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ABSTRACT
A large amount of research, technical and professional docu-
ments are available today in digital formats. Digital libraries
are created to facilitate search and retrieval of information
supplied by the documents. These libraries may span an
entire area of interest (e.g., computer science) or be lim-
ited to documents within a small organization. While tools
that index, classify, rank and retrieve documents from such
libraries are important, it would be worthwhile to comple-
ment these tools with information available on the Web.
We propose one such technique that uses a topical crawler
driven by the information extracted from a research doc-
ument. The goal of the crawler is to harvest a collection
of Web pages that are focused on the topical subspaces as-
sociated with the given document. The collection created
through Web crawling is further processed using lexical and
linkage analysis. The entire process is automated and uses
machine learning techniques to both guide the crawler as
well as analyze the collection it fetches. A report is gener-
ated at the end that provides visual cues and information to
the researcher.

Categories and Subject Descriptors
H.3.7 [Information Storage and Retrieval]: Digital Li-
braries; H.3.3 [Information Storage and Retrieval]: In-
formation Search and Retrieval; I.2.6 [Artificial Intelli-
gence]: Learning; I.2.8 [Artificial Intelligence]: Prob-
lem Solving, Control Methods, and Search—graph and tree
search strategies

General Terms
Design, Experimentation
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1. INTRODUCTION
The World Wide Web is a very large and mostly unedited

medium of publication. In contrast, a number of digital
libraries index a more controlled set of quality documents
that are of interest to an organization or a community of
researchers. However, the Web can be expected to have
a lot of information related to the documents in a digital
library that would be of interest to the users of the library.
Bridging the gap between the “high quality” information
available within the digital libraries and the “high quantity”
of information on the Web is an important research problem.
The high quality information can be used to bootstrap a
process for deriving a larger pool of related information from
the Web.

A simple idea along these lines would be to query a Web
search engine with the keywords (or query) supplied by the
user in addition to retrieving relevant documents from the
digital library. The results from the search engine can then
be displayed along with the documents from the library. Our
approach is somewhat different. We would like to provide a
panoramic view of the Web communities associated with a
document or a set of documents. Kumar et al. [19] describe
a Web or cyber community as manifesting itself through a
group of content creators with similar interests. Hence, one
may attempt to identify Web communities through content
similarities as well as interlinkings of Web pages. The focus
of our work is on providing a researcher with a tool to ad-
vance her knowledge and understanding associated with a
research document. The tool must make it easier to identify
key Web communities of interest, their associations, prop-
erties and examples. Our long term goal is to be able to
provide similar information for any kind of well formatted
document.

In the next section we discuss our general approach. This
is followed by a description of our current implementation
of the approach (Section 3). We then detail the creation of
the test bed (Section 4). In Section 5 we present the results
of our study and Section 6 describes some of the related
work. We outline some of the directions of our future work
in Section 7.
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2. THE GENERAL APPROACH
Figure 1 illustrates our general approach. Given a docu-

ment or a set of documents from a digital library, we first
parse and extract information. The extracted information
may include the title, author names, affiliations, abstract,
keywords (if provided) and references. We then use this
information to characterize the document or the set of doc-
uments. In the case where we have more than one document
we may correlate the information from different documents
to find common or overlapping characteristics. For example,
we can identify words or phrases that are commonly used,
or the references that are popularly cited in the given set. In
the current implementation, however, we restrict ourselves
to information derived from single documents.

The information extracted through parsing is used to query
a search engine. For example, we can use the title and the
author names as individual queries to a search engine. The
pages corresponding to the top results of the search engine
are then treated as positive examples of the desired infor-
mation (there may be a filtering step to avoid bad exam-
ples). The positive examples are used to train a classifier.
The negative examples for the classifier may be picked from
positive examples obtained from unrelated or random doc-
uments. Once the classifier is trained, it is used to guide a
topical crawler. A topical or focused crawler is a program
that follows hyperlinks to automatically retrieve pages from
the Web while biasing its search towards topically relevant
portions of the Web. The trained classifier will provide the
crawler with the needed bias.

Once a collection of Web pages has been downloaded by
the crawler, we analyze them to find more structured infor-
mation such as potential Web communities and their de-
scriptions. The analysis process includes both lexical as
well as link (graph) based analysis. The final result of
the analysis is then shown as an interactive graphical re-
port that describes various clusters (potential communities)
found through the crawl, their examples, as well as author-
ities and hubs within each cluster.

3. IMPLEMENTATION
The general approach leaves room for a number of dif-

ferent implementations. For example, we may use various
components of the information extracted through parsing to
query a search engine. One of the many classification algo-
rithms, such as Naive Bayes, Support Vector Machines or
Neural Networks, may be used to guide the topical crawler.
Similarly, we have a choice of clustering algorithms (lexical
and link based) to use for identifying key Web communi-
ties. Finally, what properties we identify for each of the
clusters is an open area for experimentation as well. We call
our current implementation Panorama because it uses the
Web to provide a wider, more complete view of information
surrounding a research paper.

3.1 Parsing
The parsing code is an adaptation of that used by CiteSeer

[5].1 The adapted code takes in a research document in pdf

or ps format and converts it into an XML file that contains
the extracted information within appropriate tags. Even
though we parse and extract a number of attributes of a
research paper, currently we use just the main title of the

1http://citeseer.nj.nec.com/

Parse and extract
information

start

Query Search
Engine

Train Classifier

Topical Crawl

Identify and
describe Communities

end

Document/set of 
Documents

Lexical Analysis 
(e.g. Filtering, Clustering)

Linkage Analysis
(e.g., Topical Hubs & Authorities)

Visualization

Title
Author
Abstract
Keywords
...

Figure 1: General Approach

paper and the titles of references (reference titles) within the
paper. We assume that through the main title and a large
enough sample of the reference titles, we capture various
aspects of the topic or topics represented by the given paper.

3.2 Examples from Search Engine
Once we have extracted the main title and the reference

titles we use each one of them as a separate exact phrase
query to Google using the Google Web APIs.2 The search
engine results returned for each of the queries are URLs
of pages that contain the corresponding title (phrase) in
them. Since, the titles of papers are usually unique and
yet suggestive of the underlying topic, the results returned
by the search engine tend to be very relevant. The Web
API provides us with 10 or fewer results for a query. We
accumulate the results (URLs) for each of the titles and the
corresponding pages make up a positive example (training)
set. Table 1 shows an instance of titles extracted from a
paper and the corresponding positive examples.

3.3 Classifier
The negative examples for the classifier are a random sub-

set of positive examples found for other unrelated (or ran-
dom) papers. The other papers may be a set of papers that
are used just to provide negative examples. We keep the
number of negative examples to twice the number of posi-
tive examples. All the pages in the positive as well as the
negative set are parsed and tokenized to identify the words
within them. The stop-words are removed and the remain-
ing words are stemmed using the Porter stemming algorithm
[22]. These stemmed words or terms from all of the nega-

2http://www.google.com/apis/
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Table 1: A sample paper - main title, reference titles and positive examples
main title reference titles positive examples

Combinatorial
algorithms for
DNA sequence
assembly

1. A greedy approximation algorithm
for constructing shortest common
superstrings

2. Identification of common molecular
subsequences

3. An upper bound technique for
lengths of common subsequences

4. Minimal mutation trees of
sequences

5. An algorithm for reconstructing
protein and RNA sequences

6. Linear approximation of shortest
superstrings

...

http://www.cs.helsinki.fi/u/ukkonen/
http://www.cs.brown.edu/courses/cs250/bibliography.html
http://www.csd.uwo.ca/faculty/bma/teaching/approx/resources.html
http://ljsavage.wharton.upenn.edu/%7Esteele/Papers/HTML/Lcsatp.html
http://theory.lcs.mit.edu/%7Edmjones/STOC/stoc91.html
http://www.cse.psu.edu/%7Efurer/597/bib-with-links.html
http://www.cs.arizona.edu/people/kece/Research/publications.html
http://www-users.cs.umn.edu/%7Eechi/papers/vis95/html/node7.html
http://www.psc.edu/research/biomed/homologous/bib.html
...

tive and positive examples form our vocabulary V. Next, we
represent the positive and the negative examples as feature
vectors where each element in the vectors corresponds to a
term in V. Thus, we represent a Web page p as a vector
�vp = (w1p, w2p, ..., wnp), where wsp is the weight of the term
s in page p and n is the size of V. The term weights are TF-
IDF (Term Frequency-Inverse Document Frequency) values
[26] that are computed as:

wsp =

(
0.5 +

0.5 · tfsp

maxs′∈Tp tfs′p

)
︸ ︷︷ ︸

TF

· ln
( |C|

dfs

)
︸ ︷︷ ︸

IDF

(1)

where tfsp is the frequency of the term s in page p, Tp is
the set of all terms in page p, C is the collection containing
the positive and the negative examples, and dfs (document
frequency or DF) is the number of pages in C that contain
the term s. Equation 1 corresponds to one of the standard
weighting schemes in the SMART system [25].

Both the positive and the negative example pages are rep-
resented as TF-IDF based feature vectors as described above
and used for training a Naive Bayes classifier. The imple-
mentation of the Naive Bayes classifier that we use is the
one available as part of the Weka machine learning software
[28].3 Once the classifier has been trained it can be used to
estimate Pr (c|q), where c is the class (positive or negative)
and q is an arbitrary page. The space in which the page q is
represented remains confined to the vocabulary V. Also, the
page q is represented in the same way as the positive and
the negative examples with term weights being computed
as given in Equation 1. Note that we will continue to use
the dfs computed based on the collection C. We call the
trained classifier as the crawling classifier since we will use
it to guide the topical crawler.

3.4 Topical Crawler
A crawler is a program that automatically fetches pages

from the Web while following the hyperlinks. Crawling can
be viewed as a graph search problem. The Web is seen as
a large graph with pages as its nodes and hyperlinks as its
edges. A crawler starts at a few of the nodes (seeds) and
then follows the edges to reach other nodes. The process of
fetching a page and extracting the links within it is analo-
gous to expanding a node in graph search. A topical crawler
tries to follow edges that are expected to lead to portions
of the graph that are relevant to a topic. In other words,

3http://www.cs.waikato.ac.nz/ml/weka/

it biases the node expansion order (crawl path) to harvest
topically relevant pages.

Current work uses a crawler that we implemented as multi-
threaded objects in Java. The crawler can have many (possi-
bly hundreds) threads of execution sharing a single synchro-
nized frontier that lists the unvisited URLs. Each thread of
the crawler follows a crawling loop that involves picking the
next best URL to crawl from the frontier, fetching the page
corresponding to the URL through HTTP, parsing the re-
trieved page, and finally adding the unvisited URLs to the
frontier. Before the URLs are added to the frontier they
may be assigned a score that represents the estimated bene-
fit of visiting the page corresponding to the URL. Using the
previously trained crawling classifier (Section 3.3), we assign
each unvisited URL a score that is equal to Pr(c+|p) where
p is the parent page from where the URL was extracted and
c+ is the positive class. The starting pages or seeds for the
crawler include the positive examples for the given paper
and some of their in-links. We get the in-links by using the
Google Web API.

Our crawler implementation uses 75 threads of execution
and limits the maximum size of the frontier to 50,000. Only
the first 10KB of a Web page are downloaded. We typically
crawl 5,000 pages for a given research paper. In a crawl
of 5,000 pages a crawler may encounter more than 50,000
unvisited URLs. However, given that the average number
of outlinks on Web pages is 7 [23], the maximum frontier size
is not very restrictive for a crawl of 5,000 pages. In case the
frontier size is exceeded only the best 50,000 URLs are kept.
Being a shared resource for all the threads, the frontier is
also responsible for enforcing certain ethics that prevent the
threads from accessing the same server too frequently. In
particular, the frontier tries to enforce the constraint that
every batch of N URLs picked from it are from N different
server host names (N = 100). The crawlers also respect the
Robot Exclusion Protocol.4

3.5 Clustering
Once the crawler has downloaded a collection of Web

pages corresponding to a given research paper, we move to
the analysis step. We first filter out the worst 25% of the
pages in the collection based on the scores given to them
by the crawling classifier. Then, we use spherical k-means
clustering to split the collection into meaningful sub-parts.
Spherical k-means clustering is a k-means clustering algo-

4http://www.robotstxt.org/wc/norobots.html
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rithm where the proximity between a pair of feature vectors
is measured through their cosine similarity. The cosine sim-
ilarity is computed as:

sim(vp, vq) =
vp · vq

‖vp‖ · ‖vq‖ (2)

where vp and vq are feature vectors, vp · vq is the dot prod-
uct between the vectors, and ‖v‖ is the Euclidean norm of
a vector v. We set k (number of clusters) to a value of 5.
The choice of k was based on some preliminary experimenta-
tion with different papers as well as considerations relating
to visualization. For the clustering we represent each Web
page in the downloaded collection as TF-IDF based vectors
similar to the ones used for the crawling classifier. However,
the IDF part of the term weights (see Equation 1) is now
computed based on the entire collection that is created by
the crawler. The vocabulary and hence the feature space is
based on all of the terms in the collection. The terms are the
word stems after removing the stop-words. DF-thresholding
[29] is used to remove the terms that appear in less than 1%
of the collection pages. Also, the terms that appear in more
than 80% of the pages are treated as stop-words for the given
topic and hence removed from the vocabulary. Finally, the
feature vectors that represent the pages have one attribute
corresponding to each term in the filtered vocabulary.

After the clustering is performed over a collection, we
store for each URL the cluster (number) that it is assigned
to. We also measure the cosine similarity of the pages corre-
sponding to each URL in the collection to each of the cluster
centers. A cluster center is the centroid of all the feature vec-
tors (pages) that are assigned to the cluster. Hence a cluster
center Qc for a cluster c is computed as:

Qc =
1

|c| ·
∑
p∈c

vp (3)

where vp is the feature vector corresponding to page p that
is in cluster c. The pages closest to their assigned cluster
center are treated as good examples of the cluster.

3.6 Cluster based Hubs and Authorities
We view each cluster as a potential Web community and

would like to characterize it by some resourceful pages. One
way to identify resourceful pages is to find the top hubs
and authorities. A hub is a page that links to many good
authorities, and an authority is a page that is linked to by
many good hubs. This recursive definition forms the basis
behind Kleinberg’s algorithm [18] that gives a hub score and
an authority score to each page in a collection. Initially, we
applied Kleinberg’s algorithm to a directed graph defined by
all the pages in a collection downloaded for a given research
paper. A node in the graph is a page in the collection and
an edge is a hyperlink from one page to another within the
collection. We can represent the graph for a collection of
m pages using an m by m adjacency matrix A such that
element Aij of the matrix is 1 if there is a hyperlink from
page i to page j and 0 otherwise. Also, let �a be a vector of
authority scores where each score corresponds to a page in

the collection. Similarly, �h is a vector of hub scores. Then an
iteration of Kleinberg’s algorithm consists of the following

steps:

�a← AT · �h
�h← A · �a
�a← �a

‖�a‖
�h← �h

‖�h‖

(4)

The hub and authority scores for all the pages are set to
1 initially. The algorithm terminates after l iterations or
when some convergence criterion is met for the scores. In
our implementation we terminated the algorithm after l =
100 iterations. We identified the top hubs and authori-
ties that lie within each cluster of the collection. The al-
gorithm often gave us pages that were not very typical of
the cluster but were generic hubs or authorities such as
http://www.gnu.org. We then decided to bias Kleinberg’s
algorithm and compute it separately for each of the clusters.
We still apply the algorithm over pages in all the clusters but
we apply it multiple times—each time for one cluster. Dur-
ing the clustering process, described in Section 3.5, we had
measured the distance of each page (feature vector) from
each of the k cluster centers. Based on this information
we perform a modified version of Kleinberg’s algorithm for
cluster c where each iteration has the following steps:

�a← AT ·Dc · �h
�h← A ·Dc · �a
�a← �a

‖�a‖
�h← �h

‖�h‖

(5)

where Dc is a diagonal matrix whose ith diagonal element
is the cosine similarity of page i to the cluster center of c.
We again terminate the algorithm after 100 iterations. This
modified algorithm is a specific case of a general form sug-
gested by Bharat and Henzinger [4] to bias Kleinberg’s algo-
rithm. They also showed that such an algorithm converges.
After running the algorithm for each cluster we identify the
top hubs and authorities in the cluster. We found the results
to be more cluster specific which validated the previous user
studies on topically biased versions of Kleinberg’s algorithms
[4].

3.7 Cluster Labels
It is important to label the clusters with descriptive words

or phrases. The potential communities represented by the
clusters can be easily characterized by such labels. In the
current implementation we only look for keywords (and not
phrases) to label the clusters. Again we represent all the
documents in a cluster as vectors of TF-IDF term weights.
However, now the terms are actual words rather than word
stems. We still remove the stop-words as well as perform DF
based filtering similar to that used during clustering. We
compute a profile vector Vc [13] for a cluster c as follows:

Vc =
∑
p∈c

vp (6)

where vp is the TF-IDF based vector representing page p
in cluster c. The words corresponding to the top 5 largest
components of the profile vector Vc are then used as labels
for the cluster c.
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4. TEST BED
We used CiteSeer [5] to create a test bed in order to under-

stand the merits of the proposed approach. We first down-
loaded 150 random research papers (in pdf or ps format)
from CiteSeer. Next, we parsed each paper in the down-
loaded set to extract some pre-defined meta-information such
as the main title, author names, affiliations, abstract, key-
words and references. Since we depend primarily on the
main title and the reference titles in the current imple-
mentation, we filtered out the papers that had less than
8 references. Finally, our test bed had 94 papers repre-
senting a wide spectrum of research papers available on
CiteSeer. For each of the papers we picked half of all the
reference titles randomly and used them along with the
main title to query using the Google Web API. The top
results from the search engine are then used as positive ex-
amples to train a crawling classifier that guides the crawler
as explained in Section 3.3. The search results that are
from CiteSeer (http://citeseer.nj.nec.com/ and http:

//citeseer.ist.psu.edu/) are filtered out to avoid a bi-
ased test bed. The negative examples are a random sub-
set of positive examples found for the remaining 93 papers
(leaving out the current) in the test bed following the same
process.

For the evaluation of the crawler performance, we use all
of the reference titles (instead of a random subset as used
for training the crawling classifier), as well as the main title
of a given paper, as the queries. We then use the top results
returned by the Web API to form a large set of positive
examples. The negative examples for evaluation are a ran-
dom subset of the positive examples for the other papers.
Note that the positive examples for each of the papers are
obtained using all of the reference titles. Hence, we can ex-
pect the classifier built using the larger and more informed
pool of positive and negative examples to be a better judge
of the performance of the crawler when compared to the
crawling classifier. We call such a classifier the evaluation
classifier. We build the evaluation classifier using the Naive
Bayes scheme as was used for building the crawling classi-
fier. We use the trained classifier to then score (Pr(c+|p))
each of the pages fetched by the crawler for a given research
paper. Based on these scores we compute the harvest rate
at different points during the crawl. The harvest rate Ht

after crawling t pages is computed as:

Ht =
1

t
·

i=t∑
i=1

Pr(c+|pi) (7)

where pi is the page i in the t crawled pages. This metric has
been used to evaluate precision of the crawlers in the past
[8, 15, 1, 7]. In most of the previous work the classifier that
was used to crawl was also used for measuring the harvest
rate. We deviate from that trend by using a more informed
classifier for the evaluation than that used for the crawling.

5. RESULTS
The goal of the current work is not to find the best topical

crawler or for that matter the best clustering or visualization
techniques. We want to simply demonstrate the feasibility
of our general approach that aims to connect the Web based
information with that in high quality documents of a digital
library. However, we do want to make sure that our topical
crawling technique gives a focused collection that is better

than that produced by a simple Breadth-First crawl around
the seeds. Hence, we also run a Breadth-First crawler for
each of the 94 papers in our test bed. A Breadth-First
crawler treats the frontier as a FIFO (First-In-First-Out)
queue putting new unvisited URLs at the back of the queue
and picking the next URL to crawl from the head.

5.1 Crawler Performance
Figure 2(a) shows a graph of the average harvest rate at

different points during the crawl for both the Naive Bayes
crawler as well as the Breadth-First crawler. The horizontal
axis approximates time by the number of pages crawled. The
harvest rate is averaged over the 94 papers of the test bed
and the error bars show ±1 standard error. Hence, the figure
shows average trajectories of crawler performance with time.
Such graphs are often used in crawling literature to capture
the temporal nature of the crawlers [8, 11, 21]. From Fig-
ure 2(a) we conclude that the Naive Bayes crawler produces
better collections at almost all points during the crawl. In
fact a one-tailed t-test to check the same at various points
during the crawl gives us a graph as shown in Figure 2(b).
With the level of significance set to α = 0.05 (shown as dot-
ted line), the Naive Bayes crawler produces significantly bet-
ter collections than the Breadth-First crawler for any crawl
that is larger than a few hundred pages. Hence, there is a
strong reason to use the topical crawler for building collec-
tions for our current application.

5.2 Information Discovery
After crawling, clustering, linkage and lexical analysis the

system generates an HTML report. The report contains
a visual map of potential communities associated with a
research paper and their characteristics. Examples of the
graphical reports are shown in Figure 4. Each circle in the
report corresponds to a cluster (potential community) and
its size is proportional to the number of pages in the clus-
ter. The lines between clusters show the strength of their
relationship. The thicker the line the stronger the connec-
tion. The strength of the connection is measured by the
cosine similarity between the cluster centers. When any of
the circles is clicked a separate window reveals the details of
the cluster such as the example pages (pages most similar to
cluster center), cluster based hubs and authorities (see Fig-
ure 3). The user also has access to the paper for which the
report was generated through a link on the corresponding
report.

The visual map in Figure 4(a) corresponds to a paper
titled “Combinatorial algorithms for DNA sequence assem-
bly.” We find that we have four well connected clusters
(cluster 1,2,4 and 5). The largest one (cluster 5) represents
a community that is primarily related to biotechnology. On
the other hand, a closely connected cluster (cluster 1) con-
centrates on algorithms and data structures. Hence, we find
a clear separation of related communities that would con-
tribute to research associated with the paper. Cluster 2
is about more general computing literature and organiza-
tions. Even though cluster 2 is not so well connected to
the biotechnology cluster (cluster 5), it is well connected to
the algorithms and data structures cluster (cluster 1). Sim-
ilarly we have a cluster representing related research pri-
marily in university science departments (cluster 4). Fig-
ure 4(b) is about a paper titled “InterWeave: A middleware
system for distributed shared states.” Here we find a com-
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Figure 2: (a) Average harvest rates with pages crawled: error bars show ±1 standard error (b) p-values with
pages crawled: Naive Bayes topical crawler significantly outperforms after crawling a few hundred pages.

Figure 3: A sample HTML report with details of cluster ‘2’ (right) that appears to concentrate on a commu-
nity involved with operating systems, architectures and distributed computing. The details are revealed by
clicking on the circle corresponding to the cluster. Also, the original paper (left) for which the report was
generated is accessible from the report through a hyperlink.
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munity that concentrates on architectures, operating sys-
tems and distributed computing (cluster 2). Another com-
munity (cluster 3) relates to Web sites that concentrate on
reviewing technologies such as Java and Jini that could be
used for distributed computing. Yet another (cluster 5) is
associated with standards and technology companies such as
CORBA, HP (Hewlett Packard) and OMG (Object Manage-
ment Group). Figure 4(c) shows the map for a paper titled
“Scalable session messages in SRM.” Here again we find an
interesting breakup of communities, where one concentrates
on routing issues (cluster 3), while another concentrates on
protocol documentation and RFCs (cluster 2), and a third
that is associated with related software development and de-
livery (cluster 1). The final example (Figure 4(d)) is for a
paper titled “Extracting provably correct rules from artifi-
cial neural networks.” Here we find a community that pur-
sues abstract intelligence issues such as mind, philosophy
and cognition (cluster 4). In contrast, cluster 3 is a com-
munity that applies intelligent algorithms for game playing
and robotics. Another cluster that is very related to cluster
4 and also well connected to cluster 3 is one that concen-
trates on neural network based machine learning (cluster 5).

6. RELATED WORK
With an ever increasing amount of documents available in

digital format, new ways to build and use digital libraries are
being actively researched. CiteSeer [5] was one of the early
systems that demonstrated the use of the Web to feed a
digital library. In this paper we investigate a reverse prob-
lem of feeding a Web based resource discovery system us-
ing documents from a digital library. One could imagine
a Panorama-like system as a service provided by an online
digital library such as the CiteSeer. A document viewing
software may have Panorama as an additional feature or
plug-in. It could also facilitate manual compilation of lists
of Web resources connected with research documents in a
digital library. Panorama is driven by data extracted from
a digital document. We use the CiteSeer code for parsing
research papers and extracting the data. The code relies on
regular expressions to extract the needed information. More
adaptive techniques for text extraction [12] in general and
metadata extraction [16] in particular have been described
in the past.

Topical crawlers have been studied in great detail [14, 8,
20, 15, 1, 9, 17]. Chakrabarti et al. [8] were the earliest to
apply Bayesian classifiers built through examples for guid-
ing a topical crawler. Topical crawlers have been applied to
build collections for large scale digital libraries [3, 2]. A re-
cent system called Web-DL [6] integrates crawled Web pages
into a digital library system and makes the data (extracted
from pages) available through a standard protocol. Evalu-
ating crawler performance, as well as the performance of the
end systems that rely on it, is in itself an important research
challenge [21].

Several techniques to effectively browse a large collection
of Web pages have been suggested in the literature [30, 10,
24, 27, 31]. In the absence of predefined classes, many of
these techniques use some form of clustering to systemati-
cally arrange Web pages in ad hoc groups or hierarchies. For
example, the Vivisimo5 search engine automatically clusters
the search results and shows them in labelled folders.

5http://vivisimo.com/

Panorama makes use of modest text extraction, classifica-
tion, crawling, and analysis techniques to implement a novel
approach to information discovery focused around well for-
matted documents from a digital library.

7. CONCLUSION
We have described an approach that aims to connect the

high quality information available in digital library docu-
ments with the high quantity of information on the Web. We
hope that such an approach will bring structure to the vast
amount of Web based information that relates to the com-
munities associated with the documents in a digital library.
Panorama, an implementation of the approach, demonstrates
its feasibility. We find that not only can we guide topical
crawlers with information from research papers, we can ef-
fectively use small collections (few thousand pages) down-
loaded by the crawlers to build visual maps that describe
the involved communities and their connections. The imple-
mentation for most parts uses well known machine learning,
information retrieval and Web mining techniques. Our long
term goal is to apply Panorama-like techniques to well for-
matted documents from different areas of human endeavor.

In the future we would like to improve our cluster la-
belling technique to include labels that are phrases rather
than words alone. Also, labels should maintain the case at
least for what appear to be acronyms. For example, the
word “dads” is used in the label for cluster 3 in Figure 4(a).
It may not be apparent that it is an acronym that stands for
“Directory of algorithms and data structures.” On a differ-
ent note we would like to try various types of classifiers to
guide the crawler, such as Support Vector Machines (SVM).
Using some of the other extracted information, such as the
author names and keywords, to train the classifiers is an-
other extension to the current research. Also we would like
to experiment with a wide variety of clustering algorithms
based on both lexical features as well as links to discover
potential communities. Another important direction of our
future research is the user evaluations of Panorama to under-
stand its strengths and weaknesses with respect to usability.

Acknowledgements
We are grateful to the anonymous reviewers for their sug-
gestions. Thanks to Weka group for the machine learn-
ing software, Google for the Web API, and Walter Zorn
(www.walterzorn.com) for the JavaScript libraries used for
visualization.

148
Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries (JCDL’04) 
1-58113-832-6/04 $ 20.00 © 2004 ACM 



(a
)

(b
)

(c
)

(d
)

F
ig

u
re

4
:

V
is

u
a
l
m

a
p
s

o
f
p
o
te

n
ti

a
l
c
o
m

m
u
n
it

ie
s

fo
r

p
a
p
e
rs

ti
tl

e
d

(a
)

C
o
m

b
in

a
to

ri
a
l
a
lg

o
ri

th
m

s
fo

r
D

N
A

se
q
u
e
n
c
e

a
ss

e
m

b
ly

(b
)

In
te

rW
e
a
v
e
:

A
m

id
d
le

w
a
re

sy
st

e
m

fo
r

d
is

tr
ib

u
te

d
sh

a
re

d
st

a
te

(c
)

S
c
a
la

b
le

se
ss

io
n

m
e
ss

a
g
e
s

in
S
R

M
(d

)
E
x
tr

a
c
ti

n
g

p
ro

v
a
b
ly

c
o
rr

e
c
t

ru
le

s
fr

o
m

a
rt

ifi
c
ia

l
n
e
u
ra

l
n
e
tw

o
rk

s.

149
Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries (JCDL’04) 
1-58113-832-6/04 $ 20.00 © 2004 ACM 



8. REFERENCES
[1] C. C. Aggarwal, F. Al-Garawi, and P. S. Yu.

Intelligent crawling on the World Wide Web with
arbitrary predicates. In Proc. 10th Intl. World Wide
Web conference, Hong Kong, May 2001.

[2] D. Bergmark. Collection synthesis. In Proc. 2nd
ACM/IEEE-CS Joint Conference on Digital Libraries
(JCDL 2002), pages 253–262, 2002.

[3] D. Bergmark, C. Lagoze, and A. Sbityakov. Focused
crawls, tunneling, and digital libraries. In 6th
European Conference on Research and Advances
Technology for Digital Technology (ECDL 2002), 2002.

[4] K. Bharat and M. R. Henzinger. Improved algorithms
for topic distillation in hyperlinked environments. In
Proc. 21st Annual Intl. ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 104–111, 1998.

[5] K. Bollacker, S. Lawrence, and C. L. Giles. A system
for automatic personalized tracking of scientific
literature on the Web. In Proc. 4th ACM Conference
on Digital Libraries, pages 105–113, 1999.

[6] P. P. Calado, M. A. Gonçalves, E. A. Fox,
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