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Abstract. In query based Web search, a significant percentage of user queries 
are underspecified, most likely by naive users. Collaborative ranking helps the 
naive user by exploiting the collective expertise. We present a novel 
algorithmic model inspired by the network flow theory, which constructs a 
search network based on search engine logs to describe the relationship between 
the relevant entities in search: queries, documents, and users. This formal model 
permits the theoretical investigation of the nature of collaborative ranking in 
more concrete terms, and the learning of the dependence relations among the 
different entities. FlowRank, an algorithm derived from this model through an 
analysis of empirical usage patterns, is implemented and evaluated. We 
empirically show its potential in experiments involving real-world user 
relevance ratings and a random sample of 1,334 documents and 100 queries 
from a popular document search engine. Definite improvements over two 
baseline ranking algorithms for approximately 47% of the queries are reported. 
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1   Introduction 

The intuition behind collaborative ranking is that in the context of Web search collective 
knowledge enhances the ranking of search results. A number of methods to facilitate 
collaborative ranking have been proposed and some effectively implemented, 
particularly in online recommendation systems. By introducing a formal model, this 
work systematically investigates the nature of collaborative ranking.  

Why does collaborative ranking work? Given the context of relevant queries, naïve 
queries can be improved by looking at relevant and articulated queries (and 
corresponding search results) from other users. By observing the collective patterns of 
access, the ranking system learns to favor certain search results. For the most part, 
existing collaborative ranking algorithms take into account the intricate relationships 
between relevant queries, documents, and collaborators. We propose a graph 
algorithmic model to study such relationships. Based on this model, a novel 
FlowRank algorithm translates the collaborative ranking problem into a network flow 
problem. The heterogeneous interactions between queries, documents, and 
collaborators are drawn into a concise and cohesive framework. Our paper makes the 
following contributions: 
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 We introduce a formal model of collaborative ranking, which mathematically 
describes the interactions between users, queries, and documents, and relates the 
ranking problem with the network flow problem for which there is a large body of 
work. 

 We propose a practical algorithm for collaborative ranking based upon our model, 
and empirically demonstrate its potential in a preliminary experiment using real-
world data. 

The rest of the paper is organized as follows1. In Section 2, we briefly review a 
number of relevant studies in collaborative ranking and graph modeling of the Web. 
We describe in detail the algorithmic model and propose a derived ranking algorithm, 
FlowRank, in Section 3. In Section 4, we present an evaluation involving realistic 
search scenarios. We conclude our paper with plans for future work in Section 5.  

2   Related Work 

There has been a considerable amount of work on the topic of collaborative search 
and ranking. We will discuss succinctly the major body of work that directly relate to 
ours, in particular to graph models of the Web and collaborative ranking algorithms.  

The Web graph [1, 2] has been explored with numerous studies focusing on the 
hyper-linked structure in order to aid web search [3, 4, 5, 6, 7]. Flow-based algorithms 
have been proposed to identify and mining online communities [8, 9], to perform 
clustering [32], and to identify the bottlenecks in a Markov decision process [10]. In 
particular, Chitrapura and Kashyap [11] proposed a flow-based model for document 
ranking, which uses the network flows in a search graph as a measurement of 
relevance. In their model, the volume of the flows indicating the degree of relevance 
of the nodes (documents) to the associated labels (queries) is used to compute a query 
dependent or independent ranking of the documents, which is similar to the 
underlying idea we propose. However, their model is a single-user model, while our 
model employs multiple collaborating users with various degrees of similarity to the 
target user and different relevance feedbacks. 

Collaborative search and ranking is in a way similar to meta-search; leveraging 
naïve and advanced users, the original search results are re-ranked based on collective 
knowledge. The search system can take into account the expertise level of the users 
through user profiling [12], biasing the relevance ranking by using such profiles. 
When a user is not satisfied with the search results, similar queries submitted by other 
users can be used to expand or improve the original query [13]. User clickthrough has 
been shown as an accurate reflection of users’ preferences on the retrieved pages [14], 
to suggest search intentions [15] and similar queries and documents [16]. A hit 
matrix, which records users’ clickthrough to pages, is implemented in the I-SPY 
system [17]. By using collective clickthrough as an indicator of the likeliness of web 
pages to be visited by users, the system estimates the pages’ relevance to a given 
query, and re-ranks the pages based on the learned preferences. One of the most 
recent evaluations of collaborative search involves studying the behavior of actual 
users [18].  

                                                           
1  Due to space constraints, an extended version of this paper discussing the generalization of 

the proposed model is available for download on the first author’s website. 
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Our work builds upon the idea of graph modeling of the Web search problem, in a 
framework of relevance ranking of documents based on the associated flows of 
information. However, to the best of our knowledge, there is no existing work that is 
similar to our approach of constructing the graph model and the derived collaborative 
ranking algorithm. 

3   The FlowRank Model 

3.1   Motivation 

Consider the following scenario of a typical collaborative search: A user ua searches 
the Web for query qo 'Olympic national park', and a document set Do has been 
retrieved. Then, suppose there is a collaborator ub who searches for a relevant query 
q' 'camping hiking Olympic', and a document set D' has been retrieved. We define 
collaborators to be those users whose queries and search results may be of interests to 
ua with respect to ua’s current search goal, regardless of whether they perform the 
search in a synchronous or asynchronous fashion, or whether they are aware of each 
other. How relevant ub’s query is to ua, and how similar ub is to ua in terms of interests 
and preferences, should be considered in the case of collaborative search. If ub 
frequently accesses (which may mean, for example, that the user clicks on) some of 
the returned documents, it could indicate that these documents are of high quality and 
are preferable to other documents. Thus ua might also prefer these on the condition 
that ub’s query is somewhat similar and ub has similar interests or preferences.  

From the above scenario, we see that a complete model for collaborative ranking 
needs to consider all of the following: the similarity between the original query (qo) 
and the retrieved documents (Do), the similarity between the original query (qo) and 
other relevant queries (q'), the similarity between the relevant queries (q') and the 
corresponding documents (D'), the similarity between the user (ua,) and the 
collaborators (ub), and the access patterns of  the users. All of these factors combined 
could contribute to the relevance judgment of the documents retrieved for a given 
query, and can be employed in a collaborative scheme of ranking those documents. 

We have devised a formal model of collaborative ranking, in which all these 
factors are accounted for in a unified formal framework that permits the study of 
correlated search events. We accomplish this by investigating the network flows of a 
transformed query graph. In our model, each retrieved document is represented by a 
sink node in the graph and associated with a flow value. The flow values are bounded 
by the various capacities of the arcs, which correspond to the factors discussed in the 
previous paragraph (details to follow in the next section). When the flow network 
becomes saturated, the values of the obtained flows associated with the documents are 
used to re-compute the collaborative relevance ranking. 

3.2   Graph Definition and Transformation 

A query graph visualizes relevant entities (queries, documents, and users) in a given 
collaborative search setting. We transform this graph into a network in which arc 
capacities encode the relationships between the entities. In this section we formally 
describe the steps to derive the graph model. An algorithm for collaborative ranking 
based on this model will be introduced in the next section. 
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We first discuss the graph structure that we associate with a user query, which 
links users, queries, and documents sets, denoted as U, Q, and D respectively. 

Assume that a target user ut, submits a target query qt, for which a set of documents 
Dt={di

t | i=1..m} matching the target query exists. Let Qt = {qi | ∃ j ∈ [1…n], arc(qi, dj

t) 
≠ null}be the set of all user queries that retrieve at least one of the documents 
retrieved by the target query qt. Let Ut = {ui | ∃ q ∈ Qt, arc(ui, q) ≠ null}denote the set 
of users who submitted the query that retrieved a document in Dt. Let G denote the 
whole search graph with no constraint. We denote by Gt the subgraph of G with the 
vertices Dt∪Qt∪Ut and all arcs incident in these vertices from G. Intuitively, the graph 
Gt includes those users who sent to the search engine the same query or a different 
query that retrieves at least one of the documents retrieved by the target query. Users 
who have not submitted qt and queries that do not retrieve any document in Dt will not 
be included in this graph. The goal is to rank collaboratively the documents in Dt by 
considering the appropriately relevant users, queries, and documents. Note that in 
practice, there can be various definitions for qi∈Qt. For example, qi can be an 
expansion of the target query qt [19] or a query submitted by a user that searched for 
qt in the same search session and/or within a certain interval of time. Figure 1 (a) 
depicts a sample query graph Gt. 

 
      (a)                                                                                   (b) 

Fig. 1. (a) A sample query graph G
t
 (b) An example of G' constructed from G

t 

We then construct G' based on Gt. Figure 1 (b) depicts G' constructed from Gt. 
There are three types of capacities assigned to the arcs in G': type (a) expresses the 
relevance between the target query and the documents; type (b) reflects various 
degrees of collective endorsement to the documents by the collaborators, either 
through the original query or alternative queries; type (c) specifies the relationship 
between the targeted user and his collaborators. In particular: 

 Some arcs have their directions reversed in order to form the cascade of bounds 
for the network flows, i.e. type (a) capacities are more important than type (b); 
type (b) are more important than type (c). This is arguably reasonable because in 
ranking the relation between the target query and the documents should always be 
considered first, while the collective endorsement by the collaborators is counted 
as an assistive measure. Please see the following algorithm for details on which 
arcs to be reversed. 
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 Steps (2)~(6) of the following algorithm provide a specific computation recipe of 
the arc capacities. However, alternative strategies/heuristics can be employed to 
weigh the relationships among the different entities.  

Let U' = Ut - {ut} denote all users in this graph except the target user and Q' = Qt - 

{qt} the set of all user queries in Gt excluding the target query qt. We construct G' as 
follows: 

(1) Remove the arc from ut to qt. The relationship between ut and qt will be 
implicitly expressed in the generated flow values (defined in Section 3.3). 
(2) Add an arc between any ui∈ U' and ut, and define its capacity C(ui, u

t) to be a 
similarity score between the two users, 0 < C(ui, ut) ≤ 1. This places an upper-
bound for the flow values proportional to the user-user similarity. 
(3) Define the capacity between qt and any dk∈Dt to be a value in [0, 1] that 
indicates a matching score between the target query qt and the document dk. This 
places an upper-bound for the flow values proportional to the query-document 
similarity. 
(4) For any ui∈U' and qj∈Q', if arc(ui ,qj) ≠ null (meaning that the user ui submitted 
query qj), reverse the direction of this arc and set the capacity C(qj, ui) = 1, so that 
the flow value on arc(qj, ui) is bounded only by the upstream capacities (i.e. query-
document similarity), because of the reversed arc direction. Otherwise, set the 
capacity C(qj, ui) = 0. At this point we do not consider the frequency of ui 
submitting query qj. 
(5) For any arc arc(qj, dk) from qj in Q' to a document dk∈Dt, reverse the 
direction of this arc and define the capacity C(dk, qj) to be C(dk, qj) = sim(qj, dk) ⋅ 
sim(qj, qt) ⋅ P(dk | Uj,k), where sim(qj, dk) in [0, 1] indicates a matching score 
between the query qj and the document dk; sim(qj, q

t) indicates how similar this 
alternative query qj is to the target query qt; P(dk | Uj,k) indicates the conditional 
probability of users visiting dk given that they submitted the query qj, which can 
also be written as: 

),,(

),,(
),(),(),( tDkjUClick

kdkjUClicktqjqsimkdjqsimjqkdC ⋅⋅=  

}.),(),('{, nullkdjqarcnulljqiuarcUiukjU ≠∧≠∈= Note that Uj,k typically contains 

more than one user; Click(Uj,k, dk) is the total number of clicks made by the users 
who submitted qj on dk; Click(Uj,k, D

t) is the total number of clicks of these users on 
the whole search result set. C(dk, qj) places an upper-bound for the flow value 
jointly decided by the similarity between an alternative query qj and the target 
query qt, the matching score between qj and the document dk, and the likelihood 
that a user visits dk given that he submits qj. 
(6) For any arc(ui, q

t) for which ∃dk∈Dt, arc(ui, dk) ≠ null, reverse the direction of 
arc(ui, dk) and assign C(dk, ui) = sim(qt, dk) ⋅ P(dk|ui) ⋅ [1-P(dk| }{ iu )], where the last 

two factors represent the probability of a user ui visiting dk and the conditional 
probability of the other users not visiting dk given that they submitted the target 
query qt . This can also be written as: 
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where }{ iu =U'-{ui}; Click(ui, dk) = 1 if ui clicked on dk and 0 otherwise; Click(ui, D
t) 

is the number of documents clicked by ui. C(dk, ui) places an upper-bound for the 
flow value jointly decided by the matching score between the target query qt and 
the document dk, and the likelihood that other users also visit dk given that they 
also submit qt. 
(7) Remove all the arcs from ui∈ U' to qt. Because the inherent relationship is 
already reflected in the definition of C(dk, ui), these arcs are redundant and do not 
contribute to the collaborative ranking process. 
(8) END 

Finally, we want to provide an intuitive justification for constructing G'. A query 
represents the information needs of a user, and the motivation of search is to satisfy 
such needs. In G', flows of relevant information are moving through a network of 
collaboration towards the target user via different routes. Each of these flows 
contributes as a part to the overall information gain pertinent to the user’s needs. On 
each of the routes, there are an appropriately relevant document, an appropriately 
relevant query, and an appropriately relevant user; all of them together determine the 
contribution of the associated flow. Flows, when saturated, represent the collaborative 
contribution to the overall satisfaction of the target user’s information needs. By 
investigating G', we are able to study the relationship between the collaborative 
entities when the flows are sorted in the order of their contributions to the overall 
satisfaction of the target user’s information needs. Accordingly the associated 
documents en route can also be ranked using the FlowRank algorithm described in the 
next section. 

3.3   The FlowRank Algorithm 

Let s denote the source and t denote the sink, Fmax(s, t) is defined as the maximum 
flow that can be routed from s to t, which obeys all the capacity constraints. 
Intuitively, if the arcs are water pipes, the vertices are where they join each other, and 
the capacities on the arcs represent the cross-sectional area of the pipes, to find the 
maximum flow is to find how much water can be moved from s to t, given the 
constraints of the cross-sectional area of the pipes. The FlowRank algorithm is 
described in Figure 2. 

The FlowRank algorithm is based on the well-known Maximum Flow - Minimal 
Cut theorem [20]. This theorem proves that the maximum flow of a given network is 
equal to the minimal cut that separates the source and the sink, which in our case the 
cut is Dt, proved as follows. A set of cut-vertex denotes the set of vertexes whose 
removal will disconnect the graph [30]. By assumption that Dt is not the set of cut-
vertex on G', we remove Dt and its related arcs, and still have qt connected to G' via a 
set of vertex Vqt. ∀vqt∈Vqt : vqt∉Q, because by definition there’s no arc exists between 
two queries; vqt∉U, because of step (4) and (5) in 3.2; thus vqt∉D. Because D = Dt∪D' 
and D' is removed in step (1) in 3.2, vqt∈Dt. But this contradicts the assumption that Dt 

has already been removed from G'. Q.E.D. 
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The above proof is important for the validity of the algorithm in that ∀F(qt, ut), ∃ 
di

t ∈Dt which is on the path of F(qt, ut). Because Dt is not inter-connected, we 
conclude the there is di

t on each of the paths of F(qt, ut), so that Dt can be ranked by 
sorting F(qt, di

t). 
 

Algorithm. FlowRank 

Input: Graph G' 

Output: Permutation π { )(),...,1(
t

md
t

d ππ }, td1 … t
md ∈Dt. 

1: Fmax(q
t, ut) ← the maximum flow from source qt to sink ut 

2: foreach document 
t

id ∈Dt 

3:   F(qt,
t

id ) ← the flow value from source qt to sink
t

id  

4: Sort (descending) the documents
t

id in Dt using F(qt,
t

id )  

5: return ranks { })(),...,1(
t

md
t

d ππ  

Fig. 2. The FlowRank Algorithm 

4   Evaluation 

4.1   Experiment Setup 

From the query logs of a popular scientific document search engine, The CiteSeer 
Digital Library (http://citeseer.ist.psu.edu), we extracted a random sample of 100 
queries and the associated 1,334 unique documents retrieved by the search engine as 
relevant results. Obtaining editorial ratings for a large number of documents is an 
extremely time-consuming and labor-intensive process, however the size of our 
dataset is comparable to those used in [21]. The queries were anonymized, and then 
verified by human annotators to be meaningful [22]. 

Our evaluation required a log of user interactions (i.e. clickthroughs, etc.) with the 
documents. The extracted queries and documents were presented to five evaluators, 
all graduate students in Computer Science. For each document, the title and 
abstract/snippet were displayed. In order to minimize the potential bias induced by 
ranking, for each query the associated documents were shuffled so that the evaluators 
were not aware of the original ranking produced by the search engine, and the 
evaluators were explicitly informed about this process. The evaluators were asked to 
independently choose one of the three ratings for each document based on their 
subjective perception of how relevant a document is to the associated query. The three 
ratings were: “Definitely clicked”, which means the evaluator believes he/she would 
click on the document if he/she were to submit the query; “Probably clicked”, which 
means the evaluator may or may not click on the document, and “Never clicked”, 
which means the evaluator believes he/she would not click on the document. The data 
collected in this procedure is labeled as Ds. Ideally we would like to keep track of a 
user’s clicks on a document, denoted by a 4-tuple (q_id, doc_id, u_id, p_click), where 
q_id and doc_id denote the query and corresponding documents, u_id denotes the 
user, and p_click denotes the probability of the user clicking on the document. In 
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processing Ds, the rating “Definitely clicked” was translated into p_click=1.0; 
“Probably clicked” was translated into p_click=R where R is a random variable within 
(0, 1); “Never clicked” was translated into p_click=0.0. The obtained data Ds was then 
used to simulate user clickthrough. 

Relevance judgments for the dataset were generated by presenting the same queries 
and documents to another two evaluators who are both computer scientists. This time, 
the evaluators could check the actual content of the document when necessary. Each 
of the evaluators was asked to rate the document in a five-point scale from 0 to 4, 
defined as: 

0. Irrelevant match: the document did not contain any information about the 
query. 

1. Marginally relevant match: the query terms might appear in the document but it 
was mainly about something else. 

2. Borderline match: the document could be rated as 1 or 3. 
3. Fairly relevant match: the document contained relevant information about the 

query terms, but should not be picked if only one document were allowed. 
4. Best match: the document contained highly relevant information about the 

query terms, and could be picked if only one document were allowed. 
      Data collected in this phase is labeled as De. 

A number of measures have been proposed to quantitatively describe the similarity 
between queries [15, 24, 25, 27]. In our implementation, the definition of similarity 
between queries was similar to the common query title measurement as described  
in [25]:  

),max(
),(

jTiT

jTiT

jqiqsim
∩

=  

where qi, qj were two queries and Ti, Tj were the terms in the titles of the documents 
returned by the search engine. In other words, the similarity between the two queries 
was in proportion to the number of common terms in the titles of the search results. If 
the titles were similar, the queries were also similar. 

User similarity metrics are commonly adopted in collaborative recommendation 
and filtering systems, because by learning from other “like-minded” users, one can 
predict a user’s preference (see [25] for a recent survey). User similarity is inherent in 
our model because of step (2) of the algorithm. The user similarity score is the upper-
bound for the flow values. For simplicity of computation, we currently treat all users 
the same, so for any two users ui and uj, sim(ui, uj) = 1. We justify this assumption by 
noting that all of the five evaluators were graduate students in Computer Science and 
most likely familiar with the search topics. However, it would be interesting to 
observe the impact of different user similarity metrics in the next phase of evaluation. 

Finally, the similarity scores between the queries and documents were derived 
from the search engine. Now a transformed query graph was computed for each of the 
queries, and the FlowRank algorithm was implemented on the graphs to generate the 
collaborative rankings. Adjacent matrixes were built to represent the transformed 
query graphs, with elements being the arcs’ capacities. In our experiment, the 
maximum-flow calculation module was based on Rothberg’s implementation of 
Goldberg's Push-Relabel algorithm [23], which is usually considered the fastest in 
practice. 
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4.2   Results and Discussion 

The output of FlowRank (F) was compared with that of other two baseline ranking 
algorithms for evaluation. The HITS algorithm [4] was implemented and the ranking 
(H) for the documents was recorded. The original ranking (S) generated by CiteSeer 
was also recorded. The metrics to measure the ranking accuracy was the Discounted 
Cumulative Gain (DCG) first introduced in [26] and compared to other metrics in 
[28]. The main reason to use DCG is that it assigns more weights to highly ranked 
documents, and allows us to differentiate various levels of subjective relevance 
judgment for the human evaluators. For a given query q, DCG is defined as: 

                  ( )∑
= +

⎟
⎠
⎞⎜

⎝
⎛ −

=
N

d d

dR

NqDCG
1 1ln

1)(2
),(                                       (1) 

where R(d) is the editorial rating of the d’th webpage in the top N search results.  
Intuitively, a higher DCG reflect a better ranking of the search results. DCG was 

computed for the top 20 ranked documents in H, S, and F, since users seldom look 
beyond the first few result pages [31]. The ratings from the two evaluators in De were 
averaged as the editorial ratings to be used in the DCG calculation. 

FlowRank achieved significant improvements on the rankings produced by the two 
baseline algorithms. This advantage was reflected in the average DCG metrics. In 
both comparisons, FlowRank was able to improve the ranking for about 47% of the 
queries. Over all ranks, the average DCG for F was 59.42, compared with 57.54 for S 
and 57.37 for H. The number of queries with DCG increased, decreased, and without 
change was summarized in Figure 3(a). 

Figure 3(b) plots the average DCG curves for the three ranking algorithms (F, H, 
S) at ranks 1 – 20, together with the ideal curve. FlowRank outperformed the other 
two baseline algorithms and quickly approached the ideal curve, which began to level 
off upon the rank 10. This confirmed that the documents ranked below position 10 
were in fact less relevant. 

In order to further investigate if there is linear correlation between the collaborative 
contribution considered by FlowRank, and the amount of increase in the average DCG 
over the two baseline algorithms, the improvement in the DCG scores for each of the 
queries was cross-examined with the size of the transformed graph. Here an 
assumption was made that the larger the transformed query graph, the more 
collaborative the search process would be. A correlation test was performed on the 
two variables: size S and increase in the DCG I. The Pearson correlation of S and I 
was 0.334 with a P-value of 0.033 (α-level was 0.05), confirming a positive 
correlation between the two. 

A simplification was drawn in the current implementation of the flow-based model, 
in which the arc capacities between {ui'} and ut were assigned the same values, 
indicating identical collaborators. Three runs of the FlowRank algorithm were 
performed in which the number of users was purposefully changed. Correlated 
changes in the DCG improvement had been observed. The correlation was not 
significant, which we believed would be mostly due to the small number of users. 
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Fig. 3. (a) DCG changes for queries; FlowRank was able to improve the search ranking for 
about 47% of the queries. (b) Average DCG curves; The H and S curves hang below the F 
curve by about 15%. 

The maximum flows were currently calculated using the Push-Relabel algorithm 
[23], because the sizes of the graphs were relatively small, and runtime efficiency 
was a primary concern due to the online nature of collaborative ranking. However, 
depending on the scale (and often the subject domain) of a collaborative search,  
the graph can become very dense or sparse, or can become so huge that access to 
the entire graph is impractical. Different maximum-flow algorithms, e.g. the 
shortest augmentation path algorithm [29], should be used with case-by-case 
consideration. 

5   Conclusion and Future Work 

We proposed a comprehensive flow-based graph model of collaborative ranking. 
Exploiting the relationships between relevant queries, documents, and users, and 
users’ access patterns on the retrieved documents, this model translates the 
collaborative ranking problem into a flow-calculation problem in a search network. 
This unique perspective considers the ranking problem as a graph flow problem for 
which there is a large body of work. We discussed the implications of several ranking 
scenarios and presented a derived practical ranking algorithm. Evaluations in the 
document search domain using the DCG metrics showed its effectiveness by 
measurable improvements over the two baseline ranking algorithms.  

There are a number of directions towards which this work can be applied. Future 
work can explore different similarity metrics and use the FlowRank model to 
quantitatively investigate the complicated relationships between queries, documents, 
and users in a collaborative search setting. Obtaining editorial ratings for a large 
number of documents is an extremely time-consuming and labor-intensive process, 
which limited the scale of our preliminary experiment. A reasonable next phase of 
evaluation is to compare FlowRank against other collaborative ranking algorithms 
using a large-scale dataset. Instead of using simulated clickthrough data, real-world 
clickthrough logs can be used so that the definitions of the arc capacities can be 
further fine-tuned. Additionally, it may be valuable to also take into account user 
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interactions other than clickthroughs, such as how long a user spent reading a 
document. Given the generalizable nature of the proposed network flow model, we 
believe that it can be applied to a number of other problems dealing with user 
feedback and collaborative search behavior. 
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