
Yuan et al. 
Chinese Journal of Mechanical Engineering           (2024) 37:96  
https://doi.org/10.1186/s10033-024-01074-w

REVIEW Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Chinese Journal of Mechanical Engineering

Analysis of Vibration Characteristics 
of Electro‑hydraulic Driven 3‑UPS/S Parallel 
Stabilization Platform
Xiaoming Yuan1,2*   , Weiqi Wang1,2, Haodong Pang1,2 and Lijie Zhang1,2 

Abstract 

With the development of fluid-power transmission and control technology, electro-hydraulic-driven technology 
can significantly improve the load-carrying capacity, stiffness, and control accuracy of stabilization platforms. How-
ever, compared with mechanically driven platforms, the stiffness and damping of the fluid, as well as the coupling 
effect between the fluid and the structure need to be considered for electro-hydraulic-driven parallel stabilization 
platforms, making the modal and dynamic response characteristics of the mechanism more complex. With the aim 
of solving the aforementioned issues, we research the electro-hydraulic driven 3-UPS/S parallel stabilization platform 
considering the hinge stiffness. Moreover, the characteristic vibration equation of the mechanism is established 
using the virtual work principle. Subsequently, the variation characteristics of the natural frequency and the vibration 
response according to the position of the mechanism are analyzed based on the dynamic equation. Finally, the cor-
rectness of the model is verified by a modal test and Runge-Kutta methods. This study provides a theoretical basis 
for the dynamic design of electrohydraulic-driven parallel mechanisms.

Keywords  Electro-hydraulic driven 3-UPS/S parallel stabilization platform, Kinetic equation, Vibration mode, Vibration 
response, Modal test

1  Introduction
A stabilization platform detects any position change of the 
equipment on it through a sensitive element, compensates 
for the deviation in the position of the equipment through 
attitude adjustment, and isolates the equipment from the 
influence of the environment to keep it relatively stable in 
inertial space [1–4]. According to the type of mechanism, 
a platform can be classified into a series or parallel stabi-
lization platform [5, 6]. A series stabilization platform is 
simple to control and has a low design cost [7]. Thus, they 

are widely used in fields such as laser positioning, satel-
lite communication, missile guidance, and for unmanned 
reconnaissance aircrafts. In contrast, a parallel stabiliza-
tion platform is driven by multi-axis coupling and has the 
characteristics of a strong bearing capacity and high stiff-
ness and therefore has a wide range of application scenar-
ios in high-precision operations such as weapon launches 
and maritime rescues [8–11]. By adopting the electro-
hydraulic driven platform with the advantages of its high 
power/weight ratio, fast response speed and small cumu-
lative error, however, the motion control accuracy of the 
stabilization platform can be greatly improved [12–15].

Mechanical vibrations can cause dynamic deforma-
tion and relative motion of platform structures, thereby 
increasing the stress and fatigue loads on various com-
ponents of the platform. This subsequently affects the 
stability, control accuracy, and service life of the plat-
form, and in severe cases, can even lead to structural 
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damage [16–18]. Therefore, to further improve the 
performance of parallel stabilization platforms, it is 
important to study their vibration characteristics [19, 
20]. There are three methods for studying the vibration 
characteristics: the simulation analysis method [21–23], 
theoretical analysis method [24] and experimental analy-
sis method [25]. The simulation analysis method is used 
to analyze the vibration characteristics after solving the 
characteristic value of the finite element analysis of the 
structure [26–28]. Therefore, it is widely used to analyze 
the vibration characteristics of complex mechanical sys-
tems. The experimental analysis method is used to esti-
mate the modal parameters of the mechanism through 
the frequency response function measured in practice 
and it is also used to verify the results of the simulation 
and theoretical analysis [29, 30]. The theoretical analy-
sis method is used to analyze the vibration characteris-
tics based on the dynamic equation and the analytical 
solution of the vibration response [31, 32]. It can quan-
titatively analyze the vibration characteristics of a mech-
anism and is a common method for the further study of 
mechanical vibrations. However, during the process of 
dynamic modeling, previous studies did not consider the 
influence of flexible stiffness [33, 34]. Moreover, with the 
development of the finite element method, hinge stiff-
ness has gradually been studied, which has also led to 
a low computational efficiency with regards to dynamic 
calculations [35]. Additionally, the variation characteris-
tics of the natural frequency and vibration response with 
respect to the position of the mechanism have not yet 
been studied.

Therefore, taking an electro-hydraulic driven 3-UPS/S 
parallel stabilization platform as research object, its 
mechanical-hydraulic coupling dynamic equation is 
established considering the hinge stiffness. Subsequently, 
the modal and resonant characteristics of the mechanism 
are studied. The theoretical model is verified through 
numerical simulations and modal tests. This study pro-
vides a theoretical basis for dynamic modal analysis and 
resonance research on parallel mechanisms.

2 � Kinematic Analysis of Electro‑hydraulic Driven 
3‑UPS/S Parallel Stabilization Platform

2.1 � Position Analysis of Electro‑hydraulic Driven 3‑UPS/S 
Parallel Stabilization Platform

As shown in Figure  1(a), an electro-hydraulic driven 
3-UPS/S parallel stabilization platform consists of a 
moving platform, supporting branch chain, static plat-
form, and three driving branches. The coordinate sys-
tem U−xyz is the fixed coordinate system of the moving 
platform and the coordinate system D−XYZ is the fixed 
coordinate system of the static platform.

As shown in Figure 1(b), the local coordinate system 
di−xdiydizdi is established at the center of the universal 
joint, established at the center of the spherical hinge. 
Axes zdi and axis zui are in the same direction as the 
unit-direction vector ei of the driving branch. The rota-
tion angles of the universal joint about axis xdi and axis 
ydi are, respectively, θdi and φdi ; the rotation angles of 
the spherical hinge about axis xui, axis yui and axis zui 
are, respectively, θui, φui , γui ; ψdi , ψui are the installation 
angles of the universal joint and the spherical hinge, 
respectively, which are determined by the platform 
structure.

The closed-loop equation of the drive chain can be 
expressed as:

where li is the length of the drive chain; ei is the unit 
direction vector of the drive chain; DUR is the rotation 
transformation matrix between the coordinate sys-
tem U−xyz and the coordinate system D−XYZ; u{U}

i  is 
the vector from the center of the spherical hinge to the 
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(a) Schematic diagram of electro-hydraulic driven 3-UPS/S 

parallel stabilization platform

(b) Drive chain position vector diagram 
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Figure 1  Coordinate system of electro-hydraulic 3-UPS/S parallel 
stabilization platform
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origin of the coordinate system U−xyz; d{D}
i  is the vector 

from the center of the universal joint to the origin of the 
coordinate system D−XYZ; u0 is the initial displacement 
vector of the coordinate system U−xyz to the coordinate 
system D−XYZ; u is the displacement vector of the coor-
dinate system U−xyz to the coordinate system D−XYZ.

Thus, the equation for the drive chain length can be 
expressed as:

The centroid position of the lower connecting rod of the 
drive chain can be expressed as:

where pgi is the position vector of the lower connecting 
rod centroid and qi is the distance between the centroid 
of the lower connecting rod and the center of the univer-
sal joint.

The rotation transformation matrix between the local 
coordinate system di−xdiydizdi and the coordinate system 
D−XYZ can be expressed as:

Because axis zdi is in the same direction as the unit direc-
tion vector ei, zdi can be expressed as:

Thus, the rotation angle of the universal joint is:

If the local coordinate systems di−xdiydizdi and ui−xuiyuizui 
have the same direction, the rotation transformation 
matrix DuiR between the local coordinate system ui−xuiyuizui 
and the coordinate system D−XYZ can be obtained from 
Eq. (4). Thus, the rotation angle of the spherical hinge is:

where RFi = R(ψui, zui)
TD
U RTD

ui
RT.
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∥
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(4)D
di
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),

2.2 � Velocity Analysis of Electro‑hydraulic Driven 3‑UPS/S 
Parallel Stabilization Platform

By solving the first derivative with respect to time in 
Eq. (1), the velocity equation of the drive chain can be 
expressed as:

where ωzi is the angular velocity of the drive chain and ωu 
is that of the moving platform.

Then, the Jacobian matrix between the drive chain 
and the moving platform is:

By multiplying both sides of Eq. (8) by the unit direc-
tion vector ei, and expressing the result in the local 
coordinate system di−xdiydizdi, the result can be shown 
as follows:

where v{di}ui  represents the center velocity of the spherical 
hinge in the local coordinate system di−xdiydizdi.

The angular velocity of the drive chain is generated by 
the rotation of the universal joint, so the angular veloc-
ity of the drive chain rotation can be expressed in the 
local coordinate system di−xdiydizdi as:

By representing the vector in Eq. (9) in the local coor-
dinate system di−xdiydizdi, Eq. (9) can be expressed as:

By combining Eqs. (10)–(12), the angular velocity of 
the universal joint can be expressed as:

Then, the Jacobian matrix of the universal joint is:
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(11)ωz = φ̇diydi + θ̇dixdi.
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Similarly, considering the motion transmission relation-
ship between the spherical hinge and the moving platform, 
the angular velocity of the drive chain can be expressed as:

By representing the vector in Eq. (14) in the local coor-
dinate system ui−xuiyuizui, Eq. (14) can be expressed as 
follows:

By combining Eq. (11) and Eq. (17), the angular velocity 
of the spherical hinge can be expressed as:

Thus, the Jacobian matrix of the spherical hinge can be 
expressed as:
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By solving the first derivative with respect to time in 
Eq. (3), the result can be shown as follows:

Combining Eq. (13) and Eq. (22), the Jacobian matrix of 
the lower connecting rod is:

Similarly, the Jacobian matrix of the upper connecting 
rod is:

where hi is the distance between the centroid of the lower 
connecting rod and the center of the universal joint.

2.3 � Dynamic Equation of Electro‑hydraulic Driven 3‑UPS/S 
Parallel Stabilization Platform

To derive the dynamic equation of an electro-hydraulic 
driven 3-UPS/S parallel stabilization platform, the fol-
lowing assumptions were made:

(1)	 Errors in the processing and assembly processes 
were ignored.

(2)	 The force of the drive chain on the moving platform 
was equivalent to the spring force along the expan-
sion direction of the drive chain.

(3)	 The passive joints of the mechanism adopted a ball-
and-socket structure with rolling balls for point 
contact. Universal joints utilized needle-roller bear-
ings. Therefore, friction at the passive joints of the 
mechanism was ignored.

The friction at the hydraulic cylinder in the mechanism 
is primarily manifested in the form of the viscous shear 
resistance of the hydraulic oil. Therefore, a fluid viscous 
damping coefficient was introduced during the process of 
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establishing the equation. According to the virtual work 
principle, the virtual power acting on each component of 
the mechanism can be calculated as follows:

where fu is the force matrix on the moving platform; k is 
the stiffness matrix of the drive chain; c is the damping 
matrix of the drive chain; Iu is the inertia matrix of the 
moving platform; ωu is the angular velocity of the mov-
ing platform; mgi is the mass of the lower connecting rod; 
p
{di}
gi  is the displacement vector of the lower connecting 

rod; I{di}gi  is the inertia matrix of the lower connecting 

rod; ω{di}gi  is the angular velocity of the lower connecting 
rod; mhi is the mass of the upper connecting rod; p{di}hi  
is the displacement vector of the upper connecting rod; 
I
{di}
hi  is the inertia matrix of the upper connecting rod; 

ω
{di}
hi  is the angular velocity of the upper connecting rod.
By ignoring the Coriolis and centrifugal forces, Eq. (25) 

can be simplified as follows:

where ẋ = ω
T
u

.
The components of ωu are independent because the 

generalized coordinates are independent. Therefore, the 
coefficient should be equal to zero. The explicit dynamic 
equation for this mechanism is as follows:
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−(kxdJ xdx)
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,

(29)C = JTu cJu,

3 � Free Vibration Analysis of Electro‑hydraulic 
Driven 3‑UPS/S Parallel Stabilization Platform

3.1 � Modal Analysis of Electro‑hydraulic Driven 3‑UPS/S 
Parallel Stabilization Platform in Fixed Posture

The structural parameters of the electro-hydraulic driven 
3-UPS/S parallel stabilization platform are listed in 
Table 1.

Based on the parameters shown in Table 1, the modal 
and natural frequencies of the platform in the initial posi-
tion α=0°, β=0°, γ=28° and the random position α=10°, 
β=10°, γ=28° are calculated, and the results are shown in 
Tables 2 and 3.

After analyzing the data in Tables 2 and 3, the following 
conclusions can be drawn:

(1)	 At the initial position, the natural frequency in the 
deflection direction was at the minimum, and the 
natural frequencies in the directions of the rotation 
and pitch were approximately equal.

(2)	 There is a certain coupling relationship between 
the vibration responses in the pitching and rota-
tion directions; however, the coupling relationship 
between them and the deflection direction is small.

(3)	 By changing the position of the mechanism, the 
coupling of the vibration response in every direc-
tion was enhanced, and the natural frequencies of 
each order changed. This is because the Jacobian 
matrix of the mechanism changed and affected its 
mass and stiffness matrices.

(4)	 When the position of the mechanism changed, the 
natural frequencies of each order changed differ-

(30)
K = JTukJu + JTθdkθdJ θd + JTψdkψdJψd

+JTθukθuJ θu + JTψukψuJψu + JTγukγuJ γu.
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ently. The first- and third-order natural frequencies 
increased, whereas the second-order natural fre-
quencies decreased.

(5)	 When the vibration frequencies were the first-, sec-
ond-, and third-order natural frequencies, the maxi-
mum vibration responses appeared in the deflec-

tion, pitching, and rotation directions, respectively. 
Under actual operating conditions, the external 
excitation frequency is most likely to approach the 
first-order natural frequency; therefore, the mecha-
nism is most prone to vibration in the deflection 
direction.

Table 1  Structural parameters of electro-hydraulic driven 3-UPS/S parallel stabilization platform

Parameter name Parameter value

Rotational inertia of the moving platform Iu (kg·m2) diag
[

3.74 3.76 7.72
]

Rotational inertia of the lower connecting rod Ig (kg·m2) diag
[

0.96 0.96 0.0506
]

Rotational inertia of the upper connecting rod Ih (kg·m2) diag
[

0.19 0.19 0.0069
]

Radius of the moving platform ru (m) 0.38

Radius of the static platform rd (m) 0.51

Mass of the moving platform mu (kg) 65.703

Mass of the lower connecting rod mg (kg) 20.604

Mass of the upper connecting rod mh (kg) 4.263

Piston diameter of the hydraulic cylinder d1 (m) 0.04

Piston rod diameter of the hydraulic cylinder d2 (m) 0.025

bulk modulus of oil E (Pa) 1180×10−6

Oil density ρ (kg/m3) 900

Stiffness value of universal joint in rotation direction around axis xdi kxd (N·m/rad) 72.07

Stiffness value of universal joint in rotation direction around axis ydi kyd (N·m/rad) 72.07

Stiffness value of spherical hinge in rotation direction around axis xui kxu (N·m/rad) 51.15

Stiffness value of spherical hinge in rotation direction around axis yui kfu (N·m/rad) 62.79

Stiffness value of spherical hinge in rotation direction around axis zui kgu (N·m/rad) 64

viscous damping coefficient c (N·m/s) 1620

Table 2  Natural frequency and vibration mode at initial position

Order of natural frequency First order natural frequency Second order natural frequency Third order 
natural 
frequency

Natural frequency value (Hz) 26.38 128.55 128.91

Main vibration modes 0 0.0278 − 1

− 0.0001 − 1 − 0.0278

1 − 0.0007 0

Table 3  Natural frequency and vibration mode at random position

Order of natural frequency First order natural frequency Second order natural frequency Third order 
natural 
frequency

Natural frequency value (Hz) 27.46 120.94 148.82

Main vibration modes 0.0678 − 0.2417 − 1

0.0875 − 1 0.2424

1 0.0498 0.0234



Page 7 of 13Yuan et al. Chinese Journal of Mechanical Engineering           (2024) 37:96 	

3.2 � Natural Frequency Analysis in Workspace 
of Electro‑hydraulic Driven 3‑UPS/S Parallel 
Stabilization Platform

When the platform is used to maintain the stability of 
the horizontal direction of the equipment, the change 
range of the deflection angle is small, and the angle com-
pensation is mainly performed through changes in the 
rotation and pitching directions. According to the work-
space search theory, when the deflection angle is 28°, 
the change range of the pitch and rotating angles is the 
largest. Therefore, considering this position as the initial 
workspace, the natural frequency variation curve of the 
mechanism can be obtained as follows.

As shown in Figure  2, in the initial workspace, the 
natural frequencies of each order presented an obvi-
ous symmetry with the position change, and that for 
the first-order natural frequency was the most evident, 
corresponding to the movement in the deflection direc-
tion. When the mechanism gradually deviated from 
the initial position, the variation trends for the differ-
ent orders of the natural frequencies were not the same. 
Meanwhile, the positions at which the maximum and 
minimum values of each order of the natural frequencies 
were obtained are different. In general, when the pitching 
angle is significantly different from the rotation angle, the 
natural frequency approaches its limit. However, the sec-
ond-order natural frequency had a large value near the 
initial position. When the mechanism gradually deviated 
from the initial position through attitude compensation, 
the second-order natural frequency gradually decreased. 
In addition, the third-order of the natural frequency was 
the most sensitive to position changes, followed by the 
second-order of the natural frequency, and the first-order 
of the natural frequency was the least affected by position 
changes.

4 � Force Vibration Analysis of Electro‑hydraulic 
Driven 3‑UPS/S Parallel Stabilization Platform

4.1 � Vibration Response Analysis of Electro‑hydraulic 
Driven 3‑UPS/S Parallel Stabilization Platform

When the excitation frequency is close to the natu-
ral frequency of each order, the mechanism generates a 
resonance, which affects the compensation accuracy and 
control precision. Therefore, when the structural param-
eters remain unchanged, the vibration response of the 
mechanism at the random position α=10°, β=10°, γ=28° 
is solved. The torque matrix acting on the mechanism is 
expressed as follows:

(31)MU =





80 cos (ω0t)
80 cos (ω0t)
80 cos (ω0t)



.
The time-domain curve of the vibration response is 

shown in Figure 3. As shown in Figure 3, when subjected 
to an external harmonic excitation whose frequency is 
close to the natural frequency, the mechanism generates 

�
�

�

�

�

�

�

�

�

Figure 2  Variation law for the natural frequencies in the initial 
workspace
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a resonance, and the steady-state response is a sim-
ple harmonic motion. When the excitation frequency 
was close to the first-, second-, or third-order natural 
frequencies, the angular displacement in the deflec-
tion, pitch, and rotation directions reached a maximum. 
When the external excitation frequency was close to the 
first-order natural frequency, the angular displacement 
of the mechanism in the rotation and pitching directions 
was approximately equal; however, when the angular dis-
placement in the rotation or pitching directions reached 
the maximum, the angular displacement response in the 
other two directions was smaller, which is consistent with 
the main vibration mode.

The frequency-domain curve of the vibration response 
is shown in Figure  4. When the excitation frequency 
was close to the natural frequency of each order, the 
steady-state vibration response amplitude in each direc-
tion reached the maximum at the corresponding natural 
frequency. The maximum amplitudes of the vibration 
response were 0.932° in the deflection direction, 0.0213° 
in the pitching direction, and 0.0111° in the rotation 
direction. When the excitation frequency was close to 
the first-, second-, and third-order natural frequencies, 
the steady-state response amplitudes in each direction 
gradually decreased. When the excitation frequency was 
close to the first-order natural frequency, the steady-state 
vibration response in each direction was much larger 
than when the excitation frequency was close to the sec-
ond- or third-order natural frequency. Thus, when the 
excitation frequency is close to the first-order natural fre-
quency, the resulting resonance significantly influences 
the compensation and control accuracies.

4.2 � Vibration Response Amplitude Analysis in Workspace 
of Electro‑hydraulic Driven 3‑UPS/S Parallel 
Stabilization Platform

The amplitude of the vibration response was also related 
to the position of the mechanism. Therefore, by keep-
ing the theoretical parameters unchanged, the vibra-
tion response amplitude in the initial working space was 
calculated for when the excitation frequency was close 
to the first-order natural frequency, and the results are 
shown in Figure 5.

It can be seen from Figure  5 that when the excitation 
frequency is close to the first-order natural frequency, 
the amplitude curves of the vibration response in each 
direction show a certain symmetry, and that the loca-
tions at which the extreme values of the response ampli-
tudes in each direction are obtained are not the same. In 

Figure 3  Time domain curves of forced vibrations
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Figure 4  Frequency domain curves of forced vibrations

(a) Amplitude of vibration response in the rotation direction

(b) Amplitude of vibration response in the pitching direction

(c) Amplitude of vibration response in the deflection 

direction
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Figure 5  Amplitudes of vibration response for ω0 ≈ ω1
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Figure  5(a), we show that the vibration response ampli-
tude in the rotation direction was small when the pitch 
angle is approximately 0°. At this position, the vibra-
tion response amplitude in the rotational direction was 
insensitive to a position change in the pitching direction. 
Similarly, as shown in Figure 5(b), the vibration response 
amplitude in the pitch direction was relatively small when 
the pitch angle was approximately 0°. At this position, the 
vibration response amplitude in the pitch direction was 
insensitive to position changes in the rotation direction. 
When the mechanism gradually deviates from the ini-
tial position, the amplitude of the vibration response in 
the rotation and pitching directions gradually increases. 
When the difference between the rotation and pitch 
angles was large, the vibration response amplitudes in the 
rotation and pitching directions were large. As shown in 
Figure  5(c), when the position changed from the left to 
the right limit of the working space, the amplitude of the 
vibration response in the deflection direction increased 
gradually. When the excitation frequency was close to 
the first-order natural frequency, the vibration response 
amplitude in the deflection direction was much larger 
than those in the pitch and rotation directions, and the 
maximum value was greater than 1°. The vibration gen-
erated by the mechanism has a significant impact on the 
control accuracy.

5 � Verification of Dynamic Theoretical Model 
of Electro‑hydraulic Driven 3‑UPS/S Parallel 
Stabilization Platform

5.1 � Verification of Theoretical Free Vibration Model
To verify the correctness of the theoretical free vibra-
tion model, the natural frequency of the prototype was 
measured at the random position α=10°, β=10°, γ=28° 

using the pulse excitation method. A schematic of the 
experimental setup is shown in Figure 6. A force hammer 
strikes the moving platform to generate an impulse exci-
tation force. The signal of the exciting force then enters 
the lower computer through the force sensor and voltage 
amplifier on the force hammer. The axial response signal 
of the prototype is collected by the acceleration sensor 
and input to the computer through the voltage amplifier 
and lower computer. The experimental prototype and test 
diagram are shown in Figures 7 and 8, respectively.

The sampling frequency used in the experiment was 
640 Hz; therefore, it met the sampling theorem, and the 
collected signals were reliable. The time-domain curves 
of the excitation and vibration signals collected during 
the experiment are presented in Figure 9.

After processing the data shown in Figure 9, the spec-
tral power density curve of the prototype response signal 
was obtained, as shown in Figure 10. The curve exhibited 
peaks at 26.31 Hz, 126.41 Hz and 141.88 Hz. A compari-
son of the theoretical and experimental values of the nat-
ural frequency is shown in Table 4. The maximum error 
between the theoretical and experimental values is 4.66%, 
which verifies the correctness of the theoretical model.

5.2 � Verification of Theoretical Forced Vibration Model
To verify the correctness of the theoretical forced vibra-
tion model of the mechanism, and taking the excitation 
frequency close to the first-order natural frequency as 
example, the fourth-order Runge-Kutta method was used 
to solve the time-domain and frequency-domain charac-
teristic curves of the vibration response, and the results 
are shown in Figure 11.

74.2

62 3 4.1

8

5

9.1 9.2 9.3

10

11.1

12

11.2

13

14

1

Figure 6  Schematic diagram of modal experiment. 1−oil tank, 2−
liquid level gauge, 3−liquid temperature gauge, 4−filter, 5−motor 
pump, 6−overflow valve, 7−check valve, 8−filter, 9−servo valve, 
10−electro-hydraulic driven 3-UPS/S parallel stabilization platform 
prototype, 11−acceleration sensor, 12−force hammer, 13−lower 
computer, 14−computer

Moving Platform

Static platform

Driving branch

Supporting branch chain

Figure 7  Electro-hydraulic drive 3-UPS/S parallel stabilization 
platform prototype
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As shown in Figure  11(a), when the excitation fre-
quency is close to the first-order natural frequency, 
the time-domain curve of the numerical solution 
exhibits a stable simple harmonic motion, which is 
consistent with the results of the theoretical analysis. 
By comparing Figures  3(b) and 11(b), it can be seen 
that the numerical solutions of the maximum vibra-
tion response amplitude in the rotation, pitching, and 
deflection directions were 0.0627°, 0.0766° and 0.932° 
respectively. Correspondingly, the maximum vibration 
response amplitudes obtained from the theoretical cal-
culations in each direction were 0.0626°, 0.0765° and 
0.9316°, respectively. A comparison between the theo-
retical and numerical values of the maximum vibration 
response amplitude is shown in Table 5; the maximum 
error between the theoretical and numerical solutions 
is 0.16%, which verifies the correctness of the theoreti-
cal forced vibration model.

(a) Modal test platform

(b) Signal acquisition and analysis system

Force Hammer 

Acceleration Sensor

Moving Platform

DC Power Computer

Lower Competer

Figure 8  Modal test diagram

Figure 9  Time domain curve of the measured signal

Figure 10  Power spectral density of the system response
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6 � Conclusions

(1)	 The natural frequency is a function of the position 
of the mechanism. In the initial working space, the 
change in the natural frequency was symmetrical, 

and the position for obtaining the extreme value 
was not the same. With a change in position, the 
third-order natural frequency changed the most, 
followed by the second-order natural frequency, 
and the first-order natural frequency changed the 
least.

(2)	 When the mechanism resonated with the external 
excitation of a simple harmonic motion, the steady-
state resonance response presented a simple har-
monic motion. When the excitation frequency was 
close to the first-, second-, and third-order natural 
frequencies, the amplitude of the vibration response 
reached a maximum in the deflection, pitching, and 
rotation directions, respectively.

(3)	 The vibration response amplitude varied symmetri-
cally in the initial working space. When the excita-
tion frequency was close to the first-order natural 
frequency, the vibration response amplitude in the 
deflection direction was larger than that in the other 
two directions, and the value was close to 1°, which 
had a significant influence on the compensation and 
control accuracies.

(4)	 A modal test and fourth-order Runge-Kutta numer-
ical simulation were used to verify the theoretical 
model. The maximum error between the theoretical 
and experimental values was 4.66%, and the maxi-
mum error between the numerical and theoretical 
values was 0.16%, verifying the correctness of the 
theoretical model.
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Table 4  Comparison of theoretical and experimental values of 
the natural frequency

Experimental result Theoretical 
value (Hz)

Experimental 
value (Hz)

Error (%)

First order natural frequency 27.46 26.31 4.18

Second order natural fre-
quency

120.94 126.41 4.5

Third order natural frequency 148.82 141.88 4.66

Figure 11  Time domain curve of steady-state response numerical 
solution

Table 5  Comparison of theoretical and numerical values of 
maximum vibration response amplitude

Direction Theoretical 
value (°)

Numerical 
value (°)

Error (%)

Rotation direction 0.0627 0.0626 0.16

Pitching direction 0.0766 0.0765 0.13

Deflection direction 0.932 0.9316 0.042
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