
Identifying Content Blocks
from Web Documents

Sandip Debnath1, Prasenjit Mitra1,2, and C. Lee Giles1,2

1 Department of Computer Science and Engineering,
2 School of Information Sciences and Technology,

Penn State University, University Park, PA 16802, USA
debnath@cse.psu.edu, {pmitra, giles}@ist.psu.edu

Abstract. Intelligent information processing systems, such as digital
libraries or search engines index web-pages according to their informa-
tive content. However, web-pages contain several non-informative con-
tents, e.g., navigation sidebars, advertisements, copyright notices, etc. It
is very important to separate the informative “primary content blocks”
from these non-informative blocks. In this paper, two algorithms, Fea-
tureExtractor and K-FeatureExtractor are proposed to identify the “pri-
mary content blocks” based on their features. None of these algorithms
require any supervised learning, but still can identify the “primary con-
tent blocks” with high precision and recall. While operating on several
thousand web-pages obtained from 15 different websites, our algorithms
significantly outperform the Entropy-based algorithm proposed by Lin
and Ho [14] in both precision and run-time.

Keywords: Electronic Publishing, Data Mining, Information Systems
Applications.

1 Introduction

An end-user is mainly interested in the primary informative content of these web-
pages. However, a substantial part of web-pages is not very informative in nature.
So these parts or blocks (defined later) are seldom sought by the users. We refer
to such blocks as non-content blocks which includes advertisement blocks, image-
maps, plug-ins, logos, counters, search boxes, category information, navigational
links, related links, footers and headers, and copyright information among oth-
ers. In this paper, we address the problem of identifying the primary informative
content of a web-page. An added advantage of this is that after identifying all
the blocks, we can delete the non-content blocks. This contraction is useful in
situations where large parts of the web are crawled, indexed and stored. Since the
non-content blocks are often a significant part 1 of dynamically generated web-
pages, eliminating them results in significant savings with respect to storage and

1 sometimes the non-content blocks’ total size is as much as 65-70% of the whole
page-size.

M.-S. Hacid et al. (Eds.): ISMIS 2005, LNAI 3488, pp. 285–293, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

mailto:debnath@cse.psu.edu

286 S. Debnath, P. Mitra, and C.L. Giles

index file-size. We have designed and implemented two algorithms, FeatureEx-
tractor, and K-FeatureExtractor, which can identify the primary content blocks
in a web-page. First, the algorithms partition the web-page into blocks based on
heuristics. Lin and Ho [14] have proposed an entropy-based algorithm that par-
titions a web-page into blocks on the basis of HTML tables. In contrast, not only
do we consider HTML tables, but also other tags and heuristics to partition a
web-page. Secondly, our algorithms classifies each block as either a content block
or a non-content block. Both FeatureExtractor and K-FeatureExtractor)
produce excellent precision and recall values and above all, do not use any man-
ual input and require no complex machine learning process. While operating
on several thousand web-pages obtained from 15 news websites, our algorithms
significantly outperform their nearest competitor - the Entropy-based blocking
algorithm proposed by Lin and Ho [14].

The rest of the paper is organized as follows. In section 2 we have discussed
the related work. We define the concept of “blocks” and a few related terms
in section 3, describe our algorithms in sections 4 and 5, and outline our per-
formance evaluation plan and the dataset in section 6. We then compare our
algorithms with the LH algorithm in section 7 and conclude thereafter.

2 Related Work

Yi and Liu [17, 15] have proposed an algorithm for identifying non-content blocks
of web-pages using “Style Tree”. Since our algorithms use simple heuristics to
determine non-content blocks, it does not incur the overhead of constructing
“Style Tree”s. Another work that is closely related is the work by Lin and Ho [14].
Their algorithm tries to partition a web-page into blocks and identify content
blocks. They used the entropy of the keywords used in a block to determine
whether the block is redundant. We believe that we have a more comprehensive
definition of blocks and demonstrate that we have designed and implemented
an algorithm that gives better precision and recall values than their algorithm.
Bar-Yossef and Rajagopalan [3] have proposed a method to identify frequent
templates of web-pages and pagelets (identical to our blocks). Yi and Liu argue
that their entropy-based method supersedes the template identification method.
We show that our method produces better result than the entropy-based method.
Kushmerick [12, 11] has proposed a feature-based method that identifies Internet
advertisements in a web-page. Their algorithm generates rules from training
examples using a manually-specified procedure that states how the features to be
used can be identified. This manual specification is dependent upon applications.
Our algorithms do not require any manual specification or training data set.

Information extraction systems try to extract useful information from either
structured, or semi-structured documents. Systems like Tsimmis [4] and Ara-
neus [2] depend on manually provided grammar rules. In Information Manifold
[10, 13], Whirl [6], or Ariadne [1], the systems tried to extract information using
a query system that is similar to database systems. In Wrapper systems [12],
the wrappers are automatically created without the use of hand-coding. Kushm-

Identifying Content Blocks from Web Documents 287

erick et. al. [12, 11] have found an inductive learning technique. Their algorithm
learns a resource’s wrapper by reasoning about a sample of the resource’s pages.
In Roadrunner [7], a subclass of regular expression grammar (UFRE or Union
Free Regular Expression) is used. In Softmealy [9], a novel web wrapper repre-
sentation formalism has been presented based on a finite-state transducer (FST)
and contextual rules. For other semi-structured wrapper generators like Stalker
[16], a hierarchical information-extraction technique converts the complexity of
mining into a series of simpler extraction tasks. Most of these approaches are
geared toward learning the regular expressions or grammar induction [5] of the
inherent structure or the semi-structure and so computational complexities are
quite high.

These efforts are to extract information that originally comes from databases,
which is very structured in nature. Our work concentrates on web-pages where
the underlying information is unstructured text. Our preliminary work [8] shows
great improvements in extracting informative blocks from web-pages. We de-
scribed our ContentExtractor algorithm in [8] which uses multiple web-pages
from same source and find repetitive similar blocks. By eliminating these repet-
itive blocks it improved the precision and recall of finding content blocks. In
[8] we mentioned FeatureExtractor algorithm very briefly. Here we introduce
K-FeatureExtractor algorithm and to describe it properly, we believe that an
introduction of FeatureExtractor was necessary. K-FeatureExtractor even
outperform ContentExtractor in runtime.

3 Blocks in Web Pages

A block (or web-page block) B is a portion of a web-page enclosed within an
open-tag and its matching close-tag, where the open and close tags belong to an
ordered tag-set T that includes tags like <TR>, <P>, <HR>, and .

Heuristics
Out of all these tags, web authors extensively use <TABLE> for layout design.
We devised a list of tags to partition a web-page into blocks. <TABLE> comes
as the first or tag in that list. <TR>, <P>, <HR>, and etc. are the next
few partitioning tags in that list, in order. We selected the order of the tags based
on our observations of web-page design. For example, <TABLE> comes as the
first partitioning tag since we see more instances of in <TR> / <TD>
(sub-element of <TABLE>) than <TABLE>s coming inside (sub-element
of). Our algorithms partition a web-page into blocks, based on the first
tag in our list. It continues sub-partitioning the already-identified blocks based
on the next listed tags. The partitioning algorithm is illustrated in next section.

Block Features
Blocks may include other smaller blocks, and have features like text, images,
applets, javascript, etc. Most, but not all, features are associated with their re-
spective standard tags. For example, an image is always associated with the

288 S. Debnath, P. Mitra, and C.L. Giles

tag , however, the text feature has no standard tag. For tag-associated
features we used the W3C 2 guidelines to make the list of features. We can up-
date this list as time and version of HTML pages change, without doing any
fundamental change in our algorithms.

4 Algorithm: FeatureExtractor

We describe our algorithms FeatureExtractor and K-FeatureExtarctor here.
As some parts of these two algorithms are similar, we show them both in Algo-
rithm 1 to save space.

FeatureExtractor takes an HTML page, a desired feature and a sorted tag
set (for block-partitioning purpose). It first partitions the page into blocks with
the help of GetBlockSet routine. It then calculates the probability of individual
blocks for the desired feature. It takes those blocks in the winner set for which
the probability of the desired feature is more than the combined probability of
the rest of the feature. In the next step, within the winner set, it finds the block
with the highest probability value and extracts the information (in case of text
feature it extracts the text part) from the block.

GetBlockSet
GetBlockSet takes a tag from the tag-set one by one and calls the GetBlocks
routine for each of the already-generated blocks. New sub-blocks created by
GetBlocks are added to the block set and the generating main block is removed
from the set. First gives the first element of an ordered set, and Next gives the
consecutive elements.

GetBlocks
GetBlocks takes a full or part of an HTML document, and a tag as its input. It
partitions the document into blocks according to the input tag. For example, for
<TABLE> input tag it will produce a tree with all the table blocks.

5 Algorithm: K-FeatureExtractor

FeatureExtractor shows high precision and recall for most of the websites
in our dataset. However, for web-pages with multiple important text blocks, a
typical reader may be interested in all of them, instead of just the winner block
(from FeatureExtractor). General shopping sites, review sites, chat forums etc.
comes under this category. Undoubtedly FeatureExtractor, shows poor per-
formance. To overcome this we improved FeatureExtractor. This improved
algorithm, K-FeatureExtractor, is also shown in algorithm 1. Here, instead
of taking just the winner from the winner-basket, we apply a K-means clus-

2 World Wide Web Consortium or http://www.w3c.org/TR/html4/

Identifying Content Blocks from Web Documents 289

Algorithm 1: (K)-FeatureExtractor
Input : Set of HTML pages H, Sorted Tag Set T , Desired Feature FI

Output : Content Block(s) of H and its content. It returns the contents as well
as identifications of the blocks to assist the block-level calculation of
b-Precision and b-Recall

Feature: Feature set FS used for block separation sorted according to impor-
tance taken from T

begin
B ←− GetBlockSet(H,F)

for each b ∈ B do
P1 ←− Pr(FI |F)
if P1 > 0.5 then
W ←−W ∪ b

for each b ∈ W do
Pb ←− Pr(FI |F ,W)

//In case of FeatureExtractor we used the following method
Ws ←− Sort(W)
//Winner block
Bw ←− First(Ws)
C ←− ContentOfBlock(Bw)
Return (Bw, C)

//In case of K-FeatureExtractor we used the following method
Ws ←− KMeansClustering(W)
//Winner blockset
Ws

w ←− FirstCluster(Ws)
C ← φ
for each Bw ∈Ws

w do
C ←− C ∪ ContentOfBlock(Bw)

Return (Ws, C)

Function: GetBlockSet
Input : HTML page H, Sorted tag-set T
Output : Set of Blocks in H

begin
B ←− H; // set of blocks, initially set to H.
f ←− Next(T)
while f �= ∅ do

b←− First(B)
while b �= ∅ do

if b contains f then
BN ←− GetBlocks(B, f)
B ←− (B − b) ∪BN

b←− Next(B)

f ←− Next(T)

end
end

290 S. Debnath, P. Mitra, and C.L. Giles

tering to select the best probability block-cluster from the preliminary winning
basket. After the clustering is done, the high probability cluster is taken and
the corresponding text contents of all those blocks are combined as the output
(the desired feature is text here). Both results from K-FeatureExtractor and
FeatureExtractor are shown in table 2.

6 Evaluation Plan

Lin and Ho [14] used precision and recall to evaluate their algorithm. Although
it is confusing and somewhat different from their usual application in “Informa-
tion Retrieval”, we use the same terms (added with a “b-” for blocks) (in order
to avoid confusion).

Metric Used
Precision is defined as the ratio of the number of relevant items (actual pri-
mary content blocks) r found and the total number of items (primary content
blocks suggested by an algorithm) t found. For block level precision, we call
it as b − Precision. b − Precision = r

t . Recall is defined as the ratio of the
number of relevant items found and the desired number of relevant items. The
number of missed relevant items is m. In case of blocks we call it as b − Recall.
b − Recall = r

r+m . We define the F-measure here as b-F-measure and define it

as b − F − measure = 2∗(b−Precision)∗(b−Recall)
(b−Precision)+(b−Recall)

Table 1. Details of the dataset. Categories are not shown due to the enormous size of
the latex table. But interested reader can find the categories in [8]

Site Web-address Number of Web-pages
ABC http://www.abcnews.com 415
BB http://www.bloomsberg.com 510
BBC http://www.bbc.co.uk 890
CBS http://www.cbsnews.com 370
CNN http://www.cnn.com 717
FOX http://www.foxnews.com 476
FOX23 http://www.fox23news.com 658
IE http://www.indianexpress.com 269
IT http://www.indiatimes.com 454
MSNBC http://www.msnbc.com 647
YAHOO http://news.yahoo.com 505
Shopping http://www.shopping.com 100
Amazon http://www.amazon.com 100
Barnes And Noble http://www.bn.com 100
Epinion http://www.epinions.com 100

Identifying Content Blocks from Web Documents 291

Data Set
Similar to Lin and Ho, we chose several news websites. We also chose shopping
and book websites. We crawled these sites to collect documents. The details of
the dataset are shown in Table 1 and in [8].

We took 15 different websites whose design and page-layouts are completely
different. Unlike Lin and Ho’s dataset [14] that is obtained from one fixed
category of news sections (only one of them is “Miscellaneous” news from CDN),
we took random news pages from a particular website (details in [8]). This makes
the dataset a good mix of a wide variety of HTML layouts which is necessary to
compare the robustness of LH algorithm and ours

7 Performance Comparison

b-Precision and b-Recall
The b-precision and b-recall values for each website are shown in table 2. Our
algorithms outperform LH in all cases. The results from LH algorithm are less
precise than those obtained by K-FeatureExtractor.

Execution Time
Figure 1 shows execution time takenby algorithms (LH,and(K)-FeatureExtractor)
averaged over all test web-pages. From the figure it is clear that our algorithms
outperform the LH algorithm by huge margin.

Table 2. Block level Precision and Recall values from LH algorithm, FeatureExtractor,
and K-FeatureExtractor. For cases where these results are same for FeatureExtractor
and K-FeatureExtractor we mentioned it once

Site b-
Prec
of LH

b-
Recall
of LH

b-F-
measure
of LH

b-Prec of
FE/K-
FE

b-Recall of
FE/K-FE

b-F-
measure of
FE/K-FE

ABC 0.811 0.99 0.89 1.00 1.00 1.00
BB 0.882 0.99 0.93 1.00 1.00 1.00
BBC 0.834 0.99 0.905 1.00 1.00 1.00
CBS 0.823 1.00 0.902 0.98 0.977 0.978
CNN 0.856 1.00 0.922 0.98 0.98 0.98
FOX 0.82 1.00 0.901 1.00 0.99/1.00 0.994/1.00
FOX23 0.822 1.00 0.902 1.00 1.00 1.00
IE 0.77 0.95 0.85 0.93 0.99 0.959
IT 0.793 0.99 0.878 0.96 0.98 0.969
MSNBC 0.802 1.00 0.89 0.92 1.00 0.95
YAHOO 0.730 1.00 0.84 1.00 0.95 0.974
Shopping 0.79 1.00 0.88 1.00 0.25/0.99 0.4/0.994
Amazon 0.771 0.99 0.86 1.00 0.35/0.967 0.51/0.983
Barnes And Noble 0.81 1.00 0.895 1.00 0.34/0.968 0.50/0.983
Epinion 0.79 1.00 0.88 1.00 0.289/0.956 0.45/0.977

292 S. Debnath, P. Mitra, and C.L. Giles

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300 350 400 450 500

Ex
ec

uti
on

 Ti
me

 (S
ec

on
ds

)

Number of Pages

LH Algorithm
K-FeatureExtractor

FeatureExtractor

Fig. 1. Run-times for the LH, FeatureExtractor, and K-FeatureExtractor algo-
rithms. The vertical axis represents the time of execution (in seconds) for a number of
pages (plotted in the horizontal axis). It is clear that our algorithms outperform the
LH algorithm in large margin. K-FeatureExtractor even outperforms ContentEx-
tractor [8]

8 Conclusions and Future Work

We devised simple, yet powerful, and modular algorithms, to identify primary
content blocks from web-pages. Our algorithms outperformed the LH algorithm
significantly, in b-precision and run-time. In the next step, we will try to identify
the semantics of the content to generate markup. The storage requirement for
indices, the efficiency of the markup algorithms, and the relevancy measures of
documents should also improve since now only the relevant parts of the docu-
ments are considered.

Acknowledgements

We acknowledge the help from several graduate students at Penn State Univer-
sity, specially from Pradeep B. Teregowda, and Isaac Councill.

References

1. José Luis Ambite, Naveen Ashish, Greg Barish, Craig A. Knoblock, Steven Minton,
Pragnesh J. Modi, Ion Muslea, Andrew Philpot, and Sheila Tejada. Ariadne: a
system for constructing mediators for Internet sources. In SIGMOD, pages 561–
563, 1998.

2. Paolo Atzeni, Giansalvadore Mecca, and Paolo Merialdo. Semistructured and struc-
tured data in the web: Going back and forth. In Workshop on Management of
Semistructured Data, 1997.

3. Ziv Bar-Yossef and Sridhar Rajagopalan. Template detection via data mining and
its applications. In Proceedings of WWW 2002, pages 580–591, 2002.

Identifying Content Blocks from Web Documents 293

4. Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly Ireland, Ya-
nis Papakonstantinon, Jeffrey Ullman, and Jennifer Widom. The tsimmis project:
integration of heterogeneous information sources. In Proceedings of the 10th meet-
ing og Information Processing Society of Japan, pages 7–18, 1994.

5. Boris Chidlovskii, Jon Ragetli, and Maarten de Rijke. Wrapper generation via
grammar induction. In Machine Learning: ECML 2000, 11th European Confer-
ence on Machine Learning, Barcelona, Catalonia, Spain, May 31 - June 2, 2000,
Proceedings, volume 1810, pages 96–108. Springer, Berlin, 2000.

6. William W. Cohen. A web-based information system that reasons with structured
collections of text. In Katia P. Sycara and Michael Wooldridge, editors, Proceedings
of the 2nd International Conference on Autonomous Agents (Agents’98), pages
400–407, New York, 9–13, 1998. ACM Press.

7. Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrunner: Towards
automatic data extraction from large web sites. In Proceedings of the 27th Inter-
national Conference on Very Large Data Bases, pages 109–118, 2001.

8. Sandip Debnath, Prasenjit Mitra, and C. Lee Giles. Automatic extraction of infor-
mative blocks from webpages. In the upcoming proceedings of the Special Track on
Web Technologies and Applications in the ACM Symposium of Applied Computing,
2005.

9. C. Hsu. Initial results on wrapping semistructured web pages with finite-state
transducers and contextual rules. In AAAI-98 Workshop on AI and Information
Integration, pages 66–73. AAAI Press, 1998.

10. Thomas Kirk, Alon Y. Levy, Y Sagiv, and Divesh Srivastava. The information
manifold. In Proceedings of the AAAI Spring Symposium: Information Gathering
from Heterogeneous Distributed Environments, pages 85–91, 1995.

11. Nicholas Kushmerick. Wrapper induction: Efficiency and expressiveness. Artificial
Intelligence, 118(1-2):15–68, 2000.

12. Nickolas Kushmerick, Daniel S. Weld, and Robert B. Doorenbos. Wrapper induc-
tion for information extraction. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 729–737, 1997.

13. Alon Y. Levy, Divesh Srivastava, and Thomas Kirk. Data model and query eval-
uation in global information systems. Journal of Intelligent Information Systems
- Special Issue on Networked Information Discovery and Retrieval, 5(2):121–143,
1995.

14. Shian-Hua Lin and Jan-Ming Ho. Discovering informative content blocks from web
documents. Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 588–593, 2002.

15. Bing Liu, Kaidi Zhao, and Lan Yi. Eliminating noisy information in web pages for
data mining. In Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 296–305, 2003.

16. Ion Muslea, Steven Minton, and Craig A. Knoblock. Hierarchical wrapper induc-
tion for semistructured information sources. Autonomous Agents and Multi-Agent
Systems, 4(1/2):93–114, 2001.

17. Lan Yi, Bing Liu, and Xiaoli Li. Visualizing web site comparisons. In Proceedings
of the eleventh international conference on World Wide Web, pages 693–703, 2002.

	Introduction
	Related Work
	Blocks in Web Pages
	Algorithm: FeatureExtractor
	Algorithm : K-FeatureExtractor
	Evaluation Plan
	Performance Comparison
	Conclusions and Future Work

