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Abstract 

Ensuring high product quality is of paramount importance in pharmaceutical drug manufacturing, as it is subject 
to rigorous regulatory practices. This study presents a research focused on the development of an on-line detection 
method and system for identifying surface defects in pharmaceutical products packaged in aluminum-plastic blisters. 
Firstly, the aluminum-plastic blister packages exhibit multi-scale features and inter-class indistinction. To address 
this, the deep semantic network with boundary refinement (DSN-BR) model is proposed, which leverages semantic 
segmentation domain knowledge, to accurately segment the defects in pixel level. Additionally, a specialized image 
acquisition module that minimizes the impact of ambient light is established, ensuring high-quality image cap-
ture. Finally, the image acquisition module, image detection module, and data management module are designed 
to construct a comprehensive online surface defect detection system. To validate the effectiveness of our approach, 
we employ a real dataset for instance verification on the implemented system. The experimental results substantiate 
the outstanding performance of the DSN-BR, achieving the mean intersection over union (MIoU) of 90.5%. Further-
more, the proposed system achieves an inference speed of up to 14.12 f/s, while attaining an F1-Score of 98.25%. 
These results demonstrate that the system meets the actual needs of the enterprise and provides theoretical 
and methodological support for intelligent inspection of product surface quality. By standardizing the control process 
of pharmaceutical manufacturing and improving the management capability of the manufacturing process, our 
approach holds significant market application prospects.

Keywords  Surface defect detection system, Deep learning, Semantic segmentation, Aluminum-plastic blister 
packages identification

1  Introduction
Product quality is a matter of utmost significance in 
pharmaceutical drug manufacturing, which adheres to 
stringent regulatory practices [1]. The quality of pharma-
ceuticals and their packaging can be adversely affected by 
variations in raw material properties and process distur-
bances. The presence of defective products in the market 
not only leads to substantial economic losses for enter-
prises but also poses a significant risk to patient health 
[2]. Consequently, after the completion of the regular 
production process, quality control becomes crucial to 
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ensure product quality [3]. It becomes imperative to gain 
a comprehensive understanding of the dynamic process 
and its impact on quality, particularly during start-up 
and shut-down phases. This entails identifying relevant 
variables and attributes and designing robust monitor-
ing systems capable of accurately controlling product 
quality [4, 5]. Presently, within the realm of quality visual 
inspection, many pharmaceutical companies still rely on 
manual methods or sampling inspections, which present 
various undesirable aspects. Firstly, this labor-intensive 
approach entails substantial costs and inefficiencies, con-
suming significant human and material resources. Sec-
ondly, conducting visual inspections on large quantities 
of products not only intensifies the workload of workers 
but also reduces overall production efficiency. Further-
more, the sustained engagement in mechanical repetitive 
visual inspection tasks can lead to visual fatigue among 
workers, resulting in potential oversights in inspec-
tion and misjudgment of product quality. Consequently, 
unqualified products may flow into the consumer mar-
ket, resulting in substantial economic losses and a decline 
in patient well-being [6].

With the rapid advancements in computer science and 
technology, the application of vision-based inspection 
systems has gained significant momentum across various 
industries, aligning with the concept of smart factories 
[7, 8]. Machine vision, as a real-time, efficient, and cost-
effective detection method, has emerged as a powerful 
tool [9, 10]. It enables the swift and accurate inspection 
of surface defects, overcoming the limitations associated 
with manual inspection, such as human error, inspec-
tion omissions, and fatigue-induced detection issues [11]. 
Leveraging machine vision not only enhances detection 
accuracy but also substantially reduces the costs asso-
ciated with manual inspection, leading to substantial 
economic and social benefits. Hence, the adoption of 
mechanized and intelligent artificial intelligence devices 
for pharmaceutical quality inspection represents the 
most viable alternative to manual visual inspection [12, 
13]. This paradigm shift towards AI-driven technologies 
in manufacturing processes embodies the general trend 
towards unmanned and intelligent operations in the 
future [14].

Traditional machine vision-based methods employed 
for surface defect detection typically rely on conventional 
image processing algorithms or manually designed fea-
ture extraction techniques combined with classifiers [15]. 
In these approaches, different attributes of the inspected 
surface or defect are commonly utilized to design the 
imaging scheme [16]. Typically, a two-step process is fol-
lowed, where a high-level representation of the defect is 
constructed using various feature extraction techniques, 
followed by classification using a dedicated classifier 

to determine the defect class [17]. For instance, in the 
work of Bay et  al. [18], Hessian matrix-based detector 
measurements and distribution-based descriptors were 
employed, resulting in novel combinations of detection, 
description, and matching steps. In another study by Liu 
et al. [19], an automatic image segmentation method was 
proposed, wherein hand-designed features and depth fea-
tures were integrated to train a structured random forest 
classifier. However, these methods necessitate the man-
ual crafting of features specific to defects, which comes 
with inherent limitations [20]. Moreover, if an incorrect 
design is chosen, these methods may not be suitable for 
accurately identifying specific types of drugs.

Indeed, researchers are increasingly turning towards 
data-driven techniques to address the inherent com-
plexity associated with image processing methods [21]. 
In recent years, the rapid advancements in deep learn-
ing techniques have led to the application of various 
algorithms for surface quality control tasks [22–24]. For 
instance, in the study of Zhang et  al. [25], a cross-scale 
weighted feature fusion network was proposed to iden-
tify and locate surface defects in hot-rolled steel, achiev-
ing a mean average precision (mAP) of 86.8%. In another 
study by Hao et al. [26], a detection model for intelligent 
industrial monitoring was proposed to classify and locate 
multi-scale defects on steel surfaces, achieving a mAP 
of 80.5%. Deep learning methods exhibit distinct advan-
tages over traditional machine vision approaches, as they 
possess the capability to learn features directly from raw 
data and demonstrate a higher capacity for representing 
intricate structures [27]. Consequently, these methods 
eliminate the need for manual feature design, replacing it 
with an automated learning process. This automated fea-
ture learning process aligns well with the requirements of 
flexible production lines [28], which necessitate efficient 
and adaptable product quality control mechanisms to 
accommodate rapid adaptation to new products.

In conclusion, the aforementioned findings highlight 
several prominent challenges in the field:

1.	 Traditional image processing algorithms exhibit sig-
nificant drawbacks, including high labor and time 
costs. Moreover, these algorithms face substantial 
limitations due to their reliance on manually designed 
defect feature characterizations. Consequently, they 
possess limited error tolerance and fail to address the 
quality inspection requirements of multi-species and 
small-batch pharmaceuticals at a fundamental level.

2.	 Design detection methods based on deep learning 
are founded upon observed inputs. However, in real 
and complex environments characterized by diverse 
defect types and substantial noise interference in 
defect images, these methods struggle to achieve 
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detection performance that aligns with the practical 
needs of enterprises.

3.	 Existing detection methods primarily focus on 
enhancing the model itself, leading to difficulties in 
realizing a complete system spanning data collection 
to real-time detection. Furthermore, there remains 
ample room for improvement to facilitate the direct 
deployment of these methods in the actual enterprise 
environment.

In this study, we propose a comprehensive approach 
to tackle the aforementioned challenges by integrating 
an enhanced semantic segmentation model into a com-
plete system. The proposed strategy encompasses four 
key stages, as follows: (1) Introducing a deep semantic 
network with boundary refinement (DSN-BR) learn-
ing model that leverages the power of deep networks for 
end-to-end online detection. (2) Developing a dedicated 
image acquisition module to ensure independent data 
acquisition regardless of ambient light conditions. (3) 
Designing the overall hardware and software architec-
ture, constructing a system model, and building a demon-
stration system. (4) Implementing real-time quality state 
assessment and feedback adjustment to detect and adjust 
product conditions, providing timely feedback. The pro-
posed system combines practical application for medici-
nal products with effectiveness constraints, supported by 
comprehensive experiments that validate its efficacy and 
feasibility. It outperforms current defect detection meth-
ods in terms of speed, efficiency, and cost. The contribu-
tions of this paper can be summarized as follows.

•	 Proposed a novel defect detection model based on 
semantic segmentation, enhancing the ability to 
detect multi-scale defects and accurately obtain 
defect boundary information for end-to-end defect 
detection in aluminum-plastic blister packages.

•	 Integrated modules to build a complete online defect 
detection system for surface defects of aluminum-
plastic blister pharmaceuticals, including image 
acquisition, detection, and data management mod-
ules. Designed a software and hardware implementa-
tion scheme, combining deep learning methods with 
the product quality control process of a continuous 
manufacturing enterprise.

•	 Verified the feasibility and effectiveness of the sys-
tem using actual data. Experimental results dem-
onstrated improved performance and efficiency in 
defect detection during rapid production, enabling 
large-scale online quality control, enhanced produc-
tion process management, and providing theoretical 
and technological support for comprehensive surface 
quality control in various fields of manufacturing.

The remainder of this paper is structured as follows. 
Section  2 presents the detailed architecture of the pro-
posed method and system. In Section  3, validation 
experiments are conducted using a case study. Finally, 
Section 4 concludes the study and outlines potential ave-
nues for future work.

2 � Proposed Methodology and Integrated System
First, this section introduces the framework of the 
method, which mainly consists of three parts: Integrated 
learning model and algorithm, modules and system 
implementation. Subsequently, details of each part are 
described. In the next section, a system demo is built for 
instance validation.

2.1 � Overall Framework
This study first designs the integrated learning model 
and algorithm, and constructs the deep learning model 
mainly by analyzing the difficulty of detecting aluminum-
plastic materials. Then the image acquisition module is 
established to collect images. After training the model 
with datasets, the executed algorithm is deployed to the 
image detection module. Finally, the detection results 
and real-time information will be passed to the robotic 
arm and display terminal through the data manage-
ment module, realizing the closed-loop connection of 
the whole system. The method framework is shown in 
Figure 1.

2.2 � Proposed Learning Model
The core concept of the FCN-based method revolves 
around learning the mapping of pixel-level information in 
images, thus eliminating the need for extracting regions 
of interest. This breakthrough overcomes the limitations 
of traditional image segmentation techniques and paves 
the way for the development of end-to-end deep learn-
ing networks. In 2014, Long et  al. [29] introduced the 
FCN network, which replaced the fully connected layers 
typically found at the end of conventional CNN networks 
with convolutional layers, enabling pixel-wise classifica-
tion. This novel approach allowed for end-to-end clas-
sification of input images of arbitrary sizes, thereby 
establishing a foundational framework for addressing 
image semantic segmentation problems using deep net-
works. In this study, we propose the DSN-BR, which 
builds upon the FCN architecture and incorporates tar-
geted structural improvements to better align with the 
data characteristics specific to our research environment. 
These enhancements are carefully designed to enhance 
the applicability and effectiveness of the model in han-
dling the unique features present in the dataset under 
investigation.
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2.2.1 � Problem Analysis
In this study, our objective is to achieve accurate pixel-
level identification of aluminum-plastic blister packs 
through semantic segmentation, thereby detecting spe-
cific classes and their corresponding regions. Unlike 
existing methods, our proposed approach primarily 
relies on the integration of data and domain knowledge 
to improve overall segmentation performance while 
addressing several targeted features of importance.

(1)	 Multi-scale feature defects. Firstly, we need to 
tackle the challenge of detecting multi-scale defect 
features. This includes identifying both large-scale 
defects such as powder pressing of foam cover 
plates, lack of mesh and batch numbers, as well as 
small-scale defects like poor foam formation and 
drug-related anomalies (Figure 2). At the low-level 
stage, features capture more global information but 
struggle to capture the details of small defects due 
to the broad acceptance perspective. Conversely, at 

Figure 1  Overall framework of the online defect detection system

Figure 2  Multi-scale surface feature defects on the dataset (red borders represent defects)
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the high-level stage, features lack the necessary con-
textual information to accurately distinguish large-
scale defects. Additionally, the large image size 
used in this study (1280×640) exacerbates the dis-
crepancy between large and small defects in terms 
of feature size. To address these issues, we employ 
a multi-scale approach that encodes both local and 
global context features, aiming to capture compre-
hensive defect information. However, the varying 
sizes of receptive fields pose challenges in terms of 
feature extraction, potentially leading to incorrect 
labels or conflicting results. Thus, it is essential to 
carefully select discriminative features for predict-
ing the semantic labels of specific classes.

(2)	 Inter-class indistinction. Secondly, we address the 
issue of inter-class indistinction, which is often 
overlooked in semantic segmentation tasks. Exist-
ing methods typically treat this problem as a dense 
recognition task, aiming to differentiate adjacent 
patches with similar appearances but different 
semantic labels. However, they often neglect the 
inter-class relationships that are crucial for model 
performance [30]. For instance, in our study, defec-
tive features like fine lines and missing mesh pat-
terns in blister packages exhibit similarities to 
patterns found in aluminum-plastic packaging 
(Figure 3). This similarity, especially when adjacent 
spatially, can result in confusion in predicted classes 
due to their resembling appearances. To overcome 
this challenge, we explicitly incorporate semantic 
boundaries to guide feature learning. By amplify-
ing feature variations on both sides of the bound-
ary, we can distinguish adjacent regions with similar 
appearances but different semantic labels, thereby 

improving localization and prediction near defect 
edges.

(3)	 Few-shot learning. Lastly, we address the issue of 
few-shot learning. Traditional machine learning 
algorithms and tools have excelled in scenarios with 
large datasets, leveraging "big data" for improved 
model performance through automatic learning 
from experience [31]. However, when datasets are 
small, models are susceptible to overfitting, and 
challenges arising from data imbalance are diffi-
cult to overcome, ultimately hindering the perfor-
mance of machine learning algorithms. Despite 
the satisfactory results achieved by existing models 
trained on large public datasets, the design of qual-
ity inspection processes specific to pharmaceuti-
cal manufacturing, particularly in the context of 
deep learning, remains insufficiently addressed. For 
instance, while previous methods have utilized pub-
lic datasets with thousands of images to train mil-
lions of parameters, our dataset consists of a limited 
number of defective training samples (237 images 
with 100 defective samples), leading to a few-shot 
learning problem.

In summary, this study explores appropriate net-
work architectures from the aforementioned three 
perspectives, conducting comparative improvement 
experiments, ultimately culminating in the development 
of DSN-BR. The specific modules for improvement are 
described in detail in the following sections.

2.2.2 � Enhancing DSN‑BR for Semantic Segmentation
1. Currently, most networks employ 3×3 sized con-
volutional kernels for feature extraction due to their 

Figure 3  Defects with similar patterns on the aluminum-plastic surface, the inter-class distinction is not obvious on the dataset (red borders 
represent defects)
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advantages, such as fewer parameters, lower computa-
tional requirements, and the ability to capture fine image 
details, thereby enhancing the model’s capabilities. How-
ever, there are still limitations associated with small ker-
nels. Their limited receptive fields may lead to the loss of 
global context information when applied to larger input 
feature maps. In our study, the image size is 1280×640, 
encompassing both small defects on the pill section and 
larger defects on the packaging board. Small kernels 
may struggle to capture large-scale features adequately 
and might overlook important details during informa-
tion processing, consequently compromising model 
performance.

To address this issue, we propose increasing the kernel 
size of the first layer in the feature extraction network. 
The inclusion of larger kernels serves multiple purposes. 
Firstly, the enlarged kernel size expands the perceptual 
field, enabling the network to capture broader contextual 
information and global features. This allows the model 
to focus on larger local areas and extract more intricate 
details in subsequent deeper networks (Figure 4). Addi-
tionally, larger kernels possess the ability to learn more 
complex and abstract feature representations, facilitating 
the gradual extraction of higher-level features as multiple 
convolutional layers are stacked. This, in turn, enables 
the model to better comprehend semantic information 
for subsequent semantic segmentation tasks. For ease of 
implementation and efficient convolutional anchor point 
placement, it is customary for the kernel size to be an odd 
number. In the experiments conducted in Section 3.2.1, 

we compare the performance of 3×3, 5×5, and 7×7 
convolutional kernels. After considering the trade-off 
between model performance, the number of parameters, 
and computational requirements, we ultimately select 
7×7 kernels for the first layer of the feature extraction 
network. This decision ensures dense connections over a 
larger area for feature mapping, thereby striking an opti-
mal balance between model performance and computa-
tional efficiency.

2. Deep convolutional networks exhibit the capability 
to enhance feature representation by effectively lever-
aging the depth of layers to integrate low, medium, and 
high-level features in an end-to-end, multi-layer fash-
ion. Ref. [32] has demonstrated that network depth plays 
a crucial role in visual recognition tasks. In the FCN, 
Vgg16 [33] is commonly utilized as the backbone net-
work, comprising 13 convolutional layers and 3 fully con-
nected layers. However, for our specific requirements, 
it is insufficient to solely rely on Vgg16, as we not only 
need multi-scale features for accurately recognizing each 
type of defect but also necessitate the selection of more 
discriminative features to predict semantic labels for spe-
cific classes. Consequently, we adopt Resnet [34] as the 
backbone network in our proposed method, which ena-
bles us to significantly increase the network depth and 
achieve outstanding accuracy. Additionally, the inclu-
sion of residual modules in Resnet mitigates issues such 
as gradient explosion and vanishing gradients that may 
arise with deeper models. The replacement of the specific 
backbone structure with Resnet is depicted in Figure 5.

Figure 4  Differences in receptive fields with different sizes of convolutional kernels
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The model can be divided into five stages based on 
the size of the feature map. Each stage exhibits vary-
ing recognition capabilities, resulting in different per-
formance levels (as depicted in Figure  6(a)). The lower 
stages encode finer contextual information, while the 
higher stages excel at capturing small defects with greater 

accuracy. Building upon this foundation, we leverage the 
strengths of both higher and lower stages to achieve opti-
mal predictions. By combining the advantages of differ-
ent stages, we enhance the overall prediction capability of 
the model.

Figure 5  Improvement structure of feature extraction network

Figure 6  Schematic diagram of algorithm improvement: (a) Schematic representation of the different stages of the model, (b) Specific structure 
of BR module
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3. To effectively distinguish between classes that exhibit 
similar appearances, it is essential to enhance the dis-
tinction between features and extract accurate semantic 
boundaries. To achieve this, we incorporate a semantic 
boundary loss during the training process, which bears a 
resemblance to the task of semantic boundary detection. 
This loss function enables the model to learn discrimi-
native features that amplify the inter-class distinction, 
facilitating the distinguishability of features on both sides 
of the semantic boundary. We introduce the boundary 
refinement (BR) module derived from GCN [35] to learn 
boundary features. By leveraging this module, we can 
magnify the variations in features on both sides of the 
boundary, effectively differentiating adjacent areas that 
share similar appearances but possess different seman-
tic labels. Consequently, this approach improves the 
localization and prediction accuracy near defect edges, 
addressing the challenges associated with these regions.

The specific operation is to add a BR module after 
the multi-scale feature layer, which is a small resid-
ual structure to refine the defect edges with residual 
branches. Assume that the size of the input feature map 
is W ×H × C , which is the width, height and chan-
nels. For the residual branch on the right side, convolu-
tion is performed using the 3×3 convolution kernel of 
stride 1. After ReLU, another convolution is performed, 
finally the output is summed with the direct mapping 
layer. More specifically, we define F̃  as the refined score 
map F̃ = F + R(F) , where F  is the coarse score map and 
R(F) is the residual branch. The details can be referred to 
Figure 6(b).

2.2.3 � DSN‑BR Framework
We propose a novel deep fully convolutional network 
called DSN-BR for semantic segmentation, aiming to 
improve the spatial accuracy of the segmentation out-
put. The overall architecture of the DSN-BR model is 
depicted in Figure 7(a). To construct the model, we uti-
lize Resnet50 as the feature extraction network and 
employ the FCN framework for segmentation. We initial-
ize the backbone network with pre-trained weights from 
the PASCAL VOC 2011 dataset [36]. To capture both 
high and low-level features, we fuse feature maps from 
different stages of the Resnet50 backbone. To enhance 
the dense prediction, we incorporate network upsam-
pling and pixel-level loss. Specifically, each node in the 
network generates a multiscale semantic feature map 
through the full convolutional network structure. Addi-
tionally, the BR module is employed to learn boundary 
features. We introduce branches between layers to fuse 
coarse, semantic, and local appearance information, 
achieving high-resolution feature map fusion through 
bilinear interpolation. The skip connections in the model 

aim to refine the semantic and spatial accuracy of the 
output. At each fusion point, boundary learning is per-
formed. Finally, through the last upsampling operation, a 
prediction image of the same size as the original image is 
generated. The flowchart of the proposed DSN-BR model 
is illustrated in Figure 7(b).

2.3 � Modules
The image acquisition module plays a crucial role in 
obtaining high-quality surface images of the tested alu-
minum-plastic blister packages. It consists of compo-
nents such as CCD, light source, and clamping device. 
Its primary function is to capture the product surface 
images accurately. The customized image acquisition 
module is essential as it directly influences the visualiza-
tion of defects on the product surface. In this study, the 
tested aluminum-plastic blister packages undergo a pro-
cess that involves molding a transparent plastic hard film, 
filling it with solid drugs such as tablets, pills, and cap-
sules, and then heat bonding it with an adhesive-coated 
aluminum foil to form a sealed package. The aluminum 
foil used possesses reflective properties. However, due to 
variations in the angle between the ambient light and the 
surface of the packages (as depicted in Figure  8(a)), the 
illumination in the detection room becomes uneven and 
uncertain across different locations and surfaces. This 
irregular distribution of reflected light intensities greatly 
impacts the subsequent segmentation detection process. 
Additionally, certain curved surfaces on the plastic hard 
disk, formed by the plastic absorption process, exhibit 
strong reflections, leading to uneven local surface bright-
ness. Therefore, achieving high-quality image acquisition 
for blister packages’ surfaces under normal inspection 
environments proves to be a challenging task. To address 
the lighting conditions, surface characteristics of the blis-
ter packages, defect properties, and the detection objec-
tives, we designed and constructed a specialized image 
acquisition module.

2.3.1 � Image Acquisition Module
The image acquisition module plays a crucial role in 
obtaining high-quality surface images of the tested alu-
minum-plastic blister packages. It consists of compo-
nents such as CCD, light source, and clamping device. 
Its primary function is to capture the product surface 
images accurately. The customized image acquisition 
module is essential as it directly influences the visualiza-
tion of defects on the product surface. In this study, the 
tested aluminum-plastic blister packages undergo a pro-
cess that involves molding a transparent plastic hard film, 
filling it with solid drugs such as tablets, pills, and cap-
sules, and then heat bonding it with an adhesive-coated 
aluminum foil to form a sealed package. The aluminum 
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foil used possesses reflective properties. However, due to 
variations in the angle between the ambient light and the 
surface of the packages (as depicted in Figure  8(a)), the 
illumination in the detection room becomes uneven and 
uncertain across different locations and surfaces. This 
irregular distribution of reflected light intensities greatly 
impacts the subsequent segmentation detection process. 
Additionally, certain curved surfaces on the plastic hard 
disk, formed by the plastic absorption process, exhibit 
strong reflections, leading to uneven local surface bright-
ness. Therefore, achieving high-quality image acquisition 
for blister packages’ surfaces under normal inspection 
environments proves to be a challenging task. To address 
the lighting conditions, surface characteristics of the blis-
ter packages, defect properties, and the detection objec-
tives, we designed and constructed a specialized image 
acquisition module.

The image acquisition module utilizes a closed black 
box configuration to mitigate the influence of ambient 
light, as depicted in Figure 9(a). Within the black box, 
a controlled brightness strip light source is employed in 
conjunction with an industrial-grade CCD camera. The 
strip light source offers several advantages, including 
high light uniformity, ensuring that captured images 
are not affected by unevenly reflected light. Moreo-
ver, the strip light source exhibits high stability and 
provides adjustable angles for optimal illumination. 
The industrial CCD camera is responsible for acquir-
ing images within the enclosed black box, which will 
be subsequently processed by the detection module. 
After the implementation of the designed image acqui-
sition module, an experimental setup was established, 
as illustrated in Figure  9(b). The experimental results 
demonstrate that the images captured by the image 

Figure 7  Detailed introduction of the DSN-BR model: (a) Specific architecture of DSN-BR, (b) Flowchart
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acquisition module exhibit no discernible impact from 
reflected light or uneven brightness. This improvement 
in image quality significantly benefits subsequent image 
detection tasks.

2.3.2 � Image Detection Module
Our image detection module encompasses both high-
performance hardware and visual detection software, 
as depicted in Figure  10. The hardware configuration 
includes a Lenovo workstation equipped with a power-
ful CPU (Intel Xeon Silver 4210R) and GPU (NVIDIA 
Geforce RTX 3090) to handle the computational work-
load. Additionally, a 4K HD smart display terminal is 
utilized for efficient human-computer interaction. To 
ensure a comprehensive solution, the software mod-
ule is designed to incorporate various functionalities, 
such as image processing, analysis, real-time parameter 

adjustment, user-friendly operation, and scalability. The 
visual inspection software comprises several modules, 
including the image acquisition module, defect detection 

Figure 8  Images collected before and after using the image acquisition module: (a) Images of aluminum blister pack taken under natural ambient 
light, (b) Image captured by the image acquisition module we built

Figure 9  Details of the image acquisition module: (a) Design of image acquisition module, (b) Established experimental setup

Figure 10  Composition of image detection module
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module, light source adjustment module, and acquisition 
parameter setting module (Figure 10).

In operation, the image detection module first receives 
high frame rate images captured by industrial cameras. 
These images are then fed into the visual inspection soft-
ware, where they undergo analysis and processing using 
an end-to-end integration algorithm. The resulting detec-
tion outcomes are output to the display terminal for vis-
ualization. Simultaneously, the PLC system receives the 
detection results to facilitate the control of the robotic 
arm, enabling it to retrieve the identified unqualified 
products. Moreover, the software interface of the display 
terminal offers functions such as automatic and manual 
adjustment of LED strip light source intensity for lumi-
nance control, as well as manual parameter setup for 
fine-tuning the system. Real-time updates of these func-
tional parameters are displayed on the software interface, 
ensuring efficient monitoring and customization during 
operation.

2.3.3 � Data Management Module
To effectively manage the dynamic information within 
the system, timely and efficient data management is 
crucial. The data management module plays a vital role 
in facilitating the easy management of product design 
processes, controlling product description data, and 
providing real-time mobility data information to author-
ized personnel. This module ensures the flexibility of the 
product data management system while maintaining 
robust information security. Moreover, it enables seam-
less communication of information between the robotic 
arm and the human-machine interface, ensuring the 
smooth operation of the system. In this section, we pre-
sent a comprehensive overview of the system’s operation 
process and design the specific steps to illustrate the flow 

of data (as depicted in Figure  11). The entire operation 
process is divided into three main areas: The acquisition 
area, detection area, and interaction area. The specific 
steps involved are outlined below.

Step 1: Acquisition Area. Upon entering the black box 
from the production line, the sensor detects the presence 
of the product at the designated shooting station. If the 
product is not detected, it is redirected back to the begin-
ning of the process. If the product is detected, the CCD 
camera initiates the image capture process, leading to 
Step 2.

Step 2: Detection Area. The captured image is fed into 
the image detection module, where the integrated algo-
rithm predicts whether the product is qualified or not. If 
the product is deemed qualified, it is redirected back to 
the acquisition area to restart the process. If the product 
is determined to be unqualified, the system proceeds to 
Step 3.

Step 3: Interaction Area. In the interaction area, if there 
is information indicating the presence of an unqualified 
product, the PLC sends instructions to both the robotic 
arm and the display terminal. The robotic arm then pro-
ceeds to grasp the unqualified product at the designated 
station. Simultaneously, the display terminal provides 
real-time information regarding the unqualified product.

2.4 � System Implementation
The proposed surface defect detection system oper-
ates through a series of well-defined steps. Initially, sur-
face images of the products are captured using suitable 
light sources and image sensors, such as charge-coupled 
devices. Subsequently, the collected images undergo a 
series of operations, including localization, identification, 
classification, and statistical analysis of surface defects. 
The processed information is then stored, and based on 
the analysis, subsequent instructions are generated. The 

Figure 11  System running flow
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key components of the system consist of the image acqui-
sition module, image detection module, and data man-
agement module, which collectively ensure the smooth 
functioning of the system. In this section, we provide a 
detailed introduction to these modules, along with an 
overview of the system implementation, as depicted in 
Figure 12.

2.4.1 � Hardware Platform Framework
Based on the theoretical foundations and experimental 
findings discussed earlier, we have constructed a compre-
hensive system, as depicted in Figure  13. The hardware 
components of the system encompass a product line, an 
image acquisition module, an image monitoring mod-
ule, a robotic arm, PLC, a switch, a server, and a display 
terminal. The image acquisition module plays a pivotal 
role in ensuring the acquisition of high-quality images, 
even under challenging lighting conditions. The robotic 
arm operates in conjunction with the conveyor system, 
intercepting the identified unqualified products at spe-
cific stations based on the detection results. The PLC, 
connected to the switch, provides logical control over the 

entire system’s operations, while the high-speed server 
efficiently handles the processing tasks. Ultimately, the 
system’s results are displayed in real-time on the display 
terminal, providing users with immediate feedback and 
insights.

2.4.2 � Software Platform Framework
The software platform architecture, as illustrated in 
Figure  14, serves as a comprehensive solution for the 
detection and retrieval of defective products using an 
industrial robotic arm in conjunction with machine 
vision technology. This platform encompasses various 
components, including the encapsulated segmentation 
detection algorithm, communication interfaces with the 
robotic arm, and control mechanisms for robotic arm 
operations. It incorporates essential functionalities such 
as PLC monitoring and control, database services, auto-
matic sorting, and defect detection capabilities. The fea-
tures of the software platform are outlined as follows.

(1)	 The monitoring and control aspect of the PLC is 
composed of Siemens’ Step 7 professional soft-

Figure 12  Composition of the visual detection system



Page 13 of 21Liu et al. Chinese Journal of Mechanical Engineering           (2024) 37:86 	

ware, which includes the mobile control part of the 
robotic arm. It facilitates three-party communica-
tion between the robot, PLC, and server. Real-time 
monitoring of the robotic arm’s status, fault detec-
tion, and analysis of the fault cause are accom-
plished through intermediary software, such as 
kepserver.

(2)	 The database service component primarily han-
dles the recording of product quantities during the 
defect detection process, different types of defects, 
and inspection logs. This enables efficient detection 
supervision and real-time tracking of non-conform-
ing products. SQL-based database software is uti-
lized to facilitate this functionality.

(3)	 Communication between the industrial camera and 
the server enables image acquisition, as well as the 
retrieval, interpretation, and storage of images for 
symbolic reasoning purposes.

(4)	 In the image detection module, the trained segmen-
tation model is deployed on the server. Captured 
images are retrieved and processed by the model 
for real-time end-to-end defect detection. The 
implementation is predominantly written in Python 
using PyTorch.

(5)	 The intelligent capture network involves retriev-
ing key information of defective products through 
RFID. Commands are then transmitted to the 
robotic arm via the PLC, enabling the arm to carry 
out sorting and grasping tasks for non-conforming 

Figure 13  Integrated online defect detection system

Figure 14  System software module
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products at specific workstations. Programming for 
this component is performed in the PyCharm envi-
ronment.

(6)	 The UI design provides real-time access to inspec-
tion information, including current product details, 
defect images, types, batch accuracy, and more. The 
UI interface also facilitates the issuance of com-
mands to the system, enabling users to operate each 
function effectively. The UI is designed to display 
variable text boxes, image results, work logs, and 
other relevant information. Python is employed to 
implement this component, and the primary UI 
interface is illustrated in Figure 15.

2.4.3 � Evaluation Indicators
In this study, we employ various evaluation metrics to 
assess the performance of both the semantic segmenta-
tion model and the system. The mean intersection over 
union (MIoU) serves as the primary evaluation metric for 
the semantic segmentation model, while accuracy, recall, 

precision, F1 score, and frames per second (FPS) are used 
to evaluate the system.

To evaluate the semantic segmentation results, we ana-
lyze the intersection ratio between the true and predicted 
values of each class at the pixel level. The MIoU is then 
obtained by averaging the intersection ratios for all classes, 
using Eq. (1). Here, TP represents true positive, FP repre-
sents false positive, TN represents true negative, and FN 
represents false negative. The MIoU provides a quantitative 
measure of the overall performance of the semantic seg-
mentation model. For evaluating the system performance, 
we consider the image as the smallest unit of analysis. If the 
model detects any type of defect in an image, we classify 
it as a defect image. Accuracy measures the proportion of 
correctly predicted samples, encompassing all categories 
(Eq. (2)). Recall reflects the model’s ability to correctly pre-
dict true defect images (Eq. (3)). Precision measures the 
proportion of defect predictions that are truly defects (Eq. 
(4)). F1-score is a balanced mean of Recall and Precision 
that can be used to assess the overall performance of the 
model (Eq. (5)). Additionally, the FPS metric is employed to 
quantify the system’s detection rate and verify its real-time 
performance.

Figure 15  Main interface of the software platform
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3 � Case Study
3.1 � Dataset Preparation
The manufacturing process of aluminum-plastic blis-
ter packages involves the conversion of plastic film into 
blisters, followed by heat pressure sealing and bond-
ing methods to enclose tablets between the blister and 
the bottom plate. Defects in this process can be broadly 
categorized into two types: Aluminum-plastic package 
part defects and tablet part defects. Aluminum-plastic 
package part defects (Figure  16(b)) encompass various 
issues such as blister plate pressed powder, missing mesh, 
problems with cross grain, incomplete production batch 
number wording, and batch number omissions, among 
others. Tablet part defects (Figure 16(c)) include subpar 
bubble forming, missing drugs, drug leakage, and similar 
anomalies. These defects pose significant challenges to 
the quality control of aluminum-plastic blister packages, 
necessitating effective inspection and detection methods 
to ensure product integrity and compliance with quality 
standards.

To train and test our integrated algorithm, we collected 
237 images of 1280×640 pixels in a batch of licorice 

(1)MIoU = 1/(1+ n)

n∑

i=0

TP/(FN + FP + TP),

(2)
Accuracy = (TP + TN )/(TP + FP + TN + FN ),

(3)Recall = TP/(TP + FN ),

(4)Precision = TP/(TP + FP),

(5)F1 score = 2× Recall × Precision/(Recall + Precision).

tablets packed in aluminum-plastic blister through our 
own image acquisition module. Among them, 100 were 
qualified products and 137 were unqualified products. 
We performed several classical geometric deformation 
techniques on the dataset, including flipping, cropping 
and scaling, translation, and the addition of noise points. 
Then each image was finely labeled, with labels divided 
into three categories: Aluminum plastic packaging defect 
region, tablet defect region, and qualified region. The dis-
tribution of defect categories and the division of the data-
set are shown in Table 1. All images and labels were saved 
in Pascal voc 2012 format.

3.2 � Analysis of Experimental Results
In the preceding sections, we introduced the DSN-BR 
integrated algorithm designed for the detection of multi-
class defects on the surface of pharmaceutical products 
packaged in aluminum-plastic blister packages. In this 
section, we will evaluate the performance of our algo-
rithm and assess its overall effectiveness using a system 
example. To conduct the evaluation, we utilized a subset 
of 59 test images extracted from the dataset acquired by 
our image acquisition module. These test images consist 
of three classes: Aluminum-plastic part defects, pharma-
ceutical part defects, and qualified parts.

Figure 16  Description of defect annotation: (a) Qualified sample, (b) Various types of defects in the aluminum-plastic part, (c) Various types 
of defects for the tablet component

Table 1  Distribution of each category in dataset

Category Qualified 
sample

Package area Tablets area Total

Number/Train 60 90 5 155

Number/Validation 10 12 1 23

Number/Test 30 25 4 59

Total 100 127 10 237
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During the training process, various image pre-pro-
cessing techniques, such as center crop and horizontal 
flipping, were applied. We employed the Adam optimizer 
for training the model, with Softmax utilized to monitor 
the output. The NLLLoss was employed to optimize the 
model, and the MIoU was used as the performance met-
ric. All experiments were conducted using the PyTorch 
framework. For the DSN-BR network, a total of 30 
epochs were trained. During the initial seven iterations, 
the model was trained using an initial learning rate of 
1×10−3. Subsequently, the learning rate was reduced by 
0.5 times in the following iterations. The batch size was 
set to 4, and the weights were updated using SGD. To 
ensure a fair comparison, all methods were tested on the 
same testing set.

3.2.1 � DSN with Large Convolutional Kernel
The utilization of a backbone architecture in the front-
end plays a crucial role in extracting image information 
and generating feature maps for subsequent segmenta-
tion networks. In our previous analysis, we postulated 
that employing a deeper backbone facilitates establish-
ing dense connections between classifiers and features, 
thereby being more suitable for the specific task investi-
gated in this study. Furthermore, we sought to enhance 
the feature extraction network by enlarging the kernel 
size. To validate this notion, we replaced various back-
bones and conducted comparative experiments using 
different convolutional kernel sizes denoted as ’k’. Specifi-
cally, the semantic segmentation experiments were per-
formed on Vgg16, Resnet50, and Resnet101, with kernel 
sizes of k=3, 5, 7 and 9, respectively.

Based on the obtained experimental results (refer to 
Figure 17), it is evident that employing a deeper feature 
extraction network noticeably improves the outcomes for 
the current task. Moreover, enlarging the size of the con-
volutional kernel in the initial layer of the feature network 
yields a marginal enhancement in model performance. 
Although the impact is not pronounced in the case of 
Vgg16, it proves effective in the Resnet series. Specifi-
cally, the performance of the resnet50 model improves by 
0.9%, 1.9% and 0.5%, while the resnet101 model exhibits 
an improvement of 1.0%, 1.6%, and 0.6%. Considering 
the practical performance requirements of present-day 
enterprises, as well as the constraints imposed by param-
eter count and computational complexity, we opted for a 
balanced approach. Accordingly, we selected Resnet50 as 
the feature extraction network and set the kernel size of 
the initial layer to 7×7.

3.2.2 � Semantic Boundary Learning ‑ Boundary Refinement 
Module

In the previous sections, we highlighted the significance 
of learning semantic boundaries in enhancing inter-class 
distinction, particularly in distinguishing between alu-
minum composite panel meshes and defects in our study. 
By explicitly modeling the boundaries, the distinguishing 
characteristics of both sides become more pronounced, 
facilitating cross-class discrimination of features. In this 
section, we conduct ablation experiments to investigate 
the impact of incorporating BR modules. Specifically, we 
examine the effects of adding aligned residual structures 
before and after the feature maps at different scales. In 
our experiments (as presented in Table  2), we integrate 

Figure 17  Segmentation results of different backbones are tested on our dataset
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the BR module into different models and compare the 
MIoU obtained before and after its incorporation. This 
comparative analysis allows us to assess the performance 
improvement resulting from the inclusion of the BR 
module in the respective models.

The experimental results indicate that the inclusion of 
the BR module yields an increase of approximately 0.2% 
in the MIoU metric. This improvement demonstrates the 
positive effect of the BR module on the final segmenta-
tion performance. However, the overall gain achieved in 
the entire segmentation network is relatively modest. To 
provide a visual comparison of it, we present Figure 18, 
which showcases the output images before and after the 
addition of the BR module to the network. Upon obser-
vation, it becomes apparent that the BR module enhances 
the boundary learning capability of the network. Further-
more, it exhibits a certain level of smoothing effect on the 
boundary prediction of the objects. Based on these visual 

observations, we tentatively conclude that the BR module 
facilitates the model’s ability to better focus on semantic 
boundaries and improve inter-class distinction.

After the above series of ablation experiments, we veri-
fied the segmentation capability of DSN-BR and the sig-
nificant advantages of each module. Figure 19 shows the 
comparison of the final visual detection results of each 
type of defect on different models.

3.2.3 � System Detection Performance
In this section, we assess the performance of our pro-
posed framework at the system level. Our evaluation 
focuses on the detection performance and detection rate 
at the individual image level, aiming to verify whether the 
framework meets the practical requirements of enter-
prises. For evaluating the classification performance, we 
consider a pixel-level detection approach, where once the 
model detects a pixel belonging to a defect class, we clas-
sify the entire image as non-conforming.

Firstly, we compared our approach with Vgg16 and 
ResNet50. The testing set was uniformly divided as pre-
viously mentioned, consisting of 30 defect-free images 
and 29 defective images. The experimental results are 
illustrated in Figure 20. It is observed that Vgg16 showed 
slightly less effectiveness compared to the other meth-
ods. Resnet50 demonstrated significant improvements in 
detection results, achieving 94.92% accuracy and 94.74% 
F1-Score. Our method further improved upon these 
results, achieving 98.31% accuracy and 98.25% F1-Score. 

Table 2  Comparisons of the detection results (IoU and MIoU 
(%)) on dataset

Model Aluminum-
plastic

Tablets part Qualified 
sample

Mean-IoU

DSN (ResNet50) 91.8 81.1 98.0 90.3

DSN-BR 
(ResNet50)

91.9 81.4 98.2 90.5

DSN (ResNet101) 92.7 83.3 98.2 91.4

DSN-BR 
(ResNet101)

92.9 83.3 98.9 91.7

Figure 18  Results before and after using the BR module: (a) Image samples, (b) Output without the BR module, (c) Output after adding BR module



Page 18 of 21Liu et al. Chinese Journal of Mechanical Engineering           (2024) 37:86 

Figure 19  Examples of segmentation results on the testing set: (a) Input images, (b) FCN segmentation result, (c) FCN_ResNet50 segmentation 
result, (d) DSN-BR segmentation result

Figure 20  Defect detection results of Vgg16, Resnet50 and our method
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These performance metrics, especially the F1-Score, ade-
quately meet the actual detection requirements.

Then we evaluated the processing speed of DSN-
BR using a GPU machine equipped with RTX 3090. 
All images were of size 1280×640. Table  3 presents the 
detection rates of different networks used. Initially, we 
compared the detection rate before and after incorporat-
ing the BR module. It was observed that the BR module 
marginally reduced the detection rate, but the magnitude 
of this reduction was negligible. Hence, we chose to dis-
regard it to obtain more accurate detection results. Sub-
sequently, in terms of different backbone choices, Vgg16 
achieved an advantage with a detection rate of 20.02 f/s. 
However, considering detection accuracy, we preferred 
using Resnet as the backbone. Finally, we selected DSN-
BR with Resnet50 as the backbone for our detection 
model*, which achieved a detection rate of 14.12 f/s with 
a batch size of 4.

3.2.4 � Discussion
In this section, we present the validation of our approach 
using actual data from aluminum-plastic blister-packed 
tablets. We conduct comprehensive comparison and 
ablation experiments at both the model and system lev-
els. Regarding the proposed DSN-BR model, we first 
perform comparison experiments by selecting different 
kernel sizes at the first layer of various backbones. After 
carefully considering the trade-off between model per-
formance and computational efficiency, we choose the 
resnet50 backbone with a 7×7 kernel size. Subsequently, 
we conduct ablation experiments on different networks 
to evaluate the impact of the BR module. Our results 
demonstrate that the BR module significantly improves 
semantic boundary segmentation and inter-class differ-
entiation in terms of both model performance and visu-
alization results. Ultimately, the DSN-BR model achieves 
a notable  90.5% mean intersection over union (MIoU). 
Regarding the designed and implemented online defect 
detection system, we commence by comparing the defect 
detection results of diverse networks using various evalu-
ation metrics. Furthermore, we evaluate and compare the 

detection rate of our method under different parameter 
settings. Ultimately, the system attains an outstanding 
98.25% F1-Score and operates at a high speed of 14.12 f/s. 
We also investigate the current detection performance 
of a drug testing manufacturer, which demonstrates 
an average accuracy of approximately 95% and a detec-
tion rate of 6 f/s. Comparative analysis reveals that our 
system outperforms in terms of detection performance 
and efficiency, enabling reduced human resource alloca-
tion and alleviating workers’ labor intensity. The intelli-
gent approach facilitates efficient quality monitoring on 
the production line, supporting large-scale online quality 
control and providing essential technical assistance for 
comprehensive surface quality control in the manufac-
turing process.

4 � Conclusions
In this study, we proposed an online detection method 
and system for surface defects of pharmaceutical prod-
ucts on aluminum-plastic blister packages based on deep 
learning. The study revealed the following conclusions:

(1)	 The system firstly attempts to integrate image fea-
tures and semantic segmentation knowledge into 
the detection of aluminum-plastic blister packages.

(2)	 The system successfully addresses the challenges 
of large-scale online quality control using a data-
driven approach. From the perspective of produc-
tion practice, it improves the efficiency of quality 
monitoring in intelligent production lines, reducing 
the labor intensity of human resources and workers.

(3)	 From the management perspective, the system 
standardizes the control process of pharmaceuti-
cal manufacturing and enhances the management 
capabilities of the manufacturing process.

(4)	 The effectiveness and feasibility of the proposed 
method is verified through experiments, providing 
technical support for comprehensive control of sur-
face quality in the manufacturing processes of prod-
ucts in various fields.

Table 3  Comparison of inference speed when different batch sizes and models

*The bold data highlights the best results achieved by the model in the experiment

Model Batch size Speed (f/s) Model Batch size Speed (f/s)

DSN (Vgg16) 1 19.65 DSN-BR (Vgg16) 1 19.17

4 20.14 4 20.02

DSN (ResNet50) 1 14.03 DSN-BR (ResNet50) 1 13.88

4 14.96 4 14.12*
DSN (ResNet101) 1 9.01 DSN-BR (ResNet101) 1 8.22

4 9.85 4 8.93
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However, the actual manufacturing process may intro-
duce time-varying phenomena and additional challenges, 
such as simultaneous detection of multiple drugs, stricter 
boundary accuracy requirements, and higher real-time 
detection rates for certain drugs. These uncertainties pre-
sent more complex problems to solve. In future research, 
we will focus on exploring the adaptability of detection 
methods in uncertain environments, further exploring 
the potential characteristics of the data, and improv-
ing the system’s flexibility and applicability. Additionally, 
efforts will be made to integrate the detection system into 
the production line to enable real-time observation and 
analysis of the packaging system’s operations, facilitat-
ing timely troubleshooting, maintenance adjustments, 
and ensuring the continuous closed-loop operation of 
the automatic line. This will contribute to providing a 
comprehensive inspection solution for pharmaceutical 
applications.
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