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Abstract 

In this study, a machine vision method is proposed to characterize 3D roughness of the textured surface on cylinder 
liner processed by plateau honing. The least absolute value (L∞) regression robust algorithm and Levenberg-
Marquardt (LM) algorithm are employed to reconstruct image reference plane. On this basis, a single-hidden 
layer feedforward neural network (SLFNN) based on the extreme learning machine (ELM) is employed to model 
the relationship between high frequency information and 3D roughness. The characteristic parameters of Abbott-
Firestone curve and 3D roughness measured by a confocal microscope are used to construct ELM-SLFNN prediction 
model for 3D roughness. The results indicate that the proposed method can effectively characterize 3D roughness 
of the textured surface of cylinder liner.
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1  Introduction
With the continuous improvement of the service per-
formance of internal combustion power equipment, the 
piston assembly-cylinder liner system usually conducts 
energy conversion and power transfer under high-speed 
operation. The piston assembly-cylinder liner system is 
subject to more complex mechanical load and thermal 
load under the extremely harsh working conditions [1]. 
The piston assembly-cylinder liner system and the inter-
action interface of each subsystem often exhibit complex 
tribological behavior, and its service performance and 

efficiency directly depend on the service reliability of 
components such as piston assembly and cylinder liner 
[2]. The evolution of the service reliability of the piston 
assembly-cylinder liner system is closely related to the 
tribological behavior of the movement and the change of 
the machined surface topography [3, 4]. Therefore, accu-
rate measurement and characterization of the surface 
topography is of great significance to the service perfor-
mance of the internal combustion engines [5–9].

For the measurement of surface roughness of anti-
friction texture, there are two kind of methods: contact 
detection and non-contact detection methods [10–16]. 
Compared with contact methods, non-contact methods 
have the advantages of low cost, high accuracy, high 
efficiency. Therefore, more attention have been paid 
to non-contact methods. Tao et  al. [16] proposed a 
new index, i.e., undeformed chip width, to describe the 
stochastic characteristics in the wafer self-rotational 
grinding process, and used the linear regression method 
to obtain the roughness. Their work shows that the 
proposed model has high accuracy and can effectively 
predict the roughness of ground wafer. Lawrence et  al. 
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[17] used Gaussian filtering to extract the high frequency 
information of the surface gray image of the honing 
cylinder liner. BP neural network is used to obtain.

2D and 3D roughness parameters. The traditional 
filtering method often be lowered by the “valley” and 
distortion of the reference plane was not considered in 
their works. Samtas et  al. [18] converted the grinding 
surface image into a binary model, and used the artificial 
neural network (ANN) to obtain the roughness. Their 
work shows that the proposed method can effectively 
measure the roughness characteristics of machined 
surfaces. Zuperl et  al. [19] proposed a roughness 
prediction model to achieve grinding roughness by 
genetic algorithms (GA), artificial neural network and 
adaptive neural fuzzy algorithm (ANFA). The size of 
the virtual image area formed by color light sources on 
different rough surfaces is considered, and a correlation 
model between color image sharpness index and 
roughness is constructed to evaluate the roughness 
[20–23]. Umamaheswara Raju et  al. [24] used curvelet 
transform to obtain the characteristic parameters of the 
gray image of surface topography, which realized the 
evaluation of 2D roughness topography. The above works 
[17–24] did not consider the influence of the anti-friction 
texture on the surface when reconstruct the reference 
plane of surface gray image.

In this study, a machine vision method is proposed to 
characterize 3D roughness of the textured surface on 
cylinder liner processed by plateau honing. It is necessary 
to consider the distortion of the reference plane caused 
by the surface texture, and establish the prediction model 
of the surface roughness characteristics based on the 
gray image information. According to the gray image 
information of the surface texture, L∞ regression robust 
algorithm and LM algorithm are employed to reconstruct 
image reference plane, which can achieve the separation of 
high frequency information related to roughness. On this 
basis, an improved ELM algorithm is employed to model 
the relationship between high frequency information 
and 3D roughness. ELM-SLFNN prediction model is 
constructed to evaluate 3D roughness. The proposed 
method can effectively characterize 3D roughness of the 
textured surface of cylinder liner.

In this research, a wearable exoskeleton arm, ZJUESA, 
based on man-machine system is designed and a 
hierarchically distributed teleoperation control system 
is explained. This system includes three main levels: 
supervisor giving the command through the exoskeleton 
arm in safe zone with the operator interface; slave-robot 
working in hazardous zone; data transmission between 
supervisor-master and master-slave through the Internet or 
Ethernet. In Section 2, by using the orthogonal experiment 

design method, the design foundation of ZJUESA and 
its optimal, we hybrid fuzzy control system for the force 
feedback on ZJUESA. Consequently, the force feedback 
control simulations and experiment results analysis are 
presented in Section 4 [13–17].

2 � Prediction Method
In order to improve the tribological performance of pis-
ton-cylinder liner system, the cylinder liner surface is usu-
ally machined by plateau honing and laser honing to form 
cross-hatched lines, micro dimples and grooves, as shown 
in Figure 1.

A method is proposed to characterize 3D roughness of 
textured liner processed by plateau honing, the proposed 
method includes the following steps: (1) Honing experi-
ment of cylinder liner are conducted and gray image 
of the textured liner surface is acquired. (2) The image 
reference plane is reconstructed (middle and low fre-
quency information related to waviness, shape and posi-
tion error), and high frequency information of the image 
related to the roughness is separated accurately and the 
characteristic parameters of high frequency information 
are extracted. (3) The relationship between the charac-
teristic parameters of high frequency information and 3D 
roughness is modeled to implement machine vision per-
ception of 3D roughness. Figure 2 shows technical route 
of perception and evaluation of surface roughness of tex-
tured cylinder liner.

2.1 � Reconstruction of Reference Plane
2.1.1 � Model of Reference Plane
Figure 3 shows the gray image as well as the gray value. 
It is assumed that the evaluation area of 3D roughness is 
rectangular:

where D is roughness evaluation area, x is the axis coor-
dinate and y is the circumferential coordinate of evalu-
ation area, ax is the lower limit and bx is the upper limit 
in the x direction, cy is the lower limit and dy is the upper 
limit in the y direction.

The profile characteristics of the cross-hatched 
liner surface are superposition of roughness, surface 
waviness and geometric profile and position error, 
etc. Therefore, the gray image can be represented in 
frequency domain as a superposition of high frequency 
information related to roughness characteristics, 
the middle frequency information related to surface 
waviness, low frequency information related to 
geometric shape and position error, and image noise 
pollution caused by light, etc.

(1)D =
{(

x, y
)

|x ∈ (ax, bx), y ∈
(

cy, dy
)}

,
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The gray matrix of the gray image can be expressed as:

where R is the gray matrix of high frequency image, G 
is the gray matrix of middle frequency image, K is the 
gray matrix of low frequency image, L is the gray matrix 
of noise caused by light, and Z is the gray matrix of liner 
surface image.

It is important to determine the reference plane when 
measuring the surface roughness. Reference plane is 
defined as the superposition of surface waviness and 
geometric profile and position error. Similarly, the 
reference plane of gray image can be represented as 
superposition of middle frequency image information 
and low frequency image information. The gray matrix 
of the reference plane can be expressed as:

The gray matrix of high frequency image related to 
roughness can be represented as:

In Eq. (4), it is necessary to obtain the gray matrix of 
high frequency image to implement perception of 3D 
roughness of the cross-hatched surface, so the gray 
matrix of the reference plane need to be calculated when 
eliminating light noise of image.

2.1.2 � Textured Surface Image Denoising
The light noise is low frequency component when acquir-
ing gray image. A Butterworth high-pass filter is used 
to convolve the gray image to eliminate the light noise. 
Figure 4 shows the gray image of the cross-hatched liner 
surface before and after Butterworth high-pass filter-
ing. It can be seen that light noise of the gray image is 

(2)Z = R + G + K + L,

(3)S = G + K .

(4)R = Z − S − L.

eliminated and the details are also enhanced after Butter-
worth high-pass filtering.

2.1.3 � Reconstruction Method of Reference Plane
The reference plane of the gray image should be 
reconstructed to extract high frequency image 
information of 3D roughness. The reference plane 
of roughness evaluation is reconstructed usually by 
Gaussian filtering. However, anti-friction texture often 
exists on the surface of cylinder liner (such as cross-
hatched lines, micro dimples and grooves), Gaussian 
filtering method often be lowered by the “valley” and 
causes distortion boundary of the reference plane. The 
L∞ regression algorithm is robust and can suppress the 
influence of abnormal points effectively. Therefore, the 
L∞ regression robust algorithm and LM algorithm are 
employed to construct a fitting method to reconstruct 
the reference plane of gray image.

The gray value of middle frequency image related to 
waviness can be expressed in Fourier series when surface 
waviness exhibits a periodic change. The variation of the 
geometric profile and position error meets spline func-
tion. Therefore, the gray value of low frequency image 
can be represented as quadratic spline function:

where Ad is the magnitude of sine function, Bd is the 
magnitude of cosine function, �xd is the wavelength com-
ponent in the x direction, �yd is the wavelength compo-
nent in the y direction, xi is the coordinate of pixel i in the 

(5)

gi,j =

k
∑

d=1

[

Ad sin

(

2π

�xd
xi +

2π

�yd
yj

)

+ Bd cos

(

2π

�xd
xi +

2π

�yd
yj

)]

,

(6)ki,j = b0 + b1xi + b2yj + b3xiyj + b4x
2
i + b5y

2
j ,

Figure 1  Micro morphology of textured cylinder liner surface
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x direction, yj is the coordinate of pixel i in the y direc-
tion, k is the number of sine and cosine functions, b0– b5 
are the coefficients of the quadratic spline function.

According to the gray values of middle frequency 
image and low frequency image, the gray values of the 
reference plane can be expressed as:

The gray matrix can be written in the following form:

(7)si,j = gi,j + ki,j .

(8)SLS = JFLS ,

Figure 2  Technical route of perception and evaluation of surface roughness of textured cylinder liner
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where SLS is the column vector form of the gray matrix of 
the reference plane, J  is the Jacobian matrix of the refer-
ence plane, FLS is the coefficient vector of the reference 
plane.

In Eq. (8), the coefficient vector, Jacobian matrix and 
the column vector of the gray matrix of the reference 
plane can be expressed as follows:

(9)J = [J 1 J 2],

(10)
FT

LS
=

{

b0, b1, · · · , b5,A1,A2, · · · ,Ak ,B1,B2, · · · ,Bk

}

,

(11)

S
T

LS
=
{

s1,1, s1,2, · · · , s1,n, · · · , sj,1, sj,2,

· · · , sj,n, · · · , sm,1, sm,2, · · · , sm,n

}

,

(12)J 1 =


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Figure 3  Gray image of the cross-hatched liner surface and its gray value

Figure 4  Gray image of cross-hatched liner surface before and after Butterworth high-pass filtering
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The gray matrix can be calculated by L∞ regression 
robust algorithm and LM algorithm. The calculation pro-
cess of gray matrix is shown in Figure  5. The coefficient 
vector of the gray image reference plane can be expressed 
as:

In order to minimize the maximum residual error 
required by L∞ regression robust algorithm, according to 
L∞ regression criterion, the gray matrix can be written as:

where R is the residual error vector of the image reference 
plane, ri,j is the residual value of the gray level of the 
reference plane, fi,j is the transform coefficient which is 1 
when the residual value is non-negative, otherwise is −1.

According to the L∞ regression, the optimum solution of 
the coefficient vector of the reference plane of gray image 
can be expressed as:

(13)J 2 =
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(14)FLS =

(

JTJ
)−1

JTSLS .

(15)�Z − JFLS�∞ → min,

(16)Z = JFLS + R,

(17)R = R1 f ,

(18)

R1 =
{∣

∣r1,1
∣

∣, · · · ,
∣

∣r1,n
∣

∣, · · · ,
∣

∣rj,1
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∣

∣rj,n
∣

∣, · · · ,
∣
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∣, · · · ,
∣

∣rm,n

∣

∣

}T
,

(19)
f =

{

f1,1, · · · , f1,n, · · · , fj,1, · · · , fj,n, · · · , fm,1, · · · , fm,n

}

,

(20)Z∗ = JF∗
LS + fR∗,

where F∗
LS is the optimum solution of the coefficient vec-

tor, Z∗ is the gray image matrix of optimum solution, R∗ 
is the residual vector of optimum solution.

In order to obtain the optimum solution of the coefficient 
vector and eliminate the residual, LM algorithm is used 
to iterate the residual vector and form a modified vector 
of the coefficient vector. According to LM algorithm, 
the optimum solution of the coefficient vector can be 
expressed as [25, 26]:

with

where μ is the damping factor, I is the identity matrix, �F  
is the modification vector.

2.2 � Extraction of High Frequency Characteristics 
and Roughness Prediction

2.2.1 � Extraction Method
Based on reconstruction of the reference plane of the 
gray image, high frequency gray image information of 3D 
roughness characteristics can be acquired according to 
Eq. (5). Abbott-Firestone curve [27] is often used to char-
acterize the roughness characteristics of the actual pro-
file. Therefore, Abbott-Firestone curve is used to describe 
high frequency gray image information. According to the 
definition of Abbott-Firestone curve, high frequency gray 
image information can be characterized by the follow-
ing parameters: core roughness depth (Sk), reduced peak 
height (Spk), reduced valley depth (Svk), bearing length 
ratios (Smr1, Smr2). Figure  6 shows the parameters of 
Abbott-Firestone curve for high frequency gray image.

(21)F∗
LS = FLS +�F

(22)�F =

(

JTJ + µI
)−1

JTR,
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2.2.2 � Roughness Characteristics Prediction Method
Based on the extreme learning machine, single-hid-
den layer feedforward neural network (i.e.,  ELM-SLFN 
method) is used to model the relationship between 
Abbott-Firestone curve and 3D roughness (i.e., char-
acteristic parameters of Abbott-Firestone curve of the 
actual profile). The model is used to predict 3D rough-
ness. Figure  7 shows the schematic diagram of ELM-
SLFN model. The input layer (input: Abbott-Firestone 
curve characteristic parameters of high frequency gray 
image), hidden layer and output layer (output: Abbott-
Firestone curve characteristic parameters of measured 
rough profile) neurons of ELM-SLFN model use a fully 
connected mode to transfer data. The ELM is used to 

Figure 5  Calculation flow chart of the reference plane of gray image

Figure 6  Parameters of Abbott-Firestone curve for high frequency 
gray image
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obtain the connection weight matrix and the threshold 
vector [28].

3 � Results and Discussion
3.1 � Acquisition System of Gray Image
The cross-hatched surface of liner is honed on a honing 
machine. The honing machine and cross-hatched sur-
face of liner is shown in Figure  8. Figure  9 shows the 
honing process of cross-hatched surface of liner. The 
gray image acquisition system is shown in Figure  10, 
which includes CCD industrial camera, eyepiece, 
objective lens, image processor and display device, etc. 
The performance indexes of each device are: the reso-
lution of CCD is 1920×1080 pixels, the magnification 
of eyepiece and objective lens is 0.5× and 4.0× respec-
tively, the main frequency and memory of the image 
processor are 3.1 Hz and 8.0 GB respectively, and the 
resolution of the image display is 1920×1080 pixels. It 
should be noted that the image acquired by CCD is a 
color image of RGB (i.e., red, green and blue) three-
channel, which can be converted to gray image using 
the color space conversion algorithm recommended by 
Adobe Photoshop.

Figure 7  ELM-SLFN model for the prediction of 3D roughness

Figure 8  The honing machine and cross-hatched surface of liner

Figure 9  Honing process of cross-hatched surface of liner

Figure 10  Schematic diagram of acquisition system of gray image

3.2 � Validation of Reconstruction of Image Reference Plane
In order to verify the effectiveness of L∞ regression 
robust algorithm and LM algorithm to reconstruct the 
reference plane of gray image, based on the gray image 
shown in Figure  4, the reference plane is reconstructed 
by L∞ and LM algorithms and Gaussian quadratic filter-
ing method (ISO13565-1 recommended method) respec-
tively as shown in Figure 11. It can be seen that gray level 
of reference plane reconstructed by Gaussian quadratic 
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filtering method fluctuates greatly, and the reference 
plane leaves a “dent” on the cross-hatched liner and 
boundary of the evaluation area. Compared with Gauss-
ian quadratic filtering method, L∞ and LM algorithms 
are less affected by the cross-hatched lines and bound-
ary of the evaluation area, and fluctuation is smaller. 
This indicates that L∞ and LM algorithms can effectively 
avoid the influence of boundary distortion and abnormal 
points when reconstruct the gray image reference plane.

3.2.1 � Extraction of High Frequency Image Features
In order to study correlation of the parameters of 
Abbott-Firestone curve and the parameters (3D rough-
ness characteristics) obtained from the measured profile, 
the parameters of Abbott-Firestone curve of the actual 
rough profile are measured using the confocal micro-
scope. Figures  12 and 13 show correlation of calculated 
parameters of Abbott-Firestone curve and 3D roughness 

characteristics. It can be seen that there is a strong corre-
lation of parameters of Abbott-Firestone curves between 
gray image and the measured profile. The bearing length 
ratios high frequency gray image and measured bearing 
length ratios have the same change trend. The Spk, Sk, 
and Svk of the high frequency gray image and the meas-
ured profile have the opposite trend.

3.2.2 � Validation of Roughness Prediction
In order to implement machine vision perception and 
prediction of 3D roughness characteristics of cross-
hatched liner surface of cylinder liner, 28 sets of honing 
experiments are conducted to acquire the gray images of 
cross-hatched surface of liner. On this basis, the charac-
teristic parameters of Abbott-Firestone curve can be cal-
culated. 3D roughness of actual profile is measured by a 
confocal microscope. The parameters of Abbott-Firestone 
curve are shown in Figure 12. The characteristic param-
eters of Abbott-Firestone curve of both high frequency 
gray image and measured profile are used as training 
samples (24 sets) to construct ELM-SLFN model for 3D 
roughness prediction. Another four groups I, Z, K and L 
shown in Figures 12 and 13 are used as the test samples to 
verify the effectiveness of ELM-SLFN prediction model. 
Table 1 shows 3D roughness characteristics of actual pro-
file predicted by ELM-SLFN model and the parameters of 
Abbott-Firestone curve of the measured profile. The rela-
tive error between the predicted and measured parame-
ters of Abbott-Firestone curve is shown in Table 2, it can 
be seen that the predicted parameters are in good agree-
ment with the measured parameters. The relative error 
remains in the range of 2.0%–8.5%. The results show that 
ELM-SLFN model can effectively predict 3D roughness 
characteristics of cross-hatched surface of liner.

4 � Conclusions
L∞ regression robust and LM algorithms are employed 
to reconstruct the gray image reference plane of cross-
hatched surface of cylinder liner. The roughness charac-
teristics of high frequency gray image are separated, and 
the parameters of Abbott-Firestone curve are extracted. 
On this basis, ELM-SLFN method is proposed to estab-
lish prediction model of relationship of parameters of 
Abbott-Firestone curve and 3D roughness. The machine 
vision perception and evaluation of 3D roughness char-
acteristics can be implemented.

Figure 11  Reference plane of gray image of cross-hatched liner 
surface solved by different methods
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(1)	 Comparing with Gaussian quadratic filtering 
method, L∞ regression robust and LM algorithms 
can effectively reconstruct the reference plane of 
gray image, and can avoid the influence of boundary 
distortion and abnormal points.

(2)	 Comparing with the change of parameters of 
Abbott-Firestone curve of gray image and the meas-
ured profile, the results indicate that it is feasible to 
use Abbott-Firestone curve parameters of high fre-

quency gray images to characterize 3D roughness 
characteristics.

(3)	 Comparing the predicted parameters of Abbott-
Firestone curve with measured, the results show 
that ELM-SLFN model can effectively predict 3D 
roughness, and the relative error remains in the 
range of 2.0%–8.5%.

Figure 12  Parameters of Abbott-Firestone curve of the high frequency gray image and measured profile with same change trend
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Figure 13  Parameters of Abbott-Firestone curve of the high frequency gray image and measured profile with opposite change trend
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