints was considered.

The procedure of the proposed elastostatic stiffness 
model is illustrated as follows: (1) Convert the closed-
loop PM into an open loop by cutting the joints, con-
sidering the rod and joints as subassembly bodies, and 
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formulate their element stiffness matrix and non-inde-
pendent general displacement coordinates; (2) Extract 
the IDCs of boundary nodes connected by joints using 
MPC theory and establish the global IDCs; (3) Close the 
open loops by establishing the mapping relationship from 
the non-independent displacement coordinates of each 
free body to the global IDCs and establish the elastostatic 
stiffness model of PMs through MSA technology.

A schematic of the proposed model is shown in Fig-
ure  2. To establish an overall stiffness model that accu-
rately represents the exit node of the mechanism, two 
key issues must be addressed. One is to establish the 
subassembly element stiffness matrix, and the other is to 
extract the global IDCs and establish mapping matrices 
from the displacement column vector of the free body to 
the global IDCs.

2.1 � Subassembly Element Stiffness Matrix
In engineering, elastic rods are often connected 
through elastic joints, posing a challenging task in han-
dling these constraints and often leading to unstable 
numerical calculations. In this study, the elastic rod 
and joints connected at both ends were innovatively 
assembled into a subassembly element, as shown in 
Figure  3(a). This element comprises an elastic beam 
element, elastic joint element J1 at node 1, and elastic 
joint element J2 at node 2. Therefore, the subassembly 
element consists of two nodes, with each node having 
three translational degrees of freedom (DOFs), three 
rotational DOFs, totaling 12 DOFs. To streamline the Figure 1  A general PM: (a) Closed-loops, (b) Open-loops

Figure 2  The schematic diagram of the proposed stiffness modeling based on the MSA
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derivation of the subassembly element static equa-
tion, the coordinate frames were established as fol-
lows: coordinate frame {J1} at Joint 1, coordinate frame 
{J2} at Joint 2, and beam element coordinate frame {s}. 
To reduce the calculation burden resulting from the 
redundant coordinate frame, the coordinate frame of 
the subassembly is considered consistent with that of 
the beam element.

The statics equation of the subassembly element can 
be expressed as follows.

where sW1 and sW2 are the forces acting on nodes 1 and 2 
of the subassembly element, respectively. su1 and su2 rep-
resent the displacement column vectors of nodes 1 and 
2, respectively, caused by the applied forces. Ks denotes 
12×12 subassembly element stiffness matrix, where Ksij 
represents the 6×6 block matrix of Ks. The top-left sym-
bol s indicates that the vector or matrix (·) is represented 
in the coordinate frame {s}.

(1)
[

sW 1
sW 2

]

=

[

sK s11
sK s12

sK s21
sK s22

][

su1
su2

]

=
sK s

[

su1
su2

]

,

We now consider two special cases [19] to calculate the 
subassembly element stiffness matrix, where node 1 is 
fixed, as shown in Figure 3(b), and the constraint equation 
is su1 = 0. In this case, Eq. (1) can be expressed as:

The mapping relationship of node forces can be 
obtained from the element equilibrium equation.

where L12 is the vector from node 1 to node 2, and [L12×] 
is the skew-symmetric matrix derived from vector L12.

The strain energy of the cantilever subassembly ele-
ment owing to the action of the node force at node 2 is 
as follows:

where UW2 is the strain energy of the subassembly ele-
ment generated by wrench W2, Jis T = diag[

Ji
s R

Ji
s R] , 

Ji
s R 

is the rotation matrix from the subassembly element 
coordinate frame {s} to the joint coordinate frame {Ji}, 
and JiC Ji and sCb are the compliance matrices of joint Ji 
and the cantilever beam element in the local coordinate 
frame, respectively.

Eq. (5) is obtained based on the strain energy and Cas-
tigliano’s second theorem.

Combining Eqs. (2) and (5), one can have

Similarly, combining Eqs. (2) and (3), we obtain:

Second, node 2 is fixed, as shown in Figure 3(c), and the 
corresponding boundary conditions are su2 = 0. In this 
case, Eq. (1) can be expressed as:

The mapping relationship of node forces is given by.

(2)
{ sW 1 =

sK s12
su2,

sW 2 =
sK s22

su2.

(3)sW 1 = −

[

I3 03

[L12×] I3

]

sW 2 = D12
sW 2,

(4)

UW2 =
1
2
sWT

2
J2s TT J2C J2

J2s T sW 2 +
1
2
sWT

2
sCb

sW 2

+
1
2
sWT

2 DT
12

J1s TT J1C J1
J1s TD12

sW 2,

(5)











su2 =
∂UW 2

∂sW 2
=

sCs22
sW 2,

sCs22 =
J2
s T

T J2C J2
J2
s T +

sCb +DT
12

J1
s T

T J1C J1
J1
s TD12.

(6)sK s22 =
sC−1

s22.

(7)sK s12 = D12
sK s22.

(8)
{ sW 1 =

sK s11
su1,

sW 2 =
sK s21

su1.

Figure 3  Subassembly element: (a) unsupported subassembly 
element, (b) node 1 fixed, (c) node 2 fixed
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Similarly, the mapping relationship between the dis-
placement column vector and wrench of node 1 can be 
obtained as follows:

Considering the standard direction of the coordi-
nate axes, the expression for block matrix sKs11 can be 
obtained as

Combining Eqs. (8) and (9), one can have

Eqs. (5) and (11) show that when considering the joint 
to be rigid, the stiffness matrix of the subassembly ele-
ment simplifies to that of the beam element, preventing 
numerical calculations from becoming unstable when the 
stiffness corresponding to the free motion direction of 
the joints is equal to zero.

Notably, the subassembly element stiffness matrix is 
not a constant matrix, even in the element coordinate 
system, but a posture-dependent matrix determined by 
the rotation matrix from the joint coordinate frame to 
the element coordinate system. The advantage of estab-
lishing the subassembly element stiffness matrix is that 
it enables the direct use multipoint constraint theory 
[24] to establish the joint constraint relationship and 
extract the IDCs of the constraint nodes. This facilitates 
the rapid establishment of the overall stiffness matrix of 
the structure, bypassing the need for complex deforma-
tion coordination equations. Consequently, this approach 
significantly facilitates the evaluation of the stiffness and 
strength performance of the structure.

2.2 � IDCs of Constraint Points
2.2.1 � Body‑To‑Body
2.2.1.1  Universal Joint  Figure  4 shows examples of 
joints commonly encountered in PMs. The U-joint shown 
in Figure  4(a) possesses two DOFs, allowing two inde-
pendent rotations between the two overlapping nodes 
connected by this joint. Thus, the two nodes have eight 
IDCs, comprising six displacement coordinates of point j 

(9)sW 2 = −

[

I3 03

−[L12×] I3

]

sW 1 = D21
sW 1.

(10)
su1 = (

J1s TT J1C J1
J1s T +

sCb +DT
21

J2s TT J2C J2
J2s TD21)

sW 1.

(11)

(12)sK s21 = D21
sK s11.

(i) and two angular displacement coordinates of point i (j). 
Next, we extract two independent angular displacement 
coordinates of point i as an example.

The compatibility condition between nodes i and j can 
be obtained as follows.

(13)

{

�i = �j ,

Jϕiz =
[

0 0 1
]

R−1
U

ϕj = QUϕj ,

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4  Examples of joints: (a) U-joint, (b) R-joint, (c) S-joint, (d) 
P-joint, (e) C-joint, (f) screw joint
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where, QU = [0 0 1]RU -1, Jφiz is z-axis component of 
angular displacement coordinate of point i in the joint 
coordinate frame. Δi and Δj are the linear displacement 
coordinates of points i and j, respectively, in the global 
coordinate frame. φj is the angular displacement coor-
dinate of the point j in the global coordinate frame. For 
simplicity, the global coordinate system identifier in the 
upper-left corner of the vector is omitted in this study. RU 
is the rotation matrix from the U-joint coordinate frame 
to the global coordinate frame.

Eq. (14) can be obtained according to rotation matrix

Expanding Eq. (14), one can have

where RU(j, k) is the element of the jth row and kth column 
of the matrix RU.

The constraint equations in Eq. (15) and the second 
formula in Eq. (13) contain only two independent alge-
braic equations. Specifically, φix and φiy, φiy and φiz, or 
φix and φiz can be considered as the two independent 
angular displacement coordinates of point i. In reality, 
some configurations remain in the workspace where the 
basic plane of the global coordinate system is parallel to 
the plane composed of the U-joint axes. In such cases, 
only the angular displacement coordinates along the 
axes components of the basic plane of the global coor-
dinate system can be used as IDCs to avoid singularities 
that occur at these special configurations. For instance, 
if the x-y (y-z / x-z) plane of global coordinate frame is 
parallel to the plane of U-joint axes, only the set of φix 
and φiy (φiy and φiz / φix and φiz) can be extracted as inde-
pendent angular displacement coordinates. The proof 
and mapping relationship between the independent and 
dependent displacement coordinates are as follows.

Substituting Eq. (13) into Eq. (15) and solving the first 
two formulas of Eq. (15), we obtain

(14)ϕi = RU
Jϕi.

(15)











ϕix = RU (1, 1)
Jϕix + RU (1, 2)

Jϕiy + RU (1, 3)
Jϕiz ,

ϕiy = RU (2, 1)
Jϕix + RU (2, 2)

Jϕiy + RU (2, 3)
Jϕiz ,

ϕiz = RU (3, 1)
Jϕix + RU (3, 2)

Jϕiy + RU (3, 3)
Jϕiz ,

(16)



















































Jϕix =
−(RU (2, 2)RU (1, 3)− RU (1, 2)RU (2, 3))QUϕj

RU (1, 1)RU (2, 2)− RU (1, 2)RU (2, 1)

+
RU (2, 2)ϕix − RU (1, 2)ϕiy

RU (1, 1)RU (2, 2)− RU (1, 2)RU (2, 1)
,

Jϕiy =
RU (2, 1)ϕix − RU (1, 1)ϕiy

RU (1, 2)RU (2, 1)− RU (1, 1)RU (2, 2)

−
(RU (2, 1)RU (1, 3)− RU (1, 1)RU (2, 3))QUϕj

RU (1, 2)RU (2, 1)− RU (1, 1)RU (2, 2)
.

Substituting Eq. (16) into the third Formula of Eq. (15), 
we obtain

where aUip =
RU (3,2)(RU (1,3)RU (2,1)−RU (1,1)RU (2,3))

RU (1,1)RU (2,2)−RU (1,2)RU (2,1)

−
RU (3,1)(RU (1,3)RU (2,2)−RU (1,2)RU (2,3))

RU (1,1)RU (2,2)−RU (1,2)RU (2,1)
+ RU (3, 3),

aUix =
RU (3,1)RU (2,2)−RU (3,2)RU (2,1)
RU (1,1)RU (2,2)−RU (1,2)RU (2,1)

,

aUiy =
RU (1,1)RU (3,2)−RU (1,2)RU (3,1)
RU (1,1)RU (2,2)−RU (1,2)RU (2,1)

,
NU =

[

aUix aUiy aUipQU

]

.
If φix and φiz, or φiy and φiz are considered as independ-

ent angular displacement coordinates, the following 
equations can be obtained.

where, a′
Uix

=
RU (2,1)RU (3,2)−RU (2,2)RU (3,1)
RU (1,1)RU (3,2)−RU (1,2)RU (3,1)

,

a
′
Uiz

=
RU (1,1)RU (2,2)−RU (1,2)RU (2,1)
RU (1,1)RU (3,2)−RU (1,2)RU (3,1)

,

a′Uip = RU (2, 3)+ RU (2,2)(RU (1,3)RU (3,1)−RU (1,1)RU (1,3))
RU (1,1)RU (3,2)−RU (1,2)RU (3,1)

−
RU (2,1)(RU (1,3)RU (3,2)−RU (1,2)RU (3,3))

RU (1,1)RU (3,2)−RU (1,2)RU (3,1) .
And

where a′′Uiy =
RU (1,1)RU (3,2)−RU (1,2)RU (3,1)
RU (2,1)RU (3,2)−RU (2,2)RU (3,1) ,

a′′Uiz =
RU (1,2)RU (2,1)−RU (1,1)RU (2,2)
RU (1,2)RU (3,2)−RU (2,2)RU (3,1),

a
′′
Uip = RU (1, 3)+

RU (1, 2)(RU (2, 3)RU (3, 1)− RU (2, 1)RU (3, 3))

RU (2, 1)RU (3, 2)− RU (2, 2)RU (3, 1)

−
RU (1, 1)(RU (2, 3)RU (3, 2)− RU (2, 2)RU (3, 3))

RU (2, 1)RU (3, 2)− RU (2, 2)RU (3, 1)
.

Considering that the x-y plane is parallel to the plane 
of the U-joint axes in some configurations, the rotation 
matrix can be expressed as follows:

Apparently, the denominators of a′Uix , a
′
Uiz , a

′
Uip , a

′′
Uiy , 

a′′Uiz , and a′′Uip are equal to zero, making the matrices N ′

U 
and N ′′

U singular in these configurations. Hence, only 
φAix and φAiy can be extracted as the two independent 

(17)

ϕiz = aUixϕix + aUiyϕiy + aUipQUϕj = NU





ϕix
ϕiy
ϕj



,

(18)

ϕiy = a′Uixϕix + a′Uizϕiz + a′UipQUϕj = N ′

U





ϕix
ϕiz
ϕj



,

(19)

ϕix = a′′Uiyϕiy + a′′Uizϕiz + a′′UipQUϕj = N ′′

U





ϕiy
ϕiz
ϕj



,

(20)RU =





±1 0 0
0 ±1 0
0 0 ±1



.
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angular displacement coordinates of point i in the global 
coordinate frame.

Accordingly, the IDCs of the two nodes connected by 
the U-joint can be expressed as

where uU ,id is the IDCs of the two overlapping nodes 
connected by a U-joint.

2.2.1.2  Revolute Joint  The R-joint shown in Figure 4(b) 
possesses one DOF, enabling independent rotation 
between the two nodes it connects. Thus, these two nodes 
exhibit seven IDCs. The compatibility condition between 
nodes i and j can be obtained as follows:

where QR =

[

1 0 0
0 0 1

]

R−1
R .

Consider that the y-axis of the global coordinate 
frame is parallel to the R-joint axis in some configura-
tions. In such cases, only φiy can be chosen as an inde-
pendent angular displacement coordinate for point i. 
Following the calculation procedure outlined above for 
the U-joint, we can derive the following equation.

 where aRix = RR(1, 1)QR(1, :)+ RR(1, 3)QR(2, :),aRiy =
RR(2, 1)QR(1, :)+RR(2, 3)QR(2, :) , aRiz = RR(3, 1)QR(1, :)

+RR(3, 3)QR(2, :) , QR(j,:) are the jth row of the matrix QR.
Accordingly, the IDCs of the two overlapping nodes 

connected by an R-joint can be expressed as

where uR,id is the IDCs of the two nodes connected by 
the R-joint.

2.2.1.3  Spherical Joint  The S-joint, shown in Fig-
ure  4(c), features three DOFs, allowing three inde-
pendent rotations between the two nodes it connects. 
Thus, the two nodes have nine IDCs. The compatibility 
condition and IDCs of the two nodes are obtained as 
follows:

(21)uU ,id =
[

ϕix ϕiy uj

]

.

(22)�i = �j ,

[

Jϕix
Jϕiz

]

=

[

1 0 0
0 0 1

]

R−1
R ϕj = QRϕj ,

(23)

[

ϕix

ϕiz

]

=

[

RR(1,2)
RR(2,2) aRix −

RR(1,2)aRiy
RR(2,2)

RR(3,2)
RR(2,2) aRiz −

RR(3,2)aRiy
RR(2,2)

][

ϕiy

ϕj

]

= NR

[

ϕiy

ϕj

]

,

(24)uR,id =
[

ϕiy uj

]

,

2.2.1.4  Prismatic Joint  Similarly, as shown in Fig-
ure 4(d), considering that the y-axis of the global coor-
dinate frame is parallel to the P-joint axis in some con-
figurations, the IDCs of the P-joint and the mapping 
relationship between the independent and dependent 
coordinates are given by

where NP can be obtained by replacing the rotation 
matrix RR in NR with RP.

2.2.1.5  Cylindrical Joint  A cylindrical joint can be con-
sidered as a combination of P- and R-joints. In such a 
scenario, the independent displacement coordinates and 
their mapping relationship with the dependent displace-
ment coordinates are given as follows:

2.2.1.6  Screw Joint  Figure  4(f ) shows the two-node 
screw joint element, similar to a cylindrical element in 
construction. However, while the cylindrical joint element 
has two free relative DOFs, the screw joint has only one 
DOF. In a screw joint, the pitch p correlates the relative 
rotation angle to the relative translational displacement 
along the axis of the screw. Similarly, the independent 
displacement coordinates of the screw joint element were 
considered to be

The constraint equations can be expressed as follows.

(25)�i = �j ,

(26)uS,id =
[

ϕix ϕiy ϕiz uj

]

.

(27)uP,id =
[

�iy uj

]

,

(28)











ϕi = ϕj ,
[

�ix
�iz

]

=N P

[

�iy
�j

]

,

(29)uC ,id =
[

�iy ϕiy uj

]

,

(30)









�ix

�iz

ϕix

ϕiz









=

�

N P 02×4

02×4 NR

��

ϕiy
ϕj

�

= NC









�iy

�j

ϕiy

ϕj









.

(31)uW ,id =
[

ϕiy uj

]

.
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Refer to Eq. (23) to extract the independent angu-
lar displacement coordinates of the revolute joint in the 
global coordinate frame. The third formula in Eq. (32) 
can be expressed as:

where aWix, aWiy, and aWiz can be obtained by  
replacing the RR in aRix, aRiy, and aRiz with RW,  

respectively, NWϕi =

[

RW (1,2)
RW (2,2) 1 RW (3,2)

RW (2,2)

]T
 and 

NWϕj =

[

aix −
RW (1,2)aiy
RW (2,2) 01×3 aiz −

RW (3,2)aiy
RW (2,2)

]T
.

Substituting Eq. (33) into the second formula of Eq. 
(32), we obtain

According to the coordinate frame transformation, one 
can have

Substituting Eq. (34) and the first formula of Eq. (32) 
into Eq. (35), we obtain

(32)



















































[ J�ix
J�iz

]

=

[

1 0 0
0 0 1

]

R−1
W �j = QW1�j ,

J�iy =
J�jy − p

(Jϕjy −
Jϕiy

)

=
[

0 1 0
]

R−1
W

[

�j − p
(

ϕj − ϕi

)]

= QW2

[

�j − p
(

ϕj − ϕi

)]

,
[ Jϕix
Jϕiz

]

=

[

1 0 0
0 0 1

]

R−1
W ϕj .

(33)





ϕix
ϕiy
ϕiz



=







RW (1,2)
RW (2,2) aWix −

RW (1,2)aWiy

RW (2,2)

1 01×3
RW (3,2)
RW (2,2) aWiz −

RW (3,2)aiy
RW (2,2)







�

ϕiy
ϕj

�

= NWϕiϕiy + NWϕjϕj ,

(34)
J�iy = pQW2NWϕiϕiy +QW2�j − pQW2(E3 − NWϕj).

(35)�i = RW
J�i.

(36)







�ix

�iy

�iz






= N�i







ϕiy

�j

ϕj






,

2.2.2 � Body‑To‑Ground
Body-to-ground can be considered a special case of 
body-to-body. In this case, node j is fixed; therefore, its 
displacement coordinate, equals zero. Thus, the IDCs and 
the mapping relationship between the independent and 
dependent displacement coordinates can be obtained by 
setting uj = 0.

2.2.3 � Rigid Body Motion
Kinematic relationships were used to model the small 
displacements of the rigid element. The constraint mod-
eling of the rigid body motion defined by nodes i and j is 
given as follows:

where E3 and 03 represent the 3×3 identity and zero 
matrices, respectively, [Lij×] is the skew-symmetric 
matrix defined by the vector Lij, which links nodes i to j.

Thus, a rigid body has only six IDCs.
The IDCs and corresponding constraint equations 

of the nodes connected by various joints commonly 
encountered in engineering are presented in Appendix. 
The analytical static equation of the structure can be 
rapidly assembled by referring to Appendix. Thus, the 
model is computationally efficient because simultaneous 
constraint equations and Lagrangian multipliers can be 
avoided.

2.3 � Elastostatic Stiffness Model
Element stiffness modeling in the global coordinate 
frame can be obtained according to the rotation matrix.

where sT = diag(sR, sR) and sR is the rotation matrix from 
the element coordinate frame to the global coordinate 
frame. K s = sT

sK ssT
T.

The global IDCs of the PMs can be defined as follows.

(37)ui =

[

E3 [Lij×]

03 E3

]

uj ,

(38)
[

W 1

W 2

]

= sT
sK ssT

T

[

u1

u2

]

= K s

[

u1

u2

]

,

where uo is the output node of the structure and uid is the 
IDCs of other nodes, except the output node.

(39)U =

[

uT
id uT

o

]T
,

where 

N�i =





pRW (1, 2)QW2N ϕi RW (1, 1)QW1(1, :)+ RW (1, 2)QW2 + RW (1, 3)QW1(2, :)
pRW (2, 2)QW2N ϕi RW (2, 1)QW1(1, :)+ RW (2, 2)QW2 + RW (2, 3)QW1(2, :)
pRW (3, 2)QW2N ϕi RW (3, 1)QW1(1, :)+ RW (3, 2)QW2 + RW (3, 3)QW1(2, :)

 
pRW (1, 2)QW2(N ϕj − E3)
pRW (2, 2)QW2(N ϕj − E3)
pRW (3, 2)QW2(N ϕj − E3)



.

Eqs. (33) and (36) define the mapping matrix between 
the dependent and independent displacement coordi-
nates of the screw joints.
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According to the analysis in Section  2.3, the mapping 
equations from the displacement coordinates of the sub-
assembly elements of the open loops to the global IDCs 
of the closed-loop PMs are obtained as follows:

where us,ij is the displacement column vector of the jth 
subassembly element of the ith chain. Hij is the mapping 
matrix from the global IDCs of the structure to the dis-
placement column vector of the jth subassembly element 
of the ith chain.

The total potential energy of the structure can be 
obtained by substituting Eq. (40) into Eq. (38).

with

where M and K denote the overall mass and stiffness 
matrices of the mechanism, respectively. Kg s,ij is the 
contribution matrix of the jth subassembly of the ith chain 
to the overall stiffness matrix.

Accordingly, the stiffness modeling of the structure can 
be obtained using Eq. (41).

where W is the general force corresponding to the global 
IDCs U.

To establish the stiffness modeling of the output node, 
the global stiffness matrix of the mechanism can be writ-
ten in the following block matrix form:

where Kss is a (k-6)×(k-6) matrix, Ksm is (k-6)×6 matrix, 
Kms is 6×(k-6) matrix, and Kmm is 6×6 matrix, k is the 
dimension of the matrix K.

Therefore, the stiffness modeling of the output node 
can be obtained as follows.

(40)
us,ij = H ijU (i = 1, 2, . . . , n; j = 1, 2, . . . , mi),

(41)
Ep =

n
∑

i=1

mi
∑

j=1
Eps,ij =

1
2

n
∑

i=1

mi
∑

j=1
uT
s,ijK s,ijus,ij

=
1
2
UTKU ,

(42)















K =

n
�

i=1

mi
�

j=1

K
g

s,ij
,

K
g

s,ij
=HT

ijK s,ijH ij ,

(43)KU = W ,

(44)K =

[

K ss K sm

Kms Kmm

]

,

(45)K ouo = W o,

where K o = TT
oKT o is the stiffness matrix of the struc-

ture output node obtained using T o =

[

T
T
o ET

6

]T
 and 

T o = K−1
ss K sm.

The values for the other IDCs can be obtained by sub-
stituting uo into Eq. (45) into Eq. (43), and the dependent 
displacement values were obtained using Eq. (40). The 
node forces in the global and element coordinate sys-
tems are obtained using Eqs. (38) and (1). Once the ele-
ment displacement column vector is in hand, the element 
strain column vector can be obtained through classical 
strain displacement conversion matrix.

Then, the element stress column vector can be obtained 
through the constitutive equations.

where D is the elastic constant matrix.
So far, the static structural analysis has been completed.

3 � Case Study 1: A Simple Single‑Freedom 
Structure

In this section, we present a single-DOF structure to 
demonstrate the superiority of the proposed stiffness 
matrix for subassembly elements. Figure  5 shows a sin-
gle-freedom structure, where rigid beam BC is connected 
to elastic beam AB with an elastic joint at point B, and 
elastic beam CD with an elastic joint at point D. The 
midpoint of rigid beam BC is denoted as the connection 
point between elastic beams AB and CD, while points A 
and D are fixed to the base. The compliance (stiffness) 
coefficients of the elastic beams AB and CD along the 
x-axis are c1 (k1) and c2 (k2), respectively. The compliance 
(stiffness) coefficients of elastic joints B and C along the 
x-axis are cJ1 (kJ1) and cJ2 (kJ2), respectively.

The traditional method treats the elastic joint as a 
spring element, and the reaction force at elastic joint B 
can be expressed as

(46)s
εs = Bsus.

(47)s
σs = Ds

εs,

(48)fB = kJ1(�ox −�Bx),

Figure 5  A single DOF structure
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where fB is the reaction force at the point B, Δox and ΔBx 
are the linear displacement of the points o and B along 
the x-axis, respectively.

According to the axial tensile and compressive defor-
mation of material mechanics, one can have

Substituting Eq. (49) into Eq. (48), one can have

Similarly, we can obtain the reaction force at the elas-
tic joint C.

Accordingly, the equilibrium equation of the rigid 
beam BC is given by

Substituting Eqs. (50) and (51) into Eq. (52), we 
obtain

From Eq. (48) we can see that if the elastic joint is 
considered to be rigid, Δox = ΔBx, making Eq. (48) sin-
gular, thereby resulting in numerical instability.

Subsequently, the proposed subassembly element was 
adopted to analyze the stiffness model, demonstrating 
its superiority.

Considering elastic beam AB and elastic joint B as 
subassembly element 1, and elastic beam CD and elas-
tic joint C as subassembly element 2, the compliance 
coefficient along the x-axis of the cantilever subassem-
bly element can be obtained using Eq. (54) as follows:

where cs1 and cs2 are the compliance coefficients along 
the x-axis of subassembly elements 1 and 2, respectively.

The stiffness coefficients of the subassembly elements 
can be obtained using Eq. (6).

(49)�Bx =
fB

k1
.

(50)fB =
k1kJ1

k1 + kJ1
�ox.

(51)fC =
k2kJ2

k2 + kJ2
�ox.

(52)f = fC + fB.

(53)f =

(

k1kJ1

k1 + kJ1
+

k2kJ2

k2 + kJ2

)

�ox.

(54)
{

cs1 = c1 + cJ1,

cs2 = c2 + cJ2,

(55)















ks1 =
k1kJ1

k1 + kJ1
,

ks2 =
k2kJ2

k2 + kJ2
.

When the elastic joints are considered rigid, the com-
pliance coefficients of the subassembly elements in Eq. 
(55) are consistent with those of the beam elements. 
Therefore, the subassembly stiffness coefficients obtained 
using Eq. (55) are consistent with those of the beam ele-
ments. The effectively eliminates the singularity problem 
expressed in Eq. (48), thereby avoiding the numerical 
instability inherent in the traditional method (Figure 5).

4 � Case Study 2: Over Constrained Delta PM With 
Over‑Constrained Subclosed Loops

The over-constrained delta PM with over-constrained 
subclosed loops, as shown in Figure 6, serves as an exam-
ple for implementing the proposed method. This mecha-
nism employs only revolute joints to constrain the output 
of the moving platform from translational motion. The 
moving platform was connected to the fixed base by 
three identical limbs, each consisting of a lower arm and 
an upper arm constructed as an over constrained planar 
four-bar parallelogram. The lower arm AiBi is labeled as 
link i1, and each upper arm is sequentially labeled as links 
i2, i3, and i4. The coordinate frames are defined as fol-
lows: the global coordinate frame O-xyz is attached to the 
center O, with its y-axis along OA1 and its z-axis point-
ing vertically upward; element coordinate frames {Bi} and 
{Ci} with their x-axis aligned along Bi1Bi2 and their z-axis 
aligned along AiBi; element coordinate frames {Bi1} and 
{Bi2} with their z-axis aligned along Bi1Ci1 and their y-axis 
points aligned along the axis of revolution of the paral-
lelogram. The joint coordinate frame was consistent with 
its subassembly element coordinate frame.

4.1 � Elastostatic Stiffness Model of the Delta PM
According to the procedure outlined for the proposed 
elastostatic stiffness model described in Section  2, the 
first step involved cutting open the closed-loop delta 
PM at the joints and converting it into an open-loop 
mechanism. The manipulator is then discretized into 
the following subassembly elements: R-joint at Ai and 
link AiBi; R-joint at Bi and link Bi1Bi2; R-joint at Bi1, 
R-joint at Ci1, and link Bi1Ci1; R-joint at Bi2, R-joint at 
Ci2, and link Bi2Ci2; R-joint at Ci and link Ci1Ci2; a rigid 
moving platform; and a rigid base. The resulting open 
loops of the delta PM are shown in Figure 7.

To clearly present the proposed method, each link is 
discretized into one element, except for link Bi1Bi2. The 
static model of the subassembly element AiBi in the ele-
ment coordinate frame is then provided.

(56)sK i1

[

s�i1
s�i2

]

=

[

sW i1
sW i2

]

,
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where Δij and Wij are the displacement column vector 
and force column vector of the jth node of the ith ele-
ment, respectively.

Eq. (56) can be further expressed in global coordi-
nates according to the rotation matrix as follows:

where K ij = T
ij
sK ijT

T
ij
 (j = 1, 2, 4), T ij = diag(Rij ,

Rij , Rij , Rij) , Rij are the rotation matrices from the jth 

(57)K i1

[

�i1

�i2

]

=

[

W i1

W i2

]

,

element coordinate frame of the ith limb to the global 
coordinate frame.

Similarly, a static model of the subassembly elements 
Bi1Ci1 and Bi2Ci2 can was obtained.

Notably, the subassembly Bi1Bi2 is discretized into 
three nodes, Bi1, Bi, and Bi2 to present the constraint 
relationship between subassemblies AiBi and Bi1Bi2. A 
beam element model that can rotate around its axis was 
considered to model the subassembly Bi1Bi2. The element 
stiffness matrix of subassembly Bi1Bi2 can be expressed 
as follows:

Figure 6  Over-constrained delta PM with over-constrained subclosed loops
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(58)















sK i2 =





K i2,e1,11 K i2,e1,12 06×6

K i2,e1,21 K i2,e1,22 + K i2,e2,11 K i2,e2,12

06×6 K i2,e2,21 K i2,e2,22



,

K i2 = TT
i2
sK i2T i2

�

T i2 = diag[Ri2, Ri2, Ri2, Ri2, Ri2, Ri2]
�

,

Similarly, the stiffness matrix of the subassembly 
Ci1Ci2 can thus be obtained.

The second step involved extracting the IDCs of the 
boundary nodes according to the method presented in 
Section  2.2. For a delta PM, the IDCs of the boundary 

nodes connected to the revolute joint can be obtained 
using Eq. (24) and Appendix.

Finally, the open-loop mechanism was closed by 
establishing a mapping equation from the non-inde-
pendent displacement coordinates of each free body 

Figure 7  Open-loops of the delta PM
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to the global IDCs of the mechanism. According to the 
introduction in Section 2.3, the global IDCs of the delta 
PM are given by:

Accordingly, referring to Appendix, the mapping matrix 
Hij between the element displacement column vector of the 
free body and global IDCs can be obtained as follows:

(59)

U = [ϕ12x, u13, u14, u15, ϕ16y, ϕ17y, ϕ18y, ϕ19y, u110,

ϕ111x,u112, . . . ,ϕ32x, u33, u34, u35, ϕ36y, ϕ37y,

ϕ38y, ϕ39yu310, ϕ311x, u312, . . . ,up].

(60)











































































































H11 =











06×114

03×7 E3 03×104

1 01×113

r12,21 01×9 a1,2y − r12,21a1,2x 01×101

r12,31 01×9 a1,2z − r12,31a1,2x 01×101











,

H21 =











06×114

03×43 E3 03×68

01×36 1 01×77

01×36 r22,21 01×9 a2,2y − r22,21a2,2x 01×65

01×36 r22,31 01×9 a2,2z − r22,31a2,2x 01×65











,

H31 =











06×114

03×79 E3 03×32

01×72 1 01×41

01×72 r32,21 01×9 a3,2y − r32,21a3,2x 01×29

01×72 r32,31 01×9 a3,2z − r32,31a3,2x 01×29











,

where ri2,21 = Ri1(2,1)
Ri1(1,1)

,ri2,31 = Ri1(3,1)
Ri1(1,1)

,
ai,2x = Ri1(1, 2)Qi2(1, :)+ Ri1(1, 3)Qi2(2, :),
ai,2y = Ri1(2, 2)Qi1(1, :)+ Ri1(2, 3)Qi1(2, :),

ai,2z = Ri1(3, 2)Qi1(1, :)+ Ri1(3, 3)Qi1(2, :),

Qi1 =

[

0 1 0
0 0 1

]

RT
i1.

(61)



























































H12 =





06×1 E6 06×107

06×7 E6 06×101

06×13 E6 06×95



,

H22 =





06×37 E6 06×71

06×43 E6 06×65

06×49 E6 06×59



,

H32 =





06×73 E6 06×35

06×79 E6 06×29

06×85 E6 06×23



,

Figure 8  Comparison of the deformed trajectory from the proposed method and ANSYS software
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where ri3,12 = Ri3(1,2)
Ri3(2,2)

,ri3,32 = Ri3(3,2)
Ri3(2,2)

.
ai,3x = Ri3(1, 1)Qi3(1, :)+ Ri3(1, 3)Qi3(2, :),
ai,3y = Ri3(2, 1)Qi3(1, :)+ Ri3(2, 3)Qi3(2, :),

ai,3z = Ri3(3, 1)Qi3(1, :)+ Ri3(3, 3)Qi2(2, :),

Qi3 =

[

1 0 0
0 0 1

]

RT
i3.

(62)


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


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


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

























H13 =























03×1 E3 03×110

01×4 a1,3x − r13,12a1,3y 01×12 r13,12 01×94

01×9 1 01×94

01×4 a1,3z − r13,32a1,3y 01×12 r13,32 01×94

03×23 E3 03×88

01×20 r13,12 01×5 a1,3x − r13,12a1,3y 01×85

01×20 1 01×93

01×20 r13,32 01×5 a1,3z − r13,32a1,3y 01×85























,

H23 =























03×37 E3 03×74

01×40 a2,3x − r23,12a2,3y 01×12 r23,12 01×58

01×55 1 01×58

01×40 a2,3z − r23,32a2,3y 01×12 r23,32 01×58

03×59 E3 03×52

01×56 r23,12 01×5 a2,3x − r23,12a2,3y 01×49

01×56 1 01×57

01×56 r23,32 01×5 a2,3z − r23,32a2,3y 01×49























,

H33 =























03×73 E3 03×38

01×76 a3,3x − r33,12a3,3y 01×12 r33,12 01×22

01×91 1 01×22

01×76 a3,3z − r33,32a3,3y 01×12 r33,32 01×22

03×95 E3 03×16

01×92 r33,12 01×5 a3,3x − r33,12a3,3y 01×13

01×92 1 01×21

01×92 r33,32 01×5 a3,3z − r33,32a3,3y 01×13























,

The presented examples in this section highlight that 
the proposed stiffness model lie in the ease with which 
designers can swiftly assemble the overall stiffness matrix 
of the PM. By referring to the Appendix provided in this 
paper, designers can avoid complicated mathematical 
operations, thereby greatly improving the efficiency of 
stiffness modeling.

Figure 9  Comparison of the deformed delta PM from the proposed method and ANSYS software
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The commercial ANSYS Workbench software was 
used to verify the accuracy of the proposed model. A 
line body with a circular cross section was adopted to 
improve the computational cost of the FEM. The flex-
ible joint is modeled using a bush element that can 
simulate the stiffness and damping of the joints in six 
directions (three translations and three rotations). We 
consider the comparison of deformation results of the 
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

H14 =























03×13 E3 03×98

01×16 a1,3x − r13,12a1,3y 01×2 r13,12 01×92

01×21 1 01×92

01×16 a1,3z − r13,32a1,3y 01×2 r13,32 01×92

03×30 E3 03×81

01×22 r13,12 01×10 a1,3x − r13,12a1,3y 01×78

01×22 1 01×91

01×22 r13,32 01×10 a1,3z − r13,32a1,3y 01×78























,

H24 =























03×49 E3 03×62

01×52 a2,3x − r23,12a2,3y 01×2 r23,12 01×56

01×57 1 01×56

01×52 a2,3z − r23,32a2,3y 01×2 r23,32 01×56

03×66 E3 03×45

01×58 r23,12 01×10 a2,3x − r23,12a2,3y 01×42

01×58 1 01×55

01×58 r23,32 01×10 a2,3z − r23,32a2,3y 01×42























,

H34 =























03×85 E3 03×26

01×88 a3,3x − r33,12a3,3y 01×2 r33,12 01×20

01×93 1 01×20

01×88 a3,3z − r33,32a3,3y 01×2 r33,32 01×20

03×102 E3 03×9

01×94 r33,12 01×10 a3,3x − r33,12a3,3y 01×6

01×94 1 01×19

01×94 r33,32 01×10 a3,3z − r33,32a3,3y 01×6























,
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H15 =















06×23 E6 06×85

03×108 J c1
01×29 1 01×84

01×29 r12,21 01×81 a1,2y − r12,21a1,2x
01×29 r12,31 01×81 a1,2z − r12,31a1,2x
06×30 E6 06×78















,

H25 =















06×59 E6 06×49

03×108 J c2
01×65 1 01×48

01×65 r22,21 01×45 a2,2y − r22,21a2,2x
01×65 r22,31 01×45 a2,2z − r22,31a2,2x
06×66 E6 06×42















,

H35 =















06×95 E6 06×13

03×108 J c3
01×101 1 01×12

01×101 r32,21 01×9 a3,2y − r32,21a3,2x
01×101 r32,31 01×9 a3,2z − r32,31a3,2x
06×102 E6 06×6















.

output point of the manipulator under a predefined tra-
jectory (Figure 8) and a given random general external 
load [15] W = [-20 N, 10 N, 100 N, 5 N·m, 5 N·m, 8 
N·m] to verify the correctness of the proposed model.

The calculation results obtained based on the proposed 
method are consistent with those of commercial ANSYS 
software, and the maximum error is within 1.05%, which 
verifies the accuracy of the proposed method.

Figure  9 shows the undeformed and deformed results 
of the delta PM obtained using MATLAB and ANSYS 
software. The maximum error was less than 0.94%, which 
further proves the accuracy of the proposed modeling. 
Notably, due to the extraction of non-singular global 
IDCs in this study, simultaneous constraint equations 
become unnecessary in the static model. This reduction 
significantly decreases computational costs to 0.0017 s on 
a desk computer with a Core i5-8500 CPU@ 3.00 GHz. In 
contrast, the ANSYS model requires 2 s for computation. 
Therefore, the proposed model achieves a remarkable 
99.15% reduction in computational cost while maintain 
accuracy.

(65)
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







x = −0.2, y = −0.2, z = 0.45+ 0.05t (0 ≤ t ≤ 2),

x = −0.2+ 0.2(t − 2), y = −0.2, z = 0.55 (2 ≤ t ≤ 4),

x = 0.2, y = −0.2, z = 0.55− 0.05(t − 4) (4 ≤ t ≤ 6).
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4.2 � Compared With the Existing Methods
The traditional method for handling the kinematic con-
straint of a structure considers the elastic joint as a spring 
[11] and establishes a mapping equation between the 
spring wrench (constraint wrench) and the deformation 
difference between the two connected nodes.

where WJ is the constraint wrenches acting on the flex-
ibility joint.

The constraints in Eq. (66) are combined with MSA 
technology and the Lagrangian equation [20] to establish 
static modeling (the detailed derivation process of the 
delta mechanism based on this method can be found in 
Ref. [20]). The limitations of this method are threefold. (i) 
computational inefficiency because of the requirement 
of additional Lagrangian multipliers. The energy equa-
tion needs to be derived separately for different struc-
tures, making it unsuitable for engineering applications; 
(ii) when the flexibility joint degenerates to become rigid, 
Eq. (66) becomes singular and numerical calculations 
become unstable. This issue has been discussed in detail 
in Section 3; (iii) similar to (ii), due to the inverse opera-
tion of the matrix KJ being required, the true zero stiff-
ness value in the direction of the free relative DOF needs 
to be replaced by a value close to zero to avoid causing 
instability in numerical calculations. For example, Deb-
laise et  al. [20] chose the axial rotational stiffness of a 
revolute joint to 10-7 N·rad-1 to avoid numerical instabil-
ity. This renders them inconsistent with the engineering 
environment and obscures their physical meaning.

Another classical model is the finite-element method. 
In commercial software like ANSYS, U-joint constraint 
is exemplified, and the rotation constraint is expressed as

where xi and yj are the column vectors of nodes i and j, 
respectively, in the joint space.

In commercial finite element software like ANSYS, 
U-joint constraints are applied by determining the per-
pendicular relationship between the U-joint axes of two 
overlapping nodes. During the static modeling process, 
verifying whether the constraint equations were violated 
is necessary. However, sometimes the independent angu-
lar displacement coordinates are not successfully sepa-
rated, which hampers the rapid assembly of the overall 
static equation of the structure, thus not maximizing the 
efficiency of element assembly and calculation. The con-
straint equations for the other joints are similar to those 

(66)W J = K J(u1 − u2),

(67)xi · yj = 0,

for the U-joint, and more details can be found in the 
ANSYS help document.

5 � Conclusions
Establishing an elastostatic stiffness model of a multi-
joint and multi-object over constrained system with 
over constrained subsystems poses a significant chal-
lenge owing to its complex constraint equations. Tra-
ditionally, because the global IDCs of such structures 
are not readily available in the global coordinate frame, 
and the flexibility joint constraint is often treated as a 
spring constraint, simultaneous constraint equations 
or additional Lagrangian multipliers are required in 
modeling methods. However, this approach can lead 
to numerical instability and computational inefficiency. 
In this paper, a systematic elastostatic stiffness model 
of PMs is proposed based on MSA, subassembly ele-
ment stiffness matrix, and IDCs. The main advantages 
of this model are as follows: (1) The method is mod-
eling efficient because of the non-singular constraint 
equations for various joints encountered in engineer-
ing, as presented in Appendix. The elastostatic stiff-
ness model can be quickly established by combining the 
rotation matrices between coordinate frames. (2) The 
proposed model is computationally efficient because 
the constraint equations are presented in the analytical 
expression in the global coordinate, and simultaneous 
constraint and Lagrangian multipliers are not required. 
(3) The proposed model is numerically stable because 
the zero-stiffness component can be considered in the 
direction of the free relative DOF.

An over-constrained delta PM with three over-con-
strained subclosed loops serves as an example to imple-
ment the proposed method. Comparison with ANSYS 
software results showed that a maximum error of loss 
than 1.05% for the specified trajectory and within 0.94% 
for mechanism deformation. However, the compu-
tational cost of the proposed method was reduced by 
99.15%, confirming its accuracy and effectiveness. To 
the best of the authors’ knowledge, this study repre-
sents the first systematic study on the extraction tech-
nology of IDCs connected by various joints in a global 
coordinate system. The proposed method provides a 
solution for the elastostatic stiffness model of complex 
over-constrained PMs.

Appendix
IDCs of nodes connected by various joints often 
encountered in engineering
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Constraints IDCs and constraint equations Notes

xy

i
j

Universal Joint

uJ = [Δi, φi, Δj, φj],
uU,id =

[

ϕix ϕiy uj
]

,

uJ =











03×2 E3 03

1 01×7

0 1 01×6

aUix aUiy 01×3 aUipQU

06×2 E6











uU,id.

aUix =
RU(3,1)RU(2,2)−RU(3,2)RU(2,1)
RU(1,1)RU(2,2)−RU(1,2)RU(2,1)

,

aUiy =
RU(1,1)RU(3,2)−RU(1,2)RU(3,1)
RU(1,1)RU(2,2)−RU(1,2)RU(2,1)

,
QU = [0 0 1]RU -1,
aUip = [RU(3, 2)(RU(1, 3)RU(2, 1)− RU(1, 1)RU(2, 3))

−RU(3, 1)(RU(1, 3)RU(2, 2)− RU(1, 2)RU(2, 3))]

/[RU(1, 1)RU(2, 2)− RU(1, 2)RU(2, 1)]+RU(3, 3).

y
i

j

Revolute joint

uR,id =
[

ϕiy uj
]

,

uJ =













03×1 E3 03
RR(1,2)
RR(2,2)

01×3 aRix −
RR(1,2)aRiy
RR(2,2)

1 01×6

RR(3,2)
RR(2,2)

01×3 aRiz −
RR(3,2)aiy
RR(2,2)

06×1 E6













uR,id.

aRix = RR(1, 1)QR(1, :)+ RR(1, 3)QR(2, :),
aRiy = RR(2, 1)QR(1, :)+ RR(2, 3)QR(2, :),
aRiz = RR(3, 1)QR(1, :)+ RR(3, 3)QR(2, :),

QR =

[

1 0 0

0 0 1

]

R
−1
R

.

y

x

z
i

j

uS,id =
[

ϕix ϕiy ϕiz uj
]

,

uJ =





03 E3 03

E3 03×6

E6×3 E6



uS,id.

y

ij

Prismatic joint

uP,id =
[

�iy uj
]

,

uJ =













RP (1,2)
RP (2,2)

aPix −
RP (1,2)aiy
RP (2,2)

01×3

1 01×6

RP (3,2)
RP (2,2)

aPiz −
RP (3,2)aPiy
RP (2,2)

01×3

03×4 E3
06×1 E6













uP,id.

aPix = RP(1, 1)QP(1, :)+ RP(1, 3)QP(2, :),
aPiy = RP(2, 1)QP(1, :)+ RP(2, 3)QP(2, :),
aPiz = RP(3, 1)QP(1, :)+ RP(3, 3)QP(2, :),

QP=

[

1 0 0

0 0 1

]

R
−1
P .

y

i
j

Cylindrical joint

uC ,id =
[

�iy ϕiy uj
]

,

uJ =

























RC (1,2)
RC (2,2)

0 aCix −
RC (1,2)aCiy
RC (2,2)

01×3

1 01×7

RC (3,2)
RC (2,2)

0 aCiz −
RC (3,2)aCiy
RC (2,2)

01×3

0
RC (1,2)
RC (2,2)

01×3 aCix −
RC (1,2)aCiy
RC (2,2)

0 1 01×6

0
RC (3,2)
RC (2,2)

01×3 aCiz −
RC (3,2)aCiy
RC (2,2)

06×2 E6

























uC ,id

.

aCix = RP(1, 1)QC(1, :)+ RP(1, 3)QC (2, :),
aCiy = RP(2, 1)QC(1, :)+ RP(2, 3)QC (2, :),
aCiz = RP(3, 1)QC (1, :)+ RC(3, 3)QC(2, :),

QC =

[

1 0 0

0 0 1

]

R
−1
C

.

Screw joint

uW ,id =
[

ϕiy uj
]

,

uJ =





NW�i

NWϕi 03 NWϕj

06×1 E6



uW ,id.

NWϕi =

[

RW (1,2)
RW (2,2)

1
RW (3,2)
RW (2,2)

]T

,

NWϕj =
[

aWix −
RW (1,2)aiy
RW (2,2) 01×3 aWiz −

RW (3,2)aWiy
RW (2,2)

]T

aWix = aRix,aWiy = aRiy,aWiz = aRiz.

N�i =





pRW (1, 2)QW2Nϕi RW (1, 1)QW1(1, :)+ RW (1, 2)QW2 + RW (1, 3)QW1(2, :) pRW (1, 2)QW2(Nϕj − E3)
pRW (2, 2)QW2Nϕi RW (2, 1)QW1(1, :)+ RW (2, 2)QW2 + RW (2, 3)QW1(2, :) pRW (2, 2)QW2(Nϕj − E3)
pRW (3, 2)QW2Nϕi RW (3, 1)QW1(1, :)+ RW (3, 2)QW2 + RW (3, 3)QW1(2, :) pRW (3, 2)QW2(Nϕj − E3)





,

QW1 =

[

1 0 0

0 0 1

]

R
−1
W  , QW2 =

[

0 1 0
]

R
−1
W .

Rigid constraint

ug,id = uj,

uJ =





E3 [Lij×]

03 E3
E6



ug,id.
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