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Abstract 

Anti-rollover is a critical factor to consider when planning the motion of autonomous heavy trucks. This paper pro-
posed a method for autonomous heavy trucks to generate a path that avoids collisions and minimizes rollover risk. 
The corresponding rollover index is deduced from a 5-DOF heavy truck dynamic model that includes longitudinal 
motion, lateral motion, yaw motion, sprung mass roll motion, unsprung mass roll motion, and an anti-rollover artificial 
potential field (APF) is proposed based on this. The motion planning method, which is based on model predictive 
control (MPC), combines trajectory tracking, anti-rollover APF, and the improved obstacle avoidance APF and con-
siders the truck dynamics constraints, obstacle avoidance, and anti-rollover. Furthermore, by using game theory, 
the coefficients of the two APF functions are optimised, and an optimal path is planned. The effectiveness of the opti-
mised motion planning method is demonstrated in a variety of scenarios. The results demonstrate that the optimised 
motion planning method can effectively and efficiently avoid collisions and prevent rollover.
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1 Introduction
1.1  Motivation
The autonomous vehicle is a significant technological 
advancement that has the potential to alleviate traffic 
congestion, reduce energy consumption, and enhance 
road safety. The advancement of artificial intelligence 
algorithms, communication technology, navigation 
technology, sensor technology, and other technologies 
has resulted in the advancement of autonomous vehicle 
technology [1, 2]. Vehicle motion planning is a critical 
component of self-driving vehicle technology. Its objec-
tive is to determine the safest and collision-free optimal 
path for vehicles to reach the target location as quickly as 
possible, given the change in the environmental state [3]. 

While most relevant research to date has concentrated 
on avoiding obstacles during vehicle motion planning, 
serious rollover accidents are more likely to occur with 
heavy trucks due to their structural characteristics of 
large unsprung mass and a high centre of mass. Accord-
ing to the National Highway Safety Administration’s 2020 
survey report, there were more than 12 million traffic 
accidents in the United States in 2019, with only about 
1.8% being caused by vehicle rollover. However, 15.8% of 
fatal crashes were caused by vehicle rollover, with heavy 
trucks accounting for 12.1% of fatal accident models [4]. 
As a result, it is critical to investigate the motion plan-
ning method for heavy trucks that incorporates obstacle 
avoidance and anti-rollover.

1.2  Related Research
Many methods have been applied to vehicle motion plan-
ning to date. The planning of vehicle motion begins with 
planning the robot’s path. It primarily constructs the 
environment map as a discrete grid in the early stage. It 
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generates the shortest path using grid graph search algo-
rithms such as the A* algorithm [5], and the improved 
A* algorithm [6, 7]. However, the algorithm based on 
the vehicle motion graph does not easily reflect produc-
tion characteristics. Scholars have focused their attention 
on motion planning methods based on curve interpola-
tion, sampling, machine learning, and numerical opti-
misation in recent years. Polynomial curves [8] and the 
Bezier curve [9] are two methods for interpolating curves 
that can generate a continuous and smooth driving path. 
However, this method describes the path using a specific 
curve function, which does not fully exploit the vehicle’s 
movement capabilities. Random sampling and fixed sam-
pling are both methods of sampling. We can determine 
the sequence of sample points with the desired con-
nectivity in state space by generating sample points in 
configuration space. Typical sampling methods include 
the probabilistic road map (PRM) algorithm [10] and 
the fast search random tree (RRT) algorithm [11]. They 
are, however, unsuitable for complex conditions due to 
the blind nature of random sampling. Machine learning 
techniques such as neural networks [12], reinforcement 
learning [13], and depth learning [14] all rely on many 
training samples to solve the actual planning problem. It 
is suitable for complex scenes, but requires many train-
ing samples, and the quality of the training also influ-
ences the decision-making level. The artificial potential 
field (APF) method [15], the genetic algorithm [16], 
and the model predictive control (MPC) algorithm [17] 
are all examples of numerical optimisation methods. By 
establishing differential equations, necessary constraints 
and vehicle driving performance indicators are added to 
create an optimisation problem, which has evolved into 
the most advanced method for vehicle motion planning 
in recent years. Additionally, there are some specialized 
methods for planning vehicle motion. Smirnov et  al. 
[18], for instance, employed game theory to forecast the 
behaviour of traffic vehicles. Additionally, there are some 
motion planning methods for specialized work environ-
ments, such as parallel parking of passenger cars, vehicle 
warehousing, and parking of vehicles in multiple condi-
tions [19–21]. To summarise, most existing motion plan-
ning methods address the problem of vehicles avoiding 
obstacles while in motion, but few of them focus on roll-
over prevention. This paper is primarily concerned with 
this issue.

The rollover index of the vehicle at any point in time 
is used as the evaluation index to describe and judge 
whether the vehicle rolls over. Lateral load transfer rate 
(LTR) applies to a wide variety of vehicle models and 
is frequently used as a vehicle rollover evaluation index 
[22, 23]. However, because the vertical load on the 
wheel is difficult to measure, scholars have studied and 

proposed many rollover indicators that can measure 
vehicle parameters. Zhu et  al. [24] proposed an early 
warning algorithm based on time to rollover (TTR) for 
determining the rollover state of the vehicle. Jin et  al. 
[25] proposed a new rollover index with measurable 
parameters for predicting a vehicle’s rollover risk under 
various conditions. Currently, some scholars have taken 
lateral stability into account when designing autono-
mous vehicles’ decision-making and executive levels. 
For example, Li et  al. [26] proposed a new local path 
planning method for off-road autonomous driving 
on various road profiles, combining it with a rollover 
warning time, and provided a predefined global path. 
Gwayi eta al. [27] proposed a nonlinear model predic-
tive control-based roll control algorithm for autono-
mous vehicles (MMPC). By adjusting the steering angle 
and braking the front wheels, the vehicle followed the 
prescribed path at the optimal speed while also observ-
ing roll angle, yaw rate, and physical constraints to 
maintain vehicle stability. Cheng et al. [28] proposed a 
lateral stability-coordinated collision avoidance control 
system (LSCACS). LSCACS obtains reference values 
for yaw angle and yaw angle via a linear two-degree-of-
freedom vehicle model, determines the system’s oper-
ating mode using time to collision (TTC), and finally 
calculates the corresponding tire force using MPC. 
Jin et al. [29] considered tracking error and anti-rollo-
ver constraints when designing the MPC strategy and 
planned a safe path without rollover for autonomous 
vehicles.

1.3  Contributions
This paper proposes a method for planning the motion 
of an autonomous heavy truck using MPC, anti-rollo-
ver APF, obstacle avoidance APF, and game theory. The 
main contributions of this paper are as follows:

1. A novel obstacle avoidance APF technique is pro-
posed. Consider vehicles and obstacles as rectangles 
and create ellipses around them. To obtain a more 
accurate obstacle avoidance APF function, the mini-
mum distance between ellipses is used as the factor 
of the APF function.

2. The concept of anti-rollover APF is proposed 
and applied to vehicle motion planning using the 
5-degrees-of-freedom (DOF) autonomous heavy 
truck model, rollover index, and APF principle.

3. Game theory is used to optimise the MPC motion 
planning algorithm, which combines obstacle avoid-
ance and anti-rollover APF, to obtain a safe path from 
obstacles and stability from rollover.
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1.4  Paper Organization
The remainder of this paper is organized as follows. Sec-
tion  2 establishes a 5-DOF vehicle rollover model that 
takes longitudinal motion, lateral motion, yaw motion, 
sprung mass roll motion, and unsprung mass roll motion 
into account. Additionally, the rollover index of a large 
truck is calculated and verified. Section  3 defines and 
illustrates the obstacle avoidance and anti-rollover APF 
functions. In Section  4, the MPC strategy is designed 
and optimised using game theory in conjunction with 
anti-rollover APF and obstacle avoidance APF. Section 5 
simulates and analyses the motion planning algorithm 
under two conditions. Finally, Section 6 summarises the 
conclusions.

2  Rollover Dynamics of the Autonomous Heavy 
Truck

In general, vehicle dynamics modelling takes longitudi-
nal motion, lateral motion, and yaw motion into account. 
However, compared to other models, the primary char-
acteristic of heavy trucks is their high unsprung mass, 
which makes them more prone to rollover accidents. As 
a result, this section extends the traditional 3-DOF vehi-
cle dynamics model by including the roll motion of the 
heavy truck’s sprung and unsprung mass, establishing a 
5-DOF heavy truck dynamics model, validating it, and 
deducing the rollover index suitable for the autonomous 
heavy truck.

2.1  Vehicle Model
The autonomous heavy truck has a high centre of grav-
ity, large unsprung mass, and a relatively large aspect 
ratio, so interaction and coupling of yaw motion, lat-
eral motion, and roll motion need to be considered in 

vehicle modelling. However, some factors that have little 
influence on vehicle rollover are ignored, such as pitch 
motion, vertical motion, and lateral wind. Thus, a 5-DOF 
heavy truck dynamic model is built, as shown in Figure 1, 
which includes longitudinal, lateral, yaw, sprung mass 
roll, and unsprung mass roll motions.

Newton’s second law and D’Alembert’s principle allow 
us to obtain the motion equations for each degree of free-
dom in the entire vehicle model as follows.

Longitudinal motion equation of vehicle:

Lateral motion equation of the whole vehicle coupled 
with the roll motion of the sprung mass:

Vehicle yaw motion equation coupled with lateral 
motion:

Roll motion equation of sprung mass:

Roll motion equation of unsprung mass:

(1)max = 2Fxf cos δf − 2Fyf sin δf + 2Fxr.

(2)
may −ms(hs − hrc)ϕ̈s = 2Fyf cos δf

+ 2Fxf sin δf + 2Fyr.

(3)IZṙ= 2a(Fyf cos δf + Fxf sin δf)− 2bFyr.

(4)

[

IXs +ms (hs − hrc)
2
]

ϕ̈s −msay(hs − hrc)

= msg(hs − hrc)ϕs − Ks(ϕs − ϕu)− Cs(ϕ̇s − ϕ̇u).

(5)
IXuϕ̈u = ks(ϕs − ϕu)+ cs(ϕ̇s − ϕ̇u)

+ 2Fyhu +
Tw

2
(FzL − FzR),

a

b

u
a

h

h

g

g ha

Figure 1 Dynamics model of the heavy truck
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where Fy is the lateral force, and its equation can be 
obtained as follows:

The longitudinal and lateral accelerations at the mass 
centre are expressed as follows:

where m, ms and mu denote the total mass, sprung mass 
and unsprung mass of the heavy truck, respectively, ax 
and ay denote the longitudinal and lateral accelerations of 
the vehicle, respectively, hs, hu and hrc denote the height 
of the sprung mass centroid, unsprung mass centroid and 
roll centre, respectively, a and b denote the distance from 
the front and rear axles to the centroid, respectively, Tw 
denotes the width of the wheelbase of heavy truck, ϕ̈s and 
ϕ̈u denote the roll angle of sprung mass and unsprung 
mass, respectively, δf denotes the front wheel angle, Fxf 
and Fxr denote the longitudinal force of the front and rear 
axle tires, respectively, Fyf and Fyr are the lateral deflec-
tion force of the front and rear axle tires, respectively, FzL 
and FzR are the vertical force of the left and right tires, 
respectively, Fy denotes the lateral force on the vehicle, u 
and v are the longitudinal speed and lateral speed of the 
vehicle, respectively, r denotes the yaw angular speed, g 
denotes the gravitational acceleration, IZ denotes the 
yaw moment of inertia of the vehicle, IXs and IXu denote 
the roll moment of inertia of sprung mass and unsprung 
mass around their respective centroids, ks denotes the 
equivalent roll stiffness of the suspension, cs denotes the 
equivalent roll damping of the suspension.

Tires generate most of the vehicle’s motion force, 
classified as longitudinal force and lateral force. The 
longitudinal force is the primary source of force 
required to propel and brake the vehicle. The lateral 
force provides the necessary force for steering the vehi-
cle, which is also a critical factor in determining the 
vehicle’s safety and handling stability. The angle of side 
deflection of the heavy truck’s front and rear wheels can 
be expressed as follows:

To simplify theoretical research on the dynamic roll-
over characteristics of heavy trucks, Pacejka’s brush tire 

(6)Fy = Fyf cos δf + Fxf sin δf + Fyr.

(7)ax = u̇− vr,

(8)ay = v̇ + ur,

(9)βf = arctan

(

v + ar

u

)

− δf,

(10)βr = arctan

(

v − br

u

)

.

model is used to calculate the tire lateral force as fol-
lows [30]:

Among them, βf and βr denote the sideslip angle of the 
front and rear tire, kf and kr represent the cornering stiff-
ness of the front and rear tire, μ denotes the road adhe-
sion coefficient, Fzf and Fzr denote the vertical load of the 
front and rear tire.

2.2  Rollover Index
LTR is the ratio of the vertical loads on the vehicle’s left 
and right wheels to the total vertical load. Because it 
applies to a wide variety of models, it has become the 
most frequently used rollover evaluation index. However, 
it is difficult to directly measure the vertical load on the 
left and right wheels during the actual driving of heavy 
trucks. As a result, the applicable rollover index for heavy 
trucks must be determined.

According to the force balance and moment balance 
equations in Figure 1, the vertical loads FzL and FzR on the 
heavy vehicle’s left and right wheels satisfy the following 
relationship:

By incorporating Eq. (2) and Eq. (4) into Eq. (13), the 
following result is obtained:

According to the principle of LTR, the rollover index 
(RI) can be obtained from Eqs. (12) and (14):

(11)

Fyf,r =









































































k2f,r tan βf,r
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27µ2F2
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,
∣

∣βf,r
∣

∣ < arctan
(

3µFzf,r
kf,r

)

,

−µFzf,r sgnβf,r,
∣

∣βf,r
∣

∣ ≥ arctan
(

3µFzf,r
kf,r

)

.

(12)FzL + FzR = mg ,

(13)
Tw

2
(FzL − FzR) = IXuϕ̈u − ks(ϕs − ϕu)

− cs(ϕ̇s − ϕ̇u)− 2Fyhu.

(14)

FzL − FzR =
2

Tw
{IXuϕ̈u + IXsϕ̈s −mayhu

+ms(hs − hrc)[(hs − hrc + hu)ϕ̈s − gϕs − ay]}.

(15)

RI =
2

mgTw
{IXuϕ̈u + IXsϕ̈s −mayhu

+ms(hs − hrc)[(hs − hrc + hu)ϕ̈s − gϕs − ay]}.



Page 5 of 20Jin and He  Chinese Journal of Mechanical Engineering           (2024) 37:95  

The vertical load of the vehicle’s left and right vehicles 
can be converted to more easily measurable state varia-
bles via Eq. (15), such as roll angle, roll angle acceleration, 
lateral acceleration. This rollover index is more appropri-
ate for the model of heavy truck dynamics developed in 
this paper.

2.3  Validation of Vehicle Model and Rollover Index
To verify the validity and accuracy of the heavy-duty truck 
dynamics model and rollover index established in this 
paper, the simulation vehicle model in TruckSim software, 
which is closer to the actual vehicle, is compared to the 
established model and index. Table 1 summarises the sim-
ulation model parameters that were chosen.

When the simulation condition is set to J-Turn, the 
vehicle travels at a speed of 60 km/h, and the front wheel 
has a step angle of 3.5°. Execution of the simulation and 
theoretical models, respectively. The dynamic response 
of the vehicle is depicted in Figure 2.

As illustrated in Figure  2, the established theoretical 
model for heavy trucks is very similar to the yaw rate and 
roll angle response curves of the simulation model under 
J-Turn conditions. In Figure 2 (a), the steady-state values 
of the yaw rate calculated by the simulation model and 
theoretical model are 8.55°/s and 8.41°/s, respectively, 
with an error of about 1.6%; in Figure 2 (b), the steady-
state values of roll angle calculated by the simulation 
model and theoretical model are 0.42° and 0.407° respec-
tively, with an error of about 3.1%. The yaw rate and roll 
angle errors are both less than 5%, which is within the 
allowable range. This paper establishes an accurate and 
effective theoretical model of the heavy truck.

Figure 3 shows the dynamic performances of the triaxle 
bus rollover. The solid lines are the results simulated by 
TruckSim model, and the dotted lines are calculated by 
the theoretical model.

Similarly, the rollover index derived from the estab-
lished heavy truck dynamic model is verified and com-
pared to LTR under this operating condition. Figure  3 

illustrates the results. LTR and RI have steady-state val-
ues of −0.285 and −0.288, respectively, with an error of 
approximately 1.5%. As a result, the rollover index can be 

Table 1 Heavy truck model parameters

Symbol Value Unit Symbol Value Unit

a 1.11 m ks 450 N/mm

b 3.89 m cs 2 ×  104 N/(m/s)

hs 1.175 m kf 62952 N/rad

hu 0.52 m kr 114829 N/rad

hrc 0.57 m m 5760 kg

IXs 2283.9 kg·m2 ms 4455 kg

IXu 620 kg·m2 Tw 2.03 m

IZ 34802.6 kg·m2 μ 0.85  −

(a)
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Figure 2 Dynamic response of the heavy truck: (a) Yaw rate, (b) Roll 
angle

Figure 3 Rollover index of the heavy truck
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considered effective and feasible to measure heavy truck 
rollover stability.

3  Artificial Potential Field of the Autonomous 
Heavy Truck Motion Planning

Figure 4 depicts the framework for the motion planning 
system of an autonomous heavy truck, which includes a 
perception module, a global path planning module, an 
MPC motion planning module optimised using game 
theory, and a controlled autonomous heavy truck. The 
perception module can obtain road data, obstacle loca-
tion, and the location and speed of surrounding vehicles 
via lidar, radar, camera, and V2V communication, which 
are then output to the global path planning module and 
the motion planning module. The module for global path 
planning determines an appropriate global path based 
on-road data. The motion planning module, based on 
MPC and game theory, combines received environment 
information with the state of the self-vehicle, calculates 
and optimises the optimal longitudinal force and steer-
ing angle, and outputs them to the controlled heavy 
truck. The nonlinear solver is used to predict iteratively 
the nonlinear vehicle model derived from the heavy 
truck anti-rollover model. The cost function is enhanced 
with the obstacle avoidance APF and anti-rollover APF 

functions, and their coefficients are optimised using 
game theory. Additionally, vehicle dynamics constraints 
are considered.

Khatib proposed the concept of an APF as a virtual 
force field [17]. Its fundamental idea is that by designing 
specific functions, one can abstract the environment of 
moving objects into an APF. This section proposes a new 
method for calculating obstacle avoidance APF and the 
concept of anti-rollover APF, both of which are combined 
to produce a new APF function.

3.1  Obstacle Avoidance APF
The basic idea of obstacle avoidance APF is to control the 
motion of the controlled object by utilizing the gravita-
tional potential field of the target point on the controlled 
object and the repulsive potential field of the obstacle 
on the controlled object. The tracking term in the MPC 
cost function is used in this paper to track the controlled 
heavy truck’s desired global trajectory. Therefore, only 
the repulsive potential field function for avoiding obsta-
cles is considered, rather than the gravitational potential 
field.

In the traditional APF, the change rate of the repulsion 
potential field function increases rapidly as the distance 
between the controlled object and the obstacle decreases 

MPC motion planning  optimised by game theory

Nonlinear solver

Global path planning

Information perception 

Lidar

V2V communication

Radar

Camera
Information 

fusion

Road

data

Obstacle 

location

Surrounding 

vehicles’
location and 

speed  

Road data

Desired lane and speed

u,v,r  

X,Y,ψ

δf ,Fxf ,Fxr

Calculate rollover 

index

Anti-rollover artificial 

potential field

Cost function

Obstacle avoidance 

artificial potential field

QC,QR Q*C,Q*R

Vehicle dynamics 
constraints

Vehicle dynamics prediction model

Game theory optimization

Nash equilibrium

solution

Judgement of obstacle 
avoidance safety and 

rollover stability

Iterative solution

Autonomous heavy truck

RI  

arAPF  

oaAPF  

J  

DNC
DC
DR

Figure 4 Block diagram of the autonomous heavy truck motion planning system
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and approaches infinity, preventing the controlled object 
from colliding with the obstacle. In general, the controlled 
object and all other moving objects and obstacles are con-
sidered particles or a circle [15], and the potential field force 
is calculated by calculating the distance between them. It is, 
however, inapplicable to heavy trucks, as their longitudinal 
safety distance should be greater, and their transverse safety 
distance should be relatively smaller.

Moving vehicles and obstacles are treated as rectangles 
in this paper. They are represented as circumscribed ellip-
ses whose long axis direction is the same as the rectangle’s 
longest side, as illustrated in Figure  5. Additionally, as a 
factor of the obstacle avoidance APF function, the mini-
mum distance between two circumscribed ellipses (D) is 
calculated. When the object is treated as an ellipse, we can 
obtain a greater longitudinal safety distance and a smaller 
transverse safety distance between the controlled vehicle 
and other objects. As a result, a more accurate and reliable 
APF function for obstacle avoidance is obtained.

By the position point CE (xc, yc), length (LE), width (WE), 
and heading angle of vehicle or obstacle (ψ). The exter-
nal ellipse that can be used as the vehicle or obstacle is 
expressed as:

Assume that (x1, y1) and (x2, y2) are points on the circum-
scribed ellipses of the vehicle and the obstacle, respectively. 
The shortest distance between two circumscribed ellipses 
(DNC) is denoted as follows:

Suppose (x3, y3) is the point on the pit circum-
scribed ellipse. The minimum distance between vehicle 

(16)

2[(x − xc) cosψ + (y− yc) sinψ]2

L2E

+
2[(y− yc) cosψ − (x − xc) sinψ]2

W 2
E

= 1.

(17)DNC = min

[

√

(x1 − x2)2 + (y1 − y2)2
]

.

circumscribed ellipse and pit circumscribed ellipse (DC) 
is expressed as:

Suppose (x4, y4) is the point on the road boundary. The 
minimum distance between vehicle circumscribed ellipse 
and road boundary (DR) is expressed as:

The obstacle avoidance APF function includes the 
potential field function of non-crossing obstacles (UNC), 
the potential field function of crossing obstacles (UC), 
and the potential field function of road boundary (UR), as 
shown in Eq. (20):

where i, j, and q are the indices of the uncrossable obsta-
cle, crossable obstacle, and road’s boundary, respectively.

Fixed obstacles, other vehicles, and pedestrians are all 
examples of non-crossing obstacles. They are obstacles 
that heavy trucks must avoid when planning their route. 
Otherwise, they will cause significant damage to vehi-
cles and their occupants. As an example of a potential 
field function for non-crossing obstacles, consider the 
followings:

where kNC denotes the repulsion field constant of the 
non-crossing obstacle greater than zero, DNC denotes 
the shortest distance between the current position of 
the vehicle and the respective external ellipse of the non-
crossing obstacle, and DNC0 denotes the maximum influ-
ence range of the point repulsion potential field at the 
position of the non-crossing obstacle. When DNC > DNC0, 
the repulsive potential field of the obstacle location point 
has no effect.

The obstacles that can be crossed include speed bumps, 
uneven roads, and others that will affect the vehicle’s 
movement when it passes but are not necessary to avoid. 
Avoiding contact with them can help reduce the risk of 
vehicle instability, such as rollover, caused by a change 
in the vehicle’s motion state. The exponential function 
is used to design the potential field of crossing obstacles. 
Because its change rate is larger, the potential field value 
increases rapidly when the distance between the vehicle 
and the crossing obstacles is close, but the potential field 

(18)DC = min

[

√

(x1 − x3)2 + (y1 − y3)2
]

.

(19)DR = min

[

√

(x1 − x4)2 + (y1 − y4)2
]

.

(20)oaAPF =
∑

i

UNCi +
∑

j

UCj +
∑

q

URq ,

(21)

UNC(DNC) =

{

1
2kNC

(

1
DNC

− 1
DNC0

)2
, DNC ≤ DNC0,

0, DNC > DNC0,

Figure 5 The shortest distance between the vehicle 
and the obstacle
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value is smaller than that of the non-crossing obstacles 
[17]. Assume the following function represents the pos-
sible field function of the obstacle that can be crossed:

where kC denotes the crossing obstacle’s repulsion field 
constant greater than zero, DC denotes the shortest dis-
tance between the vehicle’s current position and the 
crossing obstacle’s external ellipse, and DC0 denotes the 
crossing obstacle’s repulsion potential field’s maximum 
influence range. When DC > DC0, the repulsive potential 
field of the obstacle position point has no effect.

The road boundary can be used to restrict the driving 
path of vehicles and thus reduce the likelihood of colli-
sions with other vehicles or obstacles. Consider the fol-
lowing function as the road boundary’s potential field 
function:

where kR denotes the road boundary’s repulsion field 
constant greater than zero, DR denotes the shortest dis-
tance between the external ellipse at the vehicle’s current 
position and the road boundary, and DR0 denotes the 
road boundary’s minimum allowable distance.

The distribution of the repulsion potential field gener-
ated by the non-crossable obstacle (20,0), the crossable 
obstacle (20,0), and the two-lane boundary is shown in 
Figure  6. The figure shows that the potential field value 
generated around the non-crossing obstacle is extremely 
large. The closer the self-vehicle is to the obstacle, the 
faster the potential field value increases and the stronger 
the "repulsion" generated to the self-vehicle, allowing 
it to avoid the obstacle. The potential field value gener-
ated around a crossing obstacle is negligible compared to 
the value generated around a non-crossing obstacle. The 
potential field value increases slowly as it approaches the 
obstacle. The two-lane road boundary generates a large 
potential field value. In contrast, the centre line of each 
lane generates the smallest potential field value, which 
increases slightly on the two-lane boundary. It demon-
strates that the road boundary potential field function 
encourages vehicles to travel along the lane centreline 
and away from the road boundary, but they are permitted 
to cross it.

3.2  Anti‑Rollover APF
Heavy truck rollovers result in vehicle instability, which 
in severe cases results in traffic accidents, significant 
financial losses, and even jeopardises human life safety. 

(22)UC(DC) =

{

1
2kC

(

1
e2DC

− 1
e2DC0

)

, DC ≤ DC0,

0, DC > DC0,

(23)UR(DR) =

{

1
2kR

(

1
DR

− 1
DR0

)2
, DR ≤ DR0,

0, DR > DR0,

The dynamic rollover problem is considered in this paper 
when planning the motion of a heavy truck. The concept 
of anti-rollover APF is proposed in conjunction with 
the application of traditional APF. Assuming the vehicle 

Figure 6 Potential field value: (a) Non-crossing obstacles at (20,0), 
(b) Crossing obstacles at (20,0), (c) Two-lane boundary
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driving path and the heavy truck itself have a virtual anti-
rollover potential field (UR1 and UR2), the anti-rollover 
APF function is defined as follows:

In general, the road design meets  the safety curvature 
required by heavy truck steering. When the steering of 
heavy trucks is excessively large, the path curvature dur-
ing actual driving is excessive, significantly increasing 
the risk of rollover. If the target path induces a gravita-
tional force on the heavy truck to align the curvature of 
its planned path with the target path curvature, the gravi-
tational potential field function generated by the target 
path curvature on the heavy truck (UR1) is defined as 
follows:

where kρ denotes the anti-rollover gravitational field con-
stant greater than zero, ρ denotes the actual path curva-
ture of a heavy vehicle, and ρg denotes the curvature of 
the target path.

Depending on the circumstances, the vehicle may be 
required to deviate from the road’s curvature while driv-
ing. To avoid rolling over, it is assumed that the vehi-
cle generates an anti-rollover potential field on its own. 
When the rollover index of a heavy truck increases in 
absolute value, the vehicle generates gravity to reduce 
the rollover index and prevent rollover accidents. Assign 
the following definition to the anti-rollover gravitational 
potential field function generated by the heavy vehicle:

where kR denotes the anti-rollover gravitational field con-
stant greater than zero and RI denotes the rollover index 
of a heavy vehicle.

It can be obtained from Eq. (26) and Eq. (15):

The distribution of the gravitational potential field 
generated by the curvature of the road’s target path with 
a radius of curvature of 10 m in the natural coordinate 
system and the anti-rollover gravitational potential field 
generated by the vehicle are depicted in Figure 7.

(24)arAPF = UR1 + UR2.

(25)UR1 =
1

2
kρ(ρ − ρg)

2,

(26)UR2 =
1

2
kRRI

2,

(27)UR2 =
2kR

m2g2T 2
w

{

IXuϕ̈u + IXsϕ̈s −mayhu +ms(hs − hrc)
[

(hs − hrc + hu)ϕ̈s − gϕs − ay
]}2

.

When the vehicle travels along the road and the cur-
vature at each time is consistent with the curvature of 
the target path, that is, the turning radius of the vehi-
cle is equal to the half diameter of the curvature of the 
target road, the value of the gravitational potential field 
generated by the road to the vehicle is zero; when the 
vehicle’s curvature changes, the target path generates 

attraction for the vehicle, allowing the vehicle’s curva-
ture to remain as close to the target path’s curvature 
as possible. The greater the vehicle’s curvature change, 
the greater the gravitational potential field generated 
by the target path to the vehicle, and thus the greater 

Figure 7 Potential field value: (a) Road curvature, (b) Vehicle itself
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the attraction. When the vehicle’s rollover index is close 
to zero, that is, when the vehicle does not roll, the ant-
rollover potential field value generated by the vehicle 
tends to zero; when the vehicle turns, it rolls, changing 
the rollover index. At this point, the vehicle will gen-
erate a large anti-rollover gravity to cause the vehicle’s 
movement state to change, thereby reducing the change 
in rollover index and preventing the vehicle from roll-
ing over.

4  MPC Motion Planner of the Autonomous Heavy 
Truck

The MPC algorithm is used in this paper to control the 
motion of a driverless heavy vehicle. It possesses favourable 
control properties, a rapid response time, and high robust-
ness, and is capable of effectively resolving multivariable and 
multi-constraint problems. Taking the 5-DOF heavy vehicle 
dynamic model established earlier and combined with the 
kinematic model as the prediction model, the future motion 
state of the heavy vehicle is predicted. The cost function is 
iteratively optimised through a nonlinear solver according 
to the error value between the set front wheel angle refer-
ence value, roll angle reference value, and yaw rate expected 
value and the actual front wheel angle, roll angle, and yaw 
rate, the optimal control sequence of the front wheel angle 
and longitudinal force is obtained, so as to realise the 
motion planning of driverless heavy truck. Additionally, 
the MPC controller continuously collects the current state 
parameters of the heavy truck for correction during driving, 
including front-wheel angle, roll angle, and yaw rate.

4.1  Prediction Model of the Autonomous Heavy Truck
Kinematics must be considered first when planning the 
motion of heavy trucks. The kinematics equation for a large 
truck in an inertial coordinate system is as follows:

where X and Y respectively represent the displacement of 
the vehicle in the X direction and Y direction in the natu-
ral coordinate system.

(28)

{

Ẋ = u cosψ − v sinψ ,

Ẏ = u sinψ + v cosψ ,

Combined with the kinematics model of heavy 
trucks and the 5-DOF dynamic model established 
above, it is used as the MPC. Let the state quan-
tity ξ = [u v r ϕ̇s ϕ̇u X Y ψ ϕs ϕu]

T , control quantity 
η = [δf Fxf Fxr]

T . Linearizing the tire model, it can be 
obtained from Eqs. (1)−(11) and Eq. (28):

where,

f6(ξ , η) = u cosψ − v sinψ , f7(ξ , η) = u sinψ + v cosψ , 
f8(ξ , η) = r, f9(ξ , η) = ϕ̇s, f10(ξ , η) = ϕ̇u.

The vehicle dynamics model is a nonlinear system, and 
predictive control of a linear model performs better in real-
time and is easier to analyse and calculate than predictive 
control of a nonlinear model. As a result, the nonlinear 
vehicle dynamics model must be linearised. The points 
on a given reference trajectory satisfy the above dynamic 
equation.

The Taylor series expansion of Eq. (30) at the reference 
track point is obtained:

(29)ξ̇ = f (ξ , η),

f1(ξ , η) =
2u(Fxf + Fxr − kfδ

2
f )+ 2kfδf(v + ar)

mu
+ vr,

f2(ξ , η) =



















2uδf(Fxf+kf)[IXs+ms(hs − hrc)
2]

+ums(hs − hrc)[ms(hs − hrc)gϕs − ks(ϕs − ϕu)

−cs(ϕ̇s − ϕ̇u)] − 2[(kf + kr)v+r(akf

−bkr)][IXs+ms(hs − hrc)
2]



















u[mIXs +mums(hs − hrc)2]
− ur,

f3(ξ , η) =
2au(Fxf + kf)δf − 2(akf − bkr)v − 2(a2kf + b2kr)r

IZu
,

f4(ξ , η) =















ums(hs − hrc)[2δf(Fxf + kf)+mgϕs]

−um[ks(ϕs − ϕu)+ cs(ϕ̇s − ϕ̇u)]

−2ms(hs − hrc)[(kf + kr)v + (akf − bkr)r]















u[mIXs +mums(hs − hrc)2]
,

f5(ξ , η) =
ks(ϕs − ϕu)+ cs(ϕ̇s − ϕ̇u)−msg(hs − hrc)ϕs

IXu

−



























2msuδf(Fxf+kf)(hs − hu)[IXs+ms(hs − hrc)2]

+um2
s (hs − hrc)(hs − hu)[ms(hs − hrc)gϕs

−ks(ϕs − ϕu)− cs(ϕ̇s − ϕ̇u)] − 2ms(hs − hu)[(kf

+kr)v + (akf − bkr)r][IXs +ms(hs − hrc)2]



























u[mIXs +mums(hs − hrc)2]
,

(30)ξ̇r = f (ξr, ηr).
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Ignoring the higher-order term o and making a difference 
with Eq. (31), we can obtain:

where ξ̃ and η̃ denote state quantity error and control 
quantity error, respectively,

(31)

ξ̇ = f (ξr, ηr)+
∂f

∂ξ

∣

∣

ξr,ηr (ξ − ξr)+
∂f

∂η

∣

∣

ξr,ηr (η − ηr)+o.

(32)˜̇ξ = Aξ̃ + Bη̃,

A =
∂f

∂ξ
=





























a11 a12 a13 0 0 0 0 0 0 0
a21 a22 a23 a24 a25 0 0 0 a29 a210
a31 a32 a33 0 0 0 0 0 0 0
a41 a42 a43 a44 a45 0 0 0 a49 a410
a51 a52 a53 a54 a55 0 0 0 a59 a510
cosψ − sinψ 0 0 0 0 0 −u sinψ − v cosψ 0 0
sinψ cosψ 0 0 0 0 0 u cosψ − v sinψ 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0





























,

B =
∂f

∂η
=































b11
2
m

2
m

b21 b22 0
2a(Fxf+kf)

IZ

2aδf
IZ

0

b41 b42 0
b51 b52 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0































,

a11 = −
2kfδf(v + ar)

mu2
, a12 =

2kfδf
mu

+ r, a13 =
2akfδf
mu

+ v,

a21 =
2[(kf+kr)v+(akf − bkr)r][IXs+ms(hs − hrc)2]

u2[mIXs +mums(hs − hrc)2]
− r,

a22 =
−2(kf + kr)[IXs +ms(hs − hrc)

2]

u[mIXs +mums(hs − hrc)2]
,

a23 =
−2(akf − bkr)[IXs+ms(hs − hrc)

2]

u[mIXs+mums(hs − hrc)2]
− u,

a24 =
−ms(hs − hrc)cs

mIXs+mums(hs − hrc)2
,

a25 =
ms(hs − hrc)cs

mIXs+mums(hs − hrc)2
,

a29 =
ms(hs − hrc)[ms(hs − hrc)g − ks]

mIXs+mums(hs − hrc)2
,

a210 =
ms(hs − hrc)ks

mIXs+mums(hs − hrc)2
,

a31 =
2(akf − bkr)v+2(a2kf+b2kr)r

IZu2
,

a32 =
−2(akf − bkr)

IZu
,

a33 =
−2(a2kf+b2kr)

IZu
,

a41 =
2ms(hs − hrc)[(kf+kr)v+(akf − bkr)r]

u2[mIXs+mums(hs − hrc)2]
,

a42 =
−2ms(hs − hrc)(kf+kr)

u[mIXs+mums(hs − hrc)2]
,

a43 =
−2ms(hs − hrc)(akf − bkr)

u[mIXs+mums(hs − hrc)2]
,

a44 =
−mcs

mIXs+mums(hs − hrc)2
,

a45 =
mcs

mIXs+mums(hs − hrc)2
,

a49 =
mmsg(hs − hrc)−mks

mIXs+mums(hs − hrc)2
,

a410 =
mks

mIXs+mums(hs − hrc)2
,
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MPC is well suited for variable control in the discrete-
time domain, which means that the vehicle dynamics 

a51 =

{

−2ms(hs − hu)[(kf + kr)v

+(akf − bkr)r][IXs+ms(hs − hrc)
2]

}

u2[mIXs+mums(hs − hrc)2]
,

a52 =
2ms(hs − hu)(kf+kr)[IXs+ms(hs − hrc)

2]

u[mIXs+mums(hs − hrc)2]
,

a53 =
2ms(hs − hu)(akf − bkr)[IXs+ms(hs − hrc)

2]

u[mIXs+mums(hs − hrc)2]
,

a54 =
cs

IXu
+
m2

s (hs − hrc)(hs − hu)cs

mIXs+mums(hs − hrc)2
,

a55 =
−cs

IXu
−

m2
s (hs − hrc)(hs − hu)cs

mIXs+mums(hs − hrc)2
,

a59 =
ks −msg(hs − hrc)

IXu

−
m2
s (hs − hrc)(hs − hu)[ms(hs − hrc)g − ks]

mIXs +mums(hs − hrc)2
,

a510 =
−ks

IXu
−

m2
s (hs − hrc)(hs − hu)ks

mIXs+mums(hs − hrc)2
,

b11 =
2kf(v + ar − 2uδf)

mu
,

b21 =
2(Fxf+kf)[IXs+ms(hs − hrc)

2]

mIXs+mums(hs − hrc)2
,

b22 =
2δf[IXs+ms(hs − hrc)

2]

mIXs+mums(hs − hrc)2
,

b41 =
2ms(hs − hrc)(Fxf+kf)

mIXs+mums(hs − hrc)2
,

b51 =
−2ms(Fxf+kf)(hs − hu)[IXs+ms(hs − hrc)

2]

mIXs+mums(hs − hrc)2
,

b42 =
2msδf(hs − hrc)

mIXs+mums(hs − hrc)2
,

b52 =
−2msδfFxf(hs − hu)[IXs+ms(hs − hrc)

2]

mIXs+mums(hs − hrc)2
.

model must be discretized. The discrete state-space equa-
tion can be expressed as follows using the first-order dif-
ferential method:

where I denotes the unit matrix with the same order as 
matrix A, and ts denotes the discrete sampling time (ts = 
0.001 s).

Transform Eq. (33) as follows:

The discrete state space can be transformed into:

where,

After derivation, the system prediction output equation 
is:

(33)ξ̃ (k + 1) = (I + Ats)ξ̃ (k)+ Btsη̃(k),

(34)χ(k) =

[

ξ̃ (k)

η̃(k − 1)

]

.

(35)

{

χ(k+1) = Ãχ(k)+ B̃�H(k),

�(k) = C̃χ(k),

Ã =

[

I + Ats Bts
03×10 I3×3

]

,

B̃ =

[

Bts
I3×3

]

, C̃ =

[

C 02×1
]

,

�H(k) =

















η̃(k)

η̃(k + 1)

...

η̃(k + Nc)

















.

(36)





























�(k+1)

�(k+2)

...

�(k+Nc)

...

�
�

k+Np
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=C̃

































Ã

Ã
2

...
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Nc

...
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Np

































χ(k)

+ C̃B̃































1 0 0 0

Ã 1 0 0

...
...

. . .
...

Ã
Nc−1

Ã
Nc−2

· · · 1

Ã
Nc

Ã
Nc−1

· · · Ã

...
...

. . .
...
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Np−1
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Np−1

· · · Ã
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�H(k),
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where Nc is the control time domain, and Np is the pre-
diction time domain.

4.2  Cost Function Considering Anti‑Rollover APF
MPC is based on the design of a cost function and its con-
straints. The cost function should be capable of ensuring 
the control quantity required for the vehicle’s rapid and 
stable output, that is, to realise the motion planning of a 
driverless heavy vehicle while having the least impact on 
the global motion planning. The anti-rollover and obsta-
cle avoidance APF functions are integrated into the cost 
function in this section. The cost function is as follows:

where,

Λref represents the expected value of the state quan-
tity output by the prediction model, ηref represents the 
expected value of the control quantity input by the pre-
diction model, oaAPF represents the function value of 
the obstacle avoidance APF, arAPF represents the func-
tion value of the anti-rollover APF, ΔΗ represents the 
control increment, Q1 represents the weight matrix of 
the state quantity, Q2 represents the weight matrix of the 
control quantity, Q3 represents the weight matrix of the 
control increment, QC represents the weight coefficient 
of the obstacle avoidance APF function, and QR repre-
sents the weight coefficient of the anti-rollover APF func-
tion. Because the system’s model changes in real-time, it 
cannot guarantee that the optimisation goal will always 
obtain a feasible solution. A relaxation factor is added to 
the cost function (ε = [ε1 ε2]T), and τ denotes the weight 
coefficient of the relaxation factor.

4.3  Constraint Condition of the Autonomous Heavy Truck
By including the controlled heavy truck’s kinematic and 
dynamic constraints in the MPC, it is possible to ensure 
the practical feasibility of the vehicle motion plan-
ning results, reduce the range of the state space, and 
shorten the calculation time. First, the output constraints 
imposed by MPC control must be considered. Longitudi-
nal force (FxT) and wheel steering angle (δf) shall meet the 
constraints of vehicle dynamics:

(37)

J =

Np
�

k=1











�

��(t + k)−�ref(t + k)
�

�

2

Q1

+
�

�η(t + k)− ηref(t + k)
�

�

2

Q2

+
�

�oaAPF(t + k)
�

�

2

QC
+
�

�arAPF(t + k)
�

�

2

QR











+

Nc−1
�

k=1

�

�� H(t + k)
�

�

2

Q3
+ τε2,

Λ(k) =
[

�(k+1) �(k+2) · · · �(k+Nc) · · · �(k+Np)
]T,

where FxT_max represents the maximum longitudinal 
resultant force of the vehicle, Tmax represents the maxi-
mum driving torque, Rt represents the tire radius, δfmax 
represents the maximum value of wheel angle, Δδfmax 
represents the maximum steering angle increment.

Additionally, the longitudinal and lateral forces exerted 
by vehicle tires must meet the constraints imposed by the 
friction ellipse.

where FY_max represents the maximum lateral force of the 
tire.

4.4  Iterative Solution of MPC Motion Planner
According to Eqs. (37)−(39), when the obstacle avoid-
ance and anti-rollover APF functions are added to the 
cost function, the cost function becomes nonlinear. The 
motion planning of an autonomous heavy truck is trans-
formed into the following nonlinear programming prob-
lem with constraints. In the control time domain, the 
nonlinear solver is used to find the optimal solution and a 
series of control increments.

In MPC, the first element of the control increment 
sequence is used as the actual control to determine the 
system’s expected control quantity.

The system continues to execute the control until the 
next time it is invoked. The control system then fore-
casts the output of the model’s next cycle using the new 
state quantity, obtains a series of control increments in 
the next control time domain, and feeds the system the 
first element as the actual control. This is repeated to 
complete the MPC of the driverless heavy truck’s motion 
planning. The remotely controlled vehicle can avoid 
obstacles and avoiding rollover accidents.

4.5  Game Theory Optimisation
When the target path contains obstacles, the obstacle 
avoidance repulsion force field generates a repulsion 
force that causes the heavy truck to turn to avoid the 
obstacles. When the coefficient of the obstacle avoidance 

(38)







Fxf + Fxr ≤ FxT_max = Tmax/Rt,

|δf| ≤ δfmax,

|�δf| ≤ �δfmax,

(39)
(

FxT

FxT_max

)2

+

(

FY

FY_max

)2

≤ µ2,

(40)
� H∗(k) =

[

η̃∗(k) η̃∗(k + 1) · · · η̃∗(k + Nc)
]T
.

(41)η(k) = η(k − 1)+ η̃∗(k).
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APF function is larger in the cost function, the obstacle 
avoidance repulsion force is greater, and the vehicle’s 
ability to avoid obstacles is improved. However, heavy 
trucks’ roll angles will change significantly due to exces-
sive steering, increasing the risk of rollover accidents. 
When the coefficient of the anti-rollover APF function 
is large, the vehicle’s rollover stability improves, but the 
heavy truck is unable to safely avoid obstacles due to 
insufficient steering.

Consider that the motion planning of a heavy truck 
should take into account not only the vehicle’s ability to 

safely avoid obstacles, but also the vehicle’s rollover sta-
bility. This paper introduces the concept of game theory 
to make heavy truck steering obstacle avoidance and 
active rollover prevention a game, while also taking into 
account the obstacle avoidance safety and rollover stabil-
ity of heavy truck motion planning.

The anti-rollover APF function coefficient and the 
obstacle avoidance APF function coefficient are chosen 
as the two sides of the game in the cost function design 
of the MPC motion planner, and the MPC motion plan-
ner is designed using game theory. Figure 8 illustrates the 
optimisation process.

Firstly, the obstacle avoidance APF function coefficient 
(QC) and the anti-rollover APF function weight coef-
ficient (QR) are selected as the two sides of the game. 
There are two players in the game, that is, the player set 
N  =  {1,2}, and each player’s decision corresponds to a 
strategy set S.

Then, according to several simulation tests, the ranges 
of coefficients QC and QR are [QC1 QCm] and [QR1 QRn], 
respectively, and multiple data are selected as the strategy 
of the coefficient in the corresponding range of the two 
coefficients. Given that a small number of data reduces 
the accuracy of the calculation results, and a large num-
ber of data increases the calculation time, the number 
of strategies with two coefficients, m = 20 and n = 20, is 
chosen here, and the game’s strategy set is obtained:

Set the payoffs for the two players under any strategy 
combination (QCi, QRj) according to simulation experi-
ence, which are denoted by P1(QCi, QRj) and P2(QCi, QRj), 
respectively.

Then, matrixes AG and BG denote the payoff matrixes 
of the two players:

(42)
{

S1 = {QC1,QC2, ...,QC20},

S2 = {QR1,QR2, ...,QR20}.

According to the path planning requirements of the

autonomous heavy vehicle, the game sides are the

obstacle avoidance APF function coefficient QC

and the anti-rollover APF function coefficient QR.

Set the range of QC and QR as [QC1 QCm] and

[QR1 QRn] respectively, and set the number of

strategies (m=20,n=20) to get the strategy set

{QC1, QC2, , QC20 } {QR1, QR2, , QR20 }

Set QC(i'+1) as
QCi'

RI < RI0

Yes

Yes

No

No

Set the minimum safety distance D0 and the

minimum safety rollover index RI0.The actual

distance DNC, DC, DR and rollover index RI are

obtained by the MPC motion planner

DNC > D0

DC > D0

DR > D0

Beginning

Output optimization

coefficient QC*, QR*

Solve the Nash equilibrium to obtain

the Nash equilibrium point(Qci',QRj')

Set QR(i'+1)

as QRi'

Set the payoffs of two players in any strategy combination (QCi , QRj) as P1(QCi ,

QRj),P2(QCi , QRj), and construct the payoff matrix of the two players as

1 C1 R1 2 C1 R1 1 C1 R2 2 C1 R2 1 C1 R20 2 C1 R20

1 C2 R1 2 C2 R1 1 C2 R2 2 C2 R2 1 C2 R20 2 C2 R20

1 C20 R1 2 C20 R1 1 C20 R2

( ( , ), ( , )) ( ( , ), ( , )) ( ( , ), ( , ))

( ( , ), ( , )) ( ( , ), ( , )) ( ( , ), ( , ))

( ( , ), ( , )) ( ( , )

P Q Q P Q Q P Q Q P Q Q P Q Q P Q Q
P Q Q P Q Q P Q Q P Q Q P Q Q P Q Q

P Q Q P Q Q P Q Q

Figure 8 Flow chart of the game theory optimization

Figure 9 Road condition in Case I
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The payoff matrix of both sides of the game is con-
structed as follows:

Drawing the payoff area from the payoff matrix and cal-
culate the Nash equilibrium point (QCi’, QRj’) according to 
the graph line.

The actual distance DNC, DC, DR, and rollover index RI 
are obtained by the MPC planner corresponding to the 
Nash equilibrium point and are compared to the set min-
imum safety distance D0 and minimum safety rollover 
index RI0. The optimal coefficients QC* and QR* will be 
output until meeting the requirements of obstacle avoid-
ance safety and rollover stability. Otherwise, QCi’ and QRj’ 
will be adjusted, and the new DNC, DC, DR, and RI will be 
solved using the MPC planner.

5  Case Studies
Two cases are designed to evaluate the performance of 
the autonomous heavy truck motion planner developed 
in this paper. The simulation test and the analysis of its 
results are as follows.

(43)
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Case I: As illustrated in Figure  9, the global path is 
represented by the green dotted line. The heavy truck 
(controlled vehicle) must drive  on Lane 1 along the 
global path at a target speed of 72 km/h. Lane 1, 60 
meters ahead, and Lane 2, 100 meters ahead, are dis-
covered to have an obstruction. The motion planning 
algorithm must generate an appropriate longitudinal 
force and steering angle for the front wheel to cause 
the controlled vehicle to change lanes to Lane 2 and 
then back to Lane 1. Avoid colliding with obstacles and 
remaining within the global path. At the same time, it 
is necessary to avoid the controlled vehicle rolling over 

due to excessive speed or steering angle when changing 
lanes.

The path generated by the motion planning of the 
autonomous heavy truck in Case I is depicted sche-
matically in Figure  10, where the green virtual line 
represents the global path and the black box, and its 
circumscribed ellipse represents the size of the obsta-
cle. The virtual red line, blue chain line, and solid purple 
line represent, respectively, the trajectory generated by 
the controlled vehicle’s motion planning without anti-
rollover, with anti-rollover, and after game theory opti-
misation. The red, blue, and purple boxes, along with 
their circumscribed dotted ellipses, represent the size 
of the controlled vehicle at its closest approach to the 
obstacle. As can be seen, when only obstacle avoidance 
is considered during motion planning, the controlled 
vehicle turns and changes lanes to another lane where 
it can safely avoid obstacles before changing lanes 
to return to the lane where the global path is located. 
When anti-rollover is considered during motion plan-
ning, the controlled vehicle can also change lanes and 
avoid obstacles. To avoid the risk of rolling over due 
to excessive steering, the controlled vehicle turns and 
changes lanes ahead of time and then returns to the 
original lane. The entire process is maintained at a low 
steering angle, but closer to the obstacle. Although the 
vehicle turning and lane-changing are more radical in 
the path optimised by game theory, they are still rela-
tively gentle, and the risk of a rollover accident is low. 
It is worth noting that it has a greater effect on avoiding 
obstacles, which benefits both the driver and the vehi-
cle by lowering the risk of a rollover accident and allow-
ing for safe obstacle avoidance.

Figure 10 Motion planning path of the vehicle in Case I
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Figure 11 Vehicle motion parameter in Case I: (a) Rollover index, (b) Distance between vehicle and obstacle, (c) Steering angle of the front wheel, 
(d) Longitudinal force, (e) Yaw rate, (f) Longitudinal velocity
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In Case I, Figure 11 illustrates the RI value, front-wheel 
steering angle, longitudinal force, yaw rate, longitudinal 
speed, and distance between vehicle and obstacle during 
motion planning.

As can be seen from Figure 11 (a) and (b), the rollover 
factor value of the vehicle is high when only considering 
obstacle avoidance. When anti-rollover is considered in 
addition to obstacle avoidance, the rollover factor value 
and distance between vehicle and obstacle are reduced. 
That is, the rollover risk can be effectively controlled but 
the collision risk will be increased. However, after opti-
misation using game theory, the safety of obstacle avoid-
ance and rollover prevention can be guaranteed at the 
same time.

As shown in Figure  11 (c) and (d), compared the 
method with only considering obstacle avoidance, two 
other methods considering both rollover prevention 
and obstacle avoidance can reduce the front wheel angle 
input, so as to reduce the yaw rate and improve the lat-
eral stability of the vehicle.

Figure  11 (e) and (f ) show that methods consider-
ing both rollover prevention and obstacle avoidance can 
reduce the longitudinal velocity fluctuation compared 
the method with only obstacle avoidance. Thus, a smaller 
longitudinal control force need input to increase the 
driving speed, and the vehicle longitudinal stability can 
be improved.

Case II: As illustrated in Figure  12, the green dotted 
line indicates the global path. The heavy truck (controlled 
vehicle) must travel on Lane 1 along the global path at a 
target speed of 54 km/h. It is discovered that there is an 
obstruction ahead of the large curve. The controlled vehi-
cle must be capable of avoiding the obstacle without roll-
ing over.

As illustrated in Figure  13, the path diagram gener-
ated by the motion planning of the autonomous heavy 
truck in Case II is shown, with the lines conveying the 
same meaning as in the preceding text. Additionally, 
when the controlled vehicle’s motion planning is limited 
to obstacle avoidance, it can achieve lane change obsta-
cle avoidance and follow the global path, with a favour-
able obstacle avoidance effect. In motion planning with 
anti-rollover, the controlled vehicle can also change lanes 
and avoid obstacles, as well as reduce steering, thereby 
reducing the risk of vehicle rollover, but at the expense of 
slightly reducing the obstacle avoidance effect. Although 
the distance between the circumscribed ellipse of the size 
of the heavy truck and the obstacle is the smallest in the 
optimal path planned using game theory optimisation, 
the distance between the circumscribed ellipse and the 
obstacle is the greatest in the optimal path planned using 
game theory optimisation. At this point, the vehicle can 
safely avoid the obstacle, and the rollover risk is minimal 
when safety is considered. As a result, this path is the 
most optimal planning path given the circumstances.

In Case II, Figure  14 illustrates the RI value, front-
wheel steering angle, longitudinal force, yaw rate, lon-
gitudinal speed, and distance between vehicle and 
obstacle during motion planning.

As can be seen from Figure 14 (a) and (b), when only 
considering obstacle avoidance, the rollover factor value 
reaches the peak value of 0.98 at 4.8 s, and the vehicle 
has the danger of rollover. The method considering both 
rollover and obstacle avoidance can reduce the rollover 
factor value but the distance between vehicle and obsta-
cle is close to zero at 4.2−4.5 s. That is, the method can 
avoid vehicle rollover but generate collision risk with 
the obstacle under extreme condition. However, after 
optimisation using game theory, it not only ensures the 

Figure 12 Road condition in Case II

Figure 13 Motion planning path of the vehicle in Case II
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Figure 14 Vehicle motion parameter in Case II: (a) Rollover index, (b) Distance between vehicle and obstacle, (c) Steering angle of the front wheel, 
(d) Longitudinal force, (e) Yaw rate, (f) Longitudinal velocity
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safety of vehicle against rollover, but also safely avoids the 
obstacle.

Figure  14 (c) and (d) illustrate that methods consid-
ering both rollover prevention and obstacle avoidance 
can reduce the front wheel angle input and the yaw rate 
compared the method with only considering obstacle 
avoidance. In addition, Figure  14 (e) and (f ) show that, 
compared the method with only considering obstacle 
avoidance, they can reduce the longitudinal velocity fluc-
tuation and the longitudinal control force input. There-
fore, it can be seen that the effect of improving the lateral 
and longitudinal stability of vehicle under extreme con-
dition is more obvious after optimisation using game 
theory.

In conclusion, game theory optimisation MPC motion 
planning satisfies motion planning requirements, 
increases obstacle avoidance safety, and decreases rollo-
ver risk. The controlled vehicle can pass through this 
condition safely and stably.

6  Conclusions
To emphasise the importance of anti-rollover in autono-
mous heavy truck motion planning, we propose an MPC-
based motion planning method for autonomous heavy 
trucks that takes vehicle rollover dynamics into account.

(1) A novel obstacle avoidance APF technique is pro-
posed, which increases the longitudinal safety dis-
tance while decreasing the lateral safety distance 
between vehicle and obstacle, thereby improving 
the obstacle avoidance safety of autonomous heavy 
trucks.

(2) An anti-rollover APF is proposed and integrated 
into the motion planning cost function, reduc-
ing rollover index and enhancing the roll safety of 
autonomous heavy trucks.

(3) The MPC motion planning algorithm, which com-
bines trajectory tracking, anti-rollover APF, and 
obstacle avoidance APF, is then developed. Addi-
tionally, the anti-rollover and obstacle avoidance 
APF coefficients are optimised using game theory. 
The proposed motion planning method has a high 
level of rollover stability and obstacle avoidance 
safety.
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