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Mitochondria and cytochrome components =

released into the plasma of severe COVID-19
and ICU acute respiratory distress syndrome
patients
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Abstract

Introduction Proteomic analysis of human plasma by LC-ESI-MS/MS has discovered a limited number of new cel-
lular protein biomarkers that may be confirmed by independent biochemical methods. Analysis of COVID-19 plasma
has indicated the re-purposing of known biomarkers that might be used as prognostic markers of COVID-19 infection.
However, multiple molecular approaches have previously indicated that the SARS-COV2 infection cycle is linked to
the biology of mitochondria and that the response to infections may involve the action of heme containing oxidative
enzymes.

Methods Human plasma from COVID-19 and ICU-ARDS was analyzed by classical analytical biochemistry techniques
and classical frequency-based statistical approaches to look for prognostic markers of severe COVID-19 lung damage.
Plasma proteins from COVID-19 and ICU-ARDS were identified and enumerated versus the controls of normal human
plasma (NHP) by LC-ESI-MS/MS. The observation frequency of proteins detected in COVID-19 and ICU-ARDS patients
were compared to normal human plasma, alongside random and noise MS/MS spectra controls, using the Chi Square
(x?) distribution.

Results PCR showed the presence of MT-ND1 DNA in the plasma of COVID-19, ICU-ARDS, as well as normal human
plasma. Mitochondrial proteins such as MRPL, L2HGDH, ATP, CYB, CYTB, CYP, NDUF and others, were increased in
COVID-19 and ICU-ARDS plasma. The apparent activity of the cytochrome components were tested alongside NHP by
dot blotting on PVDF against a purified cytochrome c standard preparation for H,O, dependent reaction with luminol
as measured by enhanced chemiluminescence (ECL) that showed increased activity in COVID-19 and ICU-ARDS
patients.

Discussion The results from PCR, LC-ESI-MS/MS of tryptic peptides, and cytochrome ECL assays confirmed that
mitochondrial components were present in the plasma, in agreement with the established central role of the mito-
chondria in SARS-COV-2 biology. The cytochrome activity assay showed that there was the equivalent of at least
nanogram amounts of cytochrome(s) in the plasma sample that should be clearly detectable by LC-ESI-MS/MS. The
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release of the luminol oxidase activity from cells into plasma forms the basis of a simple and rapid test for the severity
of cell damage and lung injury in COVID-19 infection and ICU-ARDS.
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Introduction

Proteomic analysis of COVID-19 patient plasma has
previously indicated that AZGP1, B2M, CRP, HP, HPR,
ORM, RBP4, and some SAA may be repurposed as bio-
markers of COVID-19 [1-11]. Infection with SARS-
CoV-2 resulting in COVID-19 may have some symptoms
similar to patients experiencing Acute Respiratory Dis-
tress Syndrome (ARDS) [12]. The SARS-CoV-2 spike
protein may be cleaved by a protease presumed to be
TMPRSS2 to gain entry to the cell through the ACE2
receptors [13]. Subsequently, the spike protein may act as
a trigger of apoptosis via a mitochondrial pathway [14].
The release of mitochondrial cytochrome is known to
trigger apoptosis of cells [15]. Viral infection resulted in
major re-arrangements of cellular compartments includ-
ing mitochondrial perinuclear clustering, association
with the ER and Golgi apparatus, and the fission of mito-
chondria with the release of reactive oxygen species [16].
The mitochondria may play a central role in the physi-
cal interactions of SARS-CoV-2 during the viral replica-
tion cycle [17]. Expression of mitochondrial porin forms
a channel for the release of macromolecules from the
mitochondria organelle into the cytoplasm of COVID-
19 patients and thereby acts as a cell death regulator [18].
Viral infection may permit the escape of large molecules
like mitochondrial DNA and proteins into the cytosol
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[8, 19-21]. The mitochondrial NADH dehydrogenase
complex (MT-ND) is the main source of reactive oxygen
species like H,O, in the cell [22]. The release of reac-
tive oxygen species from the mitochondria apparently
impacts the capacity for viral replication and may help
regulate a pathway towards apoptosis in response to viral
infection [23]. Genetic knockout, overexpression and
radical scavengers indicate that the MT-ND complex and
the production of reactive oxygen species in the mito-
chondria play a role in governing viral replication [16,
18, 24, 25]. The Tumor Necrosis Factor (TNF) response
to viral infection triggers the mitochondrial activity that
oxidizes luminol in the presence of reactive oxygen spe-
cies [26, 27]. Infection by SARS-CoV-2 may lead to the
loss of mitochondrial components into the extracellular
space [28]. The cytochrome complex members including
cytochromes like CYB, CYC, CYTB, cytochrome oxidase
(MT-COX) and MT-ND from the mitochondria may play
a role in H,0, dependent luminol oxidase activity in vivo
or in vitro [27, 29-32].

Plasma from COVID-19 patients was compared to ICU
patients in Acute Respiratory Distress (ICU-ARDS) and
Normal Human plasma EDTA using manual biophysi-
cal and biochemical sample preparation. The detection
of human plasma proteins by precipitation, preparative
quaternary amine chromatography, tryptic digestion and
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Fig. 1 Agarose gel electrophoresis and GelRed Staining of PCR products

from mitochondrial DNA in human plasma with mitochondrial MT-ND1

specific primers. A PCR analysis of representative COVID-19, ICU-ARDS and NHP plasma samples; B the variation in COVID-19 and ICU-ARDS PCR
amplification. The PCR conditions were 40 cycles, lid temp 105 °C, 25 L reaction volume, 94 °C melting (30 s), 58 °C annealing (1 min), 72 °C
extension (1 min). Template DNA was extracted from plasma with Trizol. Serum from the Luxembourg cohort was used as Normal Human Plasma

(NHP) healthy controls

collection by micro C18 disposable resin (ZipTip) for
immediate acid dilution and manual injection for nano
spray liquid chromatography and tandem mass spec-
trometry of peptides (LC-ESI-MS/MS) is a laborious
but effective means to attain sensitivity in blood plasma
analysis [33, 34]. Here, the analysis of protein obser-
vation frequency of tryptic peptides by tandem mass
spectrometry [35] alongside random and noise MS/MS
spectra led to the discovery of new prognostic molecules
specific to severe lung damage from COVID-19 infec-
tion and ICU-ARDS, such as mitochondrial cytochrome
components. The experiments discovered components
of the cytochrome electron transport system including
CYCB, CYTB, CYC, CYP, MT-ND5 and MT-COX that
were increased in the plasma of COVID-19 patients com-
pared to normal controls. PCR analysis of mitochondrial

MT-ND1 DNA, LC-ESI-MS/MS of plasma proteins
and luminol oxidase assays were consistent to indicate
the presence of macromolecule components associated

with the cytochrome system in the plasma of COVID-19
patients.

Materials and methods

Materials

The Dionex UltiMate 3000 series UHPLC, C18 Acclaim
PepMap NanoLC column (75 pm ID, 25 cm length C18),
Fusion Lumos Q-Orbitrap-LTQ Tribrid MS (OIT) tan-
dem mass spectrometer [36], LTQ XL linear ion trap
(LIT) mass spectrometer [37] and Trizol reagent was from
Thermo Fisher Scientific (Waltham, MA, USA). The 1100
HPLC was from Agilent (Santa Clara, CA, USA). Trypsin,
salts, buffers, and luminol, H,0,, 4-iodophenylboronic
acid (4IPBA) were obtained from Sigma Aldrich (St.
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Louis, MO, USA). The quaternary amine (QA) resin on a
ceramic support was from BIORAD (Hercules, CA, USA).
The HPLC grade water, ethanol, acetone and acetonitrile
were obtained from Caledon Laboratories (Georgetown,
Ontario, Canada). The 0.45 micron PVDF was from Mil-
lipore (Burlington, MA, USA). The imaging workstation
was from BIORAD (Hercules, CA, USA).

Plasma sample collection

The presence of SARS-CoV-2 infection was confirmed by
nasal PCR and serology assays at St. Michael's Hospital,
Toronto. EDTA plasma tubes were rapidly inverted 5 times
before packing in ice [38]. The ice-cold plasma was then
separated from blood cells at <3,000 RCF for 15 min at
4 °C prior to aliquoting to>1 ml prior to freezing at — 80
°C prior to analysis. Plasma from COVID-19 patients was
compared to acute respiratory distress (ARDS) patients
in the ICU and normal healthy volunteers under eth-
ics protocol REB# 20-078. There were 16 COVID positive
patients by nasal PCR and serology that were sampled three
times, 2 individuals sampled twice and 1 individual sam-
pled once, for a total of 19 individuals. A total of 16 ICU
patients in acute respiratory distress were each sampled
three times. Normal human plasma (NHP) contained 31
samples including 15 healthy normal volunteers from St.
Michael’s hospital and a reference set of 16 normal human
plasma from the International Biobank of Luxembourg of
the Luxembourg Institute of Health (LIH) collected under a
Comité National d’Ethique de Recherche (CNER) Protocol
201107/02 “Biospecimen Research” at the Centre Hospital-
ier de Luxembourg [39]. Five individuals with COVID and
4 normal plasma were analyzed by high-resolution OIT as
an analytical reference. Subsequently, aliquots were thawed
on ice, centrifuged at 12,000 RCF for 5 min at 4 °C to sepa-
rate any cellular debris, and aliquoted to 25 pl samples on
ice and refrozen for following analysis. Plasma samples of
25 pl were stored on ice and used for protein analysis.

Mitochondrial PCR

The MT DNA was extracted from human plasma using the
phenol/guanidine isothiocyanate method with the com-
mercial product Trizol. The ND1 forward primer was ND1F
5-ACTACAACCCTTCGCTGACG-3' and the reverse
primer NDIR was 5-GAAGAATAGGGCGAAGGGGC-3
that together yield an expected product of 538 bp [19]. The
PCR [40] conditions were: 40 cycles, lid temp 105 °C, 25
pL reaction volume, 94 °C melting (30 s), 58 °C annealing
(1 min), 72 °C extension (1 min). The PCR products were
separated by a 1.5% Agarose gel run at 100 V for 2 h and
stained with GelRed by a minor modification of the method
of Huang et al. [41].
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Plasma precipitation

Plasma samples (25 puL) were precipitated with 9 volumes
of acetonitrile 90% final (v/v) and centrifuged at 12,000
RCF for 15 min at room temperature. The acetonitrile
was removed with a pipette and pelleted material dried
under vacuum overnight. The proteins were then resus-
pended in 250 pL of 20 mM Tris pH 8.85 on ice with
occasional vortex, brief centrifugation at 14,000 RCE,
and the dissolved proteins were collected from insoluble
components with a pipette. The resuspended proteins
were assayed for protein content using the Dumbroff
assays against BSA standards [42].

Quaternary amine (ammonium) chromatography

The precipitated, dried and re-dissolved plasma proteins
were diluted in 250 L of 20 mM Tris pH 8.85 and loaded
on quaternary amine resin, washed with 5 column vol-
umes of loading buffer and eluted in 200 pL of 300 mM
NaCl with 20 mM Tris pH 8.85 [43].

Tryptic digestion

Tryptic digestion was performed in 600 mM urea and 5%
ACN at 1/100 trypsin to protein overnight in 20 mM Tris
pH 8.5. The samples were then reduced in 2 mM DTT for
20 min at 50 °C. The samples were digested again at 1/100
trypsin to protein for 2 h and quenched with 5% acetic
acid.

LC-ESI-MS/MS

The plasma from COVID-19, ICU patients and the nor-
mal samples were analyzed in technical triplicate. Pro-
teins from human blood fluid that were precipitated in
acetonitrile (ACN) [44], re-dissolved 20 mM tris pH 8.85
and collected over preparative quaternary amine ion
exchange resin [43] and digested to fully tryptic peptides,
collected over preparative C18 ZipTip resin in 5% formic
acid and were diluted in 18 pL of 5% formic acid imme-
diately prior to injection via a 20 pL loop [45]. A total
of ~5 pg of extracted and purified peptides was injected
for each analytical HPLC separation over a 150 micron
ID column (15 cm) with inline filter frits. The peptides
were ionized by nano spray of the solvent gradient gen-
erated at 2 uL per minute split to a flow of ~200 nL per
minute with a transfer capillary temperature of <250 °C
into a Thermo Electron Corporation LTQ XL linear
ion trap (LIT) mass spectrometer [37]. The peptides
were randomly and independently sampled from 150 to
2000 m/z as the peptides eluted from the HPLC column
into the nano electrospray source. A reference database
was created using high-resolution trihybrid mass spec-
trometry where identical COVID-19 and NHP samples
were analyzed by UPLC using Dionex UlitMate 3000
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series over an Acclaim PepMap 100 C18 HPLC column
(Thermo) C18, 2uM, ID: 0.075 mm x 250 mm for the
orbital ion trap (OIT) [36, 46].

Peptide MS/MS spectra correlation analysis

The LC-ESI-MS/MS spectra and the results of the cor-
relation algorithms were parsed into an SQL Server Data-
base for analysis with the R system [33]. A physical filter of
at least one thousand (E3) intensity counts for peptide par-
ent ions was used to limit noise MS/MS spectra. The MS/
MS spectra were fit to the peptides of the non-redundant
human UNIPARC human proteins. The MS/MS spectra
were fit by fully tryptic enzyme specification with a charge
state of 2tor 3% with up to three missed cleavages by
SEQUEST [47], and XITANDEM [48] using the default ion
trap setting of fragments within 0.5 Da and within 43 m/z
for the calculated peptide [M+H]™ [33, 34, 49-52]. The
MS/MS spectra were fit to fully tryptic or phosphotryptic
peptides by SEQUEST and to optional phospho/tryptic
peptides by XITANDEM. All the Gene Symbols presented
showed p-values and FDR corrected q-values of<0.01
from the Chi Square comparison of authentic observation
frequency to that of the Monte Carlo simulation with com-
puter generated random MS/MS spectra and random MS/
MS from blank injection noise [34, 39, 50—54].

Computational analysis in SQL and statistical analysis

with R

The LC-ESI-MS/MS results from samples and blank
controls together with the results of the XITANDEM and
SEQUEST algorithms were collected and redundancy
filtered out in SQL Server followed by statistical analy-
sis performed with the R statistical system and biologi-
cal connections represented using STRING algorithm
[55]. The total number of MS/MS spectra from precur-
sors greater than E3 intensity was used to normalize the
observation frequency from the SEQUEST algorithm
between the COVID-19, ICU-ARDS and NHP treat-
ments for summation and Chi Square x> comparisons.
The number of manually prepared samples and manual
injection LC-ESI-MS/MS runs for each treatment were:
Covid positive patients (COVID-19), 165 LC-ESI-MS/
MS runs with a sum of 3,116,582 MS/MS spectra>E3
intensity; Normal human plasma (NHP), 93 LC-ESI-
MS/MS runs with a sum of 1,846,168 MS/MS spec-
tra>E3 intensity; and ICU acute respiratory distress
syndrome (ARDS) control, 144 LC-ESI-MS/MS runs
with a sum of 2,746,085 MS/MS spectra>E3 intensity.
The observation frequency for the ICU-ARDS and NHP
treatments from the random and independent sampling
of all plasma in triplicate by the LIT was corrected by the
equations:
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ICU Observation frequency

= ICU Count * (XCOVID MS/MS/ZICU MS/MS)
(1)

NHP Observation frequency

= NHP count * (XCOVID MS/MS / XNHP MS/MS)
2)

Luminol oxidase activity

Cytochrome such as CYB, CYC, CYTB, CYP and the
electron transport components such as the MT-COX
and MT-ND proteins observed in the plasma have been
previously shown to play a role in the reaction of luminol
in the presence of H,0, to yield a chemiluminescent sig-
nal [27, 29-32]. One pL sample of the plasma proteins,
alongside known amounts of Cytochrome C preparation
in the same buffer, was spotted directly onto PVDF using
a pipette [56]. The total luminol oxidase enzyme activ-
ity was measured using ECL solution containing 4-iodo-
phenylboronic acid (4IPBA) (100 mM Tris/HCI pH 8.85,
2.5 mM luminol, 0.4 mM 4IPBA, 2.6 mM Hydrogen per-
oxide) that generated strong specific signals and low back-
ground [57] on a BIORAD image analysis workstation.

Results

Mitochondrial PCR

The polymerase chain reaction (PCR) [40] showed
mitochondrial DNA encoding the cytochrome elec-
tron transport complex component NADH dehydroge-
nase 1 (MT-ND1) was detectable in the plasma of most
COVID-19 as well as ICU-ARDS patients. The presence
of MT-ND1 DNA in the plasma was also detected in
some normal human plasma (Fig. 1A). MT-ND1 DNA
showed variation across individual COVID-19 and ICU-
ARDS patients after PCR amplification, agarose electro-
phoresis and fluorescent staining (Fig. 1B) in agreement
with previous results [19]. Thus macromolecule compo-
nents from the mitochondria were clearly observed in the
plasma of COVID-19 and ICU-ARDS patients as well as
NHP controls.

Comparison of COVID-19 vs NHP and ICU-ARDS

The observation frequency of proteins from COVID-
19 plasma was compared to those of ICU-ARDS and/or
Normal Human Plasma (NHP) by One Way ANOVA,
and the Chi Square test x2, which revealed some proteins
showed significant variation in the plasma across the dis-
ease and control treatments. All proteins reported herein
were shown to have a low rate of type I false positive
identification of p <0.01 versus the Monte Carlo simula-
tion of random MS/MS from computer random numbers
or random physical noise with FDR values q<0.01 [50,
52-54]. Analysis of COVID and normal samples by nano
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electrospray with a tri-hybrid orbital trap, a highly resolv-
ing mass spectrometer, showed good agreement on many
of the proteins identified with the linear ion trap (LIT).

Plasma proteins

The majority of human protein gene symbols from serum
proteins showed nearly identical observation frequency
between COVID-19 versus normal controls (NHP) or
severe respiratory distress ICU-ARDS. Plasma proteins
including AAT, ABO, APP, FGA, HPX, ITIH4, PON and
others showed similar or higher observation frequency in
NHP compared to COVID-19 (Table 1).

Acute phase plasma proteins

A small minority of proteins that included acute phase
markers increased in COVID-19 versus the controls
based on counts of tryptic (TRYP) or phospho/tryptic
(STYP) peptides with Chi-Square score of greater than
800 (x*>9, p <0.01) (Table 1). The observation frequency
of the acute response serum proteins such as AZGP1,
B2M, CRP, HP, HPR, ORM, RBP4, and some SAA was
dramatically increased in COVID-19 compared to NHP
plasma and showed agreement with previous studies
[1-11]. In contrast AAT and transferrin (TF) showed a
sharp decline in COVID-19. However, the observation
frequency of CRP, AAT, FGA, S100, SAA1 and others
was often greater in ICU-ARDs or COVID-19 compared
to normals, therefore these proteins were not specific
markers of COVID-19 infection but rather reflected lung
damage (Table 1).

Apolipoproteins

Many apolipoproteins were dramatically reduced in
COVID-19 compared to NHP or ICU-ARDS plasma. The
apolipoproteins APOA1, APOA2 and APOA4 showed
a 30% to 90% decline in COVID-19 and/or ICU-ARDS
observation frequency compared to Normals (NHP). The
deficiency in apolipoproteins levels in COVID-19 com-
pared to normal human plasma (NHP) and ICU-ARDS
patients was most pronounced for APOA1l, APOA2,
APOA4, APOC3 and APOE (Table 2). In contrast,
APOBR was apparently increased in ICU-ARDS. Some
proteins such as APOAI1BP binding protein were con-
stant over all treatments.

Mitochondrial and cytochrome proteins

Mitochondrial and cytochrome proteins were observed
to be elevated in the plasma of COVID-19 patients ver-
sus the ICU-ARDS and NHP controls. The observa-
tion frequency of ICU-ARDS and NHP treatments was
computed after correcting for the number of MS/MS
spectra in each treatment with precursor intensity >E3
detector counts to ensure a balanced comparison [58].
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Mitochondrial proteins such as ATP5A1, CYB561D1,
several CYP accessions, L2ZHGDH, two MRP, MRPL37,
NDUES]1 and others showed increased observation fre-
quency across COVID-19 and ICU-ARDS versus NHP
individually by the Chi Square test (x2>10, p<0.01)
and as a group by one way ANOVA (p <0.003) (Table 3).
Chi Square analysis of corrected observation frequency
indicated that cytochrome complex members including
CYB, CYTB, CYP, CYBR, MT-COX, NDUE, MT-ND5
and other structurally or functionally related proteins
were significantly elevated (x*>21, DF=1, p<0.0001) in
COVID-19 plasma (Table 4). The observation frequency
of mitochondrial or cytochrome proteins from BFPS pep-
tides typically showed a two fold to three fold increase
that was significant by the Chi Square test (p<0.01).
For example, MRPL37 showed an increased observation
frequency from 216 tryptic peptides from SEQUEST in
the NHP samples to 760 observations in COVID-19 that
is an increase of more than threefold with a x> value of
x> =1364 where x*>=09 is the cut off for significance. The
cytochrome CYP3A43 was observed in NHP 75 times
from BFPS tryptic peptides by the SEQUEST algorithm
but was observed 192 times in COVID-19 plasma that
is a greater than two-fold increase with a highly sig-
nificant Chi Square value (x*=180) where a x> of >9 is
significant.

Mitochondrial protein interactions

The mitochondria may contain more than 1100 proteins
[59]. However only a small subset of 131 mitochondrial
proteins was observed to be sharply increased in the
plasma of COVID-19 patients. STRING analysis indi-
cated that there were many known functional or struc-
tural interactions between the mitochondrial molecules
observed (Fig. 2). There were 652 previously established
interactions between these 131 mitochondrial proteins
indicating that these mitochondrial proteins may form
structural or functional protein complexes [60].

Venn diagram of Chi Square analysis

A comparison of the proteins in COVID versus ICU-
ARDS and normal controls from tryptic or optional
phospho/tryptic peptides showed that CYTB, ND5,
MRPL37 and ALDH2 were the most specifically elevated
mitochondrial proteins in COVID-19 plasma. Organ-
izing the results from the plasma discovery and Chi
Square analysis into a Venn Diagram showed that some
mitochondrial components specific to viral infection
were up-regulated in COVID-19 versus both ICU-ARDS
and/or NHP samples (Fig. 3). Central members of the
cytochrome system including CYTB and ND5 as well as
mitochondrial ribosome components (MRPL) and cen-
tral metabolic enzymes such as Aldehyde dehydrogenase
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Fig. 2 The mitochondrial and cytochrome proteins specific to COVID-19 with a Chi Square value greater than 21 compared to ICU Acute
Respiratory Distress Syndrome (ARDS) and/or Normal Human Plasma. The results reported in Table 4 with COVID-19 versus NHP and/or ICU-ARDS of
x> > 21 (p<0.001) were automatically analyzed by the STRING algorithm. Network Statistics: number of nodes, 131; number of edges, 652; average
node degree, 9.95; avg. local clustering coefficient, 0.51; expected number of edges, 86; PPl enrichment p-value, < 1.0e-16

(ALDH2) and L-2-Hydroxyglutarate dehydrogenase Luminol oxidase activity

(L2HGDH) were increased in COVID-19 compared to  Proteins of the cytochrome electron transport chain of

normal human plasma and/or ICU-ARDS patients. the mitochondria including MT-ND, NDUF, complex
IV (COX), CYBR, CYC, CYB and CYTB, but also CYP,
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Fig. 3 The Venn diagram of the top Chi-Square (x2> 21, p <0.0001)

results from COVID-19 versus ICU-ARDS and COVID-19 versus NHP at
the level of full tryptic or optionally phospho/tryptic peptides shown
in Table 4

have all been previously observed to participate or con-
tribute to luminol or lucigenin oxidation in vivo and/or
in vitro [15, 22, 27, 29-32, 61, 62]. Similarly other heme
containing oxidases or peroxidases have also been impli-
cated in the response to infection [63]. Cytochrome
and cytochrome oxidase enzymes have been previously
shown to react with luminol or lucigenin in the presence
of H,0, to yield chemiluminescence in vitro [27, 29-32].
No signal was observed in the absence of H,0O, from the
luminol test solution. Testing plasma for H,O, (Hydro-
gen peroxide) dependent cytochrome-like activity using
luminol (Fig. 4A) showed a significant increase in the
ECL signal intensity in COVID-19 and ICU compared to
Normal plasma (Fig. 4B). There was apparently the equiv-
alent of ng/pL (ug/mL) levels of cytochrome c-like activ-
ity in COVID-19 and ICU-ARDS plasma while NHP was
near the lowest detection levels.

Discussion

The aim of this study was to orchestrate standard bio-
chemistry techniques followed by LC-ESI-MS/MS with
classical computation and statistical methods for pri-
mary discovery of plasma proteins from COVID-19 and
ICU-ARDS versus normal controls. Traditional protein

(See figure on next page.)
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precipitation and standard partition chromatography
were followed by tryptic digestion and LC-ESI-MS/MS.
The resulting peptide identifications were analyzed by the
classical statistical practice of random and independent
sampling for Chi Square comparison of corrected peptide
observation frequency. The type I error rate of protein
identification with respect to random expectation was
estimated using the Monte Carlo controls of computer
random and noise random MS/MS spectra. Herein, the
orchestration of well-established laboratory approaches
and classical statistical methods has revealed the mito-
chondrial components and heme-containing oxidases
such as cytochromes released from the cells of severe
COVID-19 or ICU-ARDS patients that can be directly
measured by a rapid and simple enzyme assay.

Mitochondrial DNA PCR assay

The PCR amplification of mitochondrial ND1 was a sen-
sitive method to detect mitochondrial components in
COVID-19 or ICU-ARDS plasma and demonstrated that
macromolecules from the mitochondria may be released
from cells in agreement with previous results [19]. How-
ever, the PCR assay was so sensitive it detected mito-
chondrial DNA in many of the NHP control samples and
so apparently did not show much discrimination in the
detection of MT DNA.

Analysis of human COVID-19 plasma proteins

The COVID-19 plasma proteome was recorded using
manual plasma precipitation, isolation of proteins by dis-
posable chromatography for tryptic digestion, manual
collection and injection of peptides for random sam-
pling by tandem mass spectrometry alongside random
MS/MS spectra controls. The laborious manual proce-
dure enabled the detection and quantification of cellular
proteins that were released into the plasma in COVID
patients. The significant difference between authentic
sample observation frequency versus computer random
and noise MS/MS spectra, and the significant differ-
ence between treatments by ANOVA and Chi Square,
were consistent with an apparently low type I error
rate of protein discovery from the fit of MS/MS spec-
tra. The results of this study showed good agreement
with previously reported analysis of COVID-19 plasma

Fig. 4 The presence of a luminol-oxidase activity in the plasma of COVID-19 and ICU Acute Respiratory Distress Syndrome patients (ICU-ARDS)
compared to Normal Human Plasma (NHP). A One microlitre (1 L) of a representative set of COVID-19 plasma was spotted onto PVDF alongside

a specifically selected set of ICU-ARDS plasma (positive control) and two sets of representative NHP plasma (negative control) ECL dot blots.
Cytochrome c from 0 to 100 ng/pL served as a detection standard. Arrows show the sample lanes; B Quantile boxplot of the intensity of luminol
oxidase activity from the complete set of COVID-19, ICU-ARDS and NHP plasma samples in the study. The results from the two independent batches
of normal that showed similar results were combined for graphic and statistical analysis. Significant difference by the Tukey Kramer Honestly
Significant Difference (HSD) test at the p <0.05 level are shown by lower case letters
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Fig.5 A cartoon summary of the mitochondrial proteins and enzyme activities discovered by LC-ESI-MS/MS from COVID-19 versus ICU and
NHP sample populations. The SARS-CoV-2 spike protein is apparently cleaved by extracellular TMPRSS5 to gain entry via ACE2 and is unpacked in
the cytosol releasing the spike and triggering expression of VDAC that releases the contents of the mitochondria including cytochrome, electron
transport complex, ribosomal and others components such as MRPL, MT-ND, MT-COX, NDUF, CYB5RL and CYTB (see Table 4). Created with
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regarding common acute phase markers such as AZGP1
ORM, CRP, SAA1, HP, ORM, HPR and B2M that were
increased in COVID-19 patients [1-11], that confirmed
the sampling scheme, instrumental analysis and compu-
tations were successful. The reduction in apolipoproteins
in COVID-19 was consistent with ELISA assays [64]. The
sensitivity to the spectrum of acute phase markers and
apolipoproteins is a clear demonstration of the efficacy of
random and independent sampling by LC-ESI-MS/MS
with frequency-based analysis using classical statistical
methods in R alongside the Monte Carlo statistical con-
trols of computer random and noise MS/MS spectra.

Mitochondrial proteins in plasma

There were 652 previously established structural or func-
tional interactions between the small subset of mitochon-
drial proteins observed in COVID-19 plasma that may
indicate the mitochondrial proteins take the form of protein
complexes in circulation [60]. The results of LC-ESI-MS/
MS showed excellent agreement with the recent literature
on the mitochondrial apoptosis pathway that is activated
in response to viral infection [8, 14—18, 20, 21]. An increas-
ing repertoire of cytochrome p450s (CYP) is now known
to be targeted to the mitochondria, especially CYPs associ-
ated with sterol and steroid synthesis [65, 66]. The release
of mitochondrial protein enzymes such as oxidase compo-
nents MT-CO2 and CYB, CYTB or CYP into circulation
were consistent with cellular damage from viral infection

that might be quantified by enzyme activity to serve as a
prognostic marker for the severity of COVID-19 infection
[67]. Cytochrome enzymes such as MT-COX, CYB, CYTB,
or CYP are known to react with luminol to provide an ECL
signal in vitro [29-31, 62]. The increased presence of the
cytochrome oxidase MT-COX2, cytochromes such as CYB,
CYTB, or CYP or associated factors in the plasma of ARDS
and COVID-19 patients as discovered by plasma proteom-
ics was consistent with the measurements of increased
cytochrome-like activity in the plasma of patients with res-
piratory distress [29-32].

Biology of SARS-CoV-2

Infection by the SARS-CoV-2 virus is known to result in
the clustering of the mitochondria and the endoplasmic
reticulum (ER) with the loss of normal compartments
and integrity of the cells [8, 14-21, 68]. The SARS-CoV-2
spike protein may be cleaved by the protease TMPRSS2
to gain entry to the cell through the ACE2 receptors [13]
(Fig. 5). Once inside the cell, the SARS-CoV-2 spike pro-
tein may act as a trigger of apoptosis via a mitochondrial
pathway [14]. The increased expression of porins in the
mitochondrial outer membrane in response to SARS-
CoV-2 infection [8] provides a clear and established
mechanism for the release of mitochondrial proteins
from the organelle into the cytoplasm of cells infected
with SARS-CoV-2 [18]. The porin VDAC may permit
the loss of cytochrome enzymes from the mitochondria
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to the cytosol with eventual loss from the compromised
cells [27, 29, 32, 61]. The release of cytochrome is a cru-
cial part of the process that triggers cell death and apop-
tosis [15]. SARS-CoV-2 infection may lead to the fission
of membrane-bound organelles and cellular lysis consist-
ent with the escape of large molecules like mitochondrial
components [8, 16, 20, 21, 28] including cytochromes
and MT-COX proteins that might be detectable by lumi-
nol oxidase assays [29-32]. All of the data presented
herein supports a mitochondrial pathway of apoptosis
in SARS-CoV-2 infected cells that resulted in the release
of mitochondrial proteins and DNA into the plasma that
was similar to that observed in ICU-ARDS patients.

Conclusion

The SARS-CoV-2 virus shows clear structural and func-
tional associations with the mitochondria during viral
infection and replication [17]. Four independent lines of
evidence including the PCR against the oxidase compo-
nent ND1, the increased observation frequency of mito-
chondrial proteins in plasma by LC-ESI-MS/MS, the
previously established structural and functional interac-
tions between the increased proteins and the presence
of a cytochrome-like ECL activity in COVID-19 plasma
were all consistent with the loss of mitochondria and
cytochrome components from cells in severe SARS-
CoV-2 infection. Here it was demonstrated for the first
time that the plasma from clinical populations may be
analyzed in the protein discovery laboratory by LC-ESI-
MS/MS to reveal new cellular proteins and the results
translated into a rapid and simple biochemical test for an
enzyme activity in COVID-19 and ICU-ARDS patients.

Abbreviations

ACN Acetonitrile

ARDS Acute respiratory distress syndrome
COVID-19 Infectious disease from SARS-CoV-2
ICU Intensive care unit

LC-ESI-MS/MS Nano liquid chromatography, electrospray ionization
and tandem mass spectrometry

LIT Linearion trap

oIT Orbital ion trap

NHP Normal human plasma

STYP Fully tryptic phosphopeptide

TRYP Fully tryptic peptide
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